Compiling Probabilistic Conformant Planning into Mixed Dynamic Bayesian Network

June 5th

Junkyu Lee
Overview

• Goal
 – Solve Probabilistic Conformant Planning by the marginal MAP inference

• Contribution
Contents

• Introduction

• Compiling PCP into Mixed DBN

• Empirical Evaluation

• Conclusion
Introduction

• What is Planning?

• What is Probabilistic Conformant Planning?

• How to formulate PCP as the Marginal MAP inference?

• Review the definition of Mixed Network
Planning

• Planning
 – a process of selecting and organizing actions to achieve desired goal

 – \(<S, T, A>\)
 • \(S\) : set of world states
 • \(A\) : set of actions
 • \(T\) : state transition function
 – Deterministic Transition \(T: S \times A \rightarrow S\)
 – Probabilistic Transition \(T: S \times A \times S \rightarrow [0,1]\)

 – Flat vs. Factored state/action representation
 • Single variable vs. Multiple variables
Probabilistic Conformant Planning

• Probabilistic Planning
 – the effect of an action is random
 – the initial state is uncertain

• State Observability
 – Fully Observable \rightarrow FOMDP
 – Partially Observable \rightarrow POMDP
 – Non Observable \rightarrow NOMDP
Probabilistic Conformant Planning

- \(P = \langle S, b_i, s_G, A, T \rangle \)
 - \(S \) : a set of states,
 - \(b_i \) : initial belief state, \(\Pr(S_i) \)
 - \(s_G \) : a set of goal states
 - \(A \) : a set of actions
 - \(T : S \times A \times S \to [0, 1] \)

- Finite Horizon PCP \(<P, L> \)
 - \(L \) : time horizon

- PCP with threshold \(<P, \theta> \)
 - \(\theta \) : threshold for probability of success

- Optimal Probabilistic Conformant Plan
 - a plan that achieves the maximum probability of success given fixed time horizon
Probabilistic Conformant Planning

• The joint conditional prob. distribution over all states from time 0 to L time horizon is

\[Pr(s^0..s^L|a^0..a^{L-1}) = \prod_{i=0..L} Pr(s^i|s^{0..i-1}, a^{0..i-1}) = \prod_{i=0..L} Pr(s^i|s^{i-1}, a^{i-1}) = Pr(s^0)Pr(s^L|s^{L-1}, a^{L-1}) \prod_{i=1..L-1} Pr(s^i|s^{i-1}, a^{i-1}) \]

• Initial belief state and goal are given in advance,

\[Pr(s^0..s^L|s^0 = s_I, s^L = s_G, a^0..a^{L-1}) = Pr(s^0 = s_I)Pr(s^L|s^L = s_G, s^{L-1}, a^{L-1}) \prod_{i=1..L-1} Pr(s^i|s^{i-1}, a^{i-1}) \]

• PCP as Marginal MAP

\[(a^0..a^{L-1}) = \arg\max_{(a^0..a^{L-1})} \sum_{s^1 \in S} Pr(s^1..s^{L-1}|s^0 = s_I, s^L = s_G, a^0..a^{L-1}) \]
Mixed Network

- Mixed network
 - Belief network + Constraint network
 - The joint probability distribution of Mixed network

\[
P_{\mathcal{M}}(\bar{x}) = \begin{cases}
 P_{\mathcal{B}}(\bar{x}), & \text{if } \bar{x} \in \rho(X_C) \\
 0, & \text{otherwise.}
\end{cases}
\]
Compiling PCP into Mixed DBN

- Overview of Process
- What is PPDDL?
- SAT Encoding of PPDDL
- Converting SAT Encoding into Mixed DBN.
- Example
Compiling PCP into Mixed DBN

1. PPDDL Instance
2. SAT Encoding
3. Mixed 2TDBN
4. Mixed DBN
Planning Formalisms

- Classical Propositional STRIPS \(\langle P, O, I, G \rangle \)
 - \(P \): a set of propositional atoms
 - \(O \): a set of operators
 - \(I \): a list of positive atoms at init.
 - \(G \): a list of atoms that must be true at goal
 - operator \(o \) \(\langle \text{pre}(o), \text{add}(o), \text{del}(o) \rangle \)
 - Precondition list
 - Add list
 - Delete list
 - Closed world assumption
Action Description Language

- ADL
 - more expressive than STRIPS

<table>
<thead>
<tr>
<th></th>
<th>STRIPS</th>
<th>ADL</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Conjunction of positive literals</td>
<td>Conjunction of literals</td>
</tr>
<tr>
<td>Goal state</td>
<td>Only positive ground literals</td>
<td>Allow quantified variables</td>
</tr>
<tr>
<td>Goal expression</td>
<td>Conjunction</td>
<td>Allow Conjunction and disjunction</td>
</tr>
<tr>
<td>Operator expression</td>
<td>Conjunction</td>
<td>Allow Conditional effects</td>
</tr>
<tr>
<td>Unmentioned literals</td>
<td>Closed world assumption</td>
<td>Open world assumption</td>
</tr>
<tr>
<td>Equality predicates</td>
<td>No equality</td>
<td>Allow equality predicates for terms</td>
</tr>
<tr>
<td>Types</td>
<td>No types</td>
<td>Allow types for variables</td>
</tr>
</tbody>
</table>
Planning Domain Definition Language

<domain> ::= <predictes> <actions>
<predictes> ::= list of <predicate>
<predicate> ::= (<name> <list of variables>*
<actions> ::= list of <action>
<action> ::= (<name> <list of variables>* <action body>)
<action body> ::= [<precondition>] [<effect>]
<precondition> ::= <ground expression>
<ground expression> ::= <predicate> <list of variables>* |
 equality on two predicates |
 negation of a precondition |
 existentially quantified precondition |
 universally quantified precondition |
 conjunction of preconditions |
 disjunction of preconditions |
<effect> ::= <simple effect> |
 <conditional effect> |
 conjunction of effects
<simple effect> ::= predicate literal
<conditional effect> ::= when <precondition> <effect>
<problem> ::= <ground terms> <init state> <goal>
<ground terms> ::= list of ground objects
<init state> ::= conjunction of ground predicates
<goal> ::= <ground expression>
• Probabilistic Effect

\[
\text{<effect>} ::= \text{<simple effect>} \mid \\
\text{<conditional effect>} \mid \\
\text{<prob. effect>} \mid \\
\text{conjunction of effects}
\]

\[
\text{<prob. effect>} ::= \text{list of pairs } (p, \text{<effect>})
\]
(define (domain ext-slippery-gripper)
 (:requirements :negative-preconditions :conditional-effects
 :probabilistic-effects)
 (:predicates (gripper-dry) (holding-block) (block-painted)
 (gripper-clean))
 (:action pickup
 :effect (and (when (gripper-dry)
 (probabilistic 0.95 (holding-block)))
 (when (not (gripper-dry))
 (probabilistic 0.5 (holding-block)))))
 (:action dry
 :effect (probabilistic 0.8 (gripper-dry)))
 (:action paint
 :effect (and (block-painted)
 (when (not (holding-block))
 (probabilistic 0.1 (not (gripper-clean)))
 (when (holding-block)
 (not (gripper-clean))))))

(define (problem ext-slippery-gripper)
 (:domain ext-slippery-gripper)
 (:init (gripper-clean)
 (probabilistic 0.7 (gripper-dry)))
 (:goal (and (gripper-clean) (holding-block) (block-painted))))
SAT Encoding for PPDDL

SAT Variables

- For each ground predicate/action, introduce a boolean state/action variable s_i/a_i.
- For each action a_i, introduce a multi-valued effect variable e_{a_i} which has $n+1$ values if the effect had n outcomes. The first value of an effect variable e_{a_i} is no-op, which means that the result of the effect will be null effect, and the rest of the values refer to conditional effects c_j defined earlier.
- For each state variable s_i, we introduce two auxiliary boolean variables for state transition, $+s_i$ and $-s_i$. The $+s_i$ is true if execution of any action could add the state variable s_i at the next time stage. Similarly the $-s_i$ is true if execution of any action could delete the state variable s_i at the next time stage.
SAT Encoding for PPDDL

SAT Clause for Qualifying Precondition
- For each ground action a_i, let ϕ_i be a CNF clause for a action precondition, then

 \[a_i \land \phi_i \iff (e_{a_i} \neq \text{no-op}), \text{where the } (e_{a_i} = v) \text{ is an equality predicate that is true if} \]

 the value of the multi-valued variable e_{a_i} equals v.

SAT Clause for State Transition
- the auxiliary value $+s$ is TRUE

 iff one of the effect that contains positive literal s happens

 \[\forall (e_{a_i} = v) \iff +s_i \text{, if } +s_i \in \text{add}(e_{a_i} = v) \]

SAT Clause for mutual exclusivity
- only 1 action per time stage, and only single effect can happen

 \[\forall_j \lor a_j, \forall_{j \neq k} a_j \rightarrow \neg a_k \quad \forall_{a_i,a_j} (e_{a_i} = v_i) \land (e_{a_j} = v_j) \rightarrow \neg +/-s_i \]

SAT Clause for the frame axiom
- $s_i, \neg +s_i \land -s_i \rightarrow (s_i \land s_i') \lor (-s_i \land \neg s_i')$
Mixed 2TDBN

- **action**
- **precondition** (φ)
- **effect** ($(p_1 \cdot v_1), (p_2 \cdot v_2)$)

<table>
<thead>
<tr>
<th>a</th>
<th>φ</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>no-op 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>v_1 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>v_2 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>no-op 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>v_1 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>v_2 0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>no-op 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>v_1 0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>v_2 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>no-op 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>v_1 P_1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>v_2 P_2</td>
</tr>
</tbody>
</table>
Mixed 2TDBN

- **Action**
- **Precondition**: (φ_1)
- **Effect**: $(p_1 \varphi_2 \triangleright v_1), (p_2 \varphi_3 \triangleright v_2)$

(a) conditional effects inside probabilistic effect

(b) conjunction of conditional effect and probabilistic effect
Mixed 2TDBN

<table>
<thead>
<tr>
<th>e_1</th>
<th>e_2</th>
<th>+s</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-op</td>
<td>no-op</td>
<td>0 1</td>
</tr>
<tr>
<td>no-op</td>
<td>no-op</td>
<td>1 0</td>
</tr>
<tr>
<td>no-op</td>
<td>$(s \land y)$</td>
<td>0 0</td>
</tr>
<tr>
<td>no-op</td>
<td>$(s \land y)$</td>
<td>1 1</td>
</tr>
<tr>
<td>$(s \land x)$</td>
<td>no-op</td>
<td>0 0</td>
</tr>
<tr>
<td>$(s \land x)$</td>
<td>no-op</td>
<td>1 1</td>
</tr>
<tr>
<td>$(s \land x)$</td>
<td>$(s \land y)$</td>
<td>0 0</td>
</tr>
<tr>
<td>$(s \land x)$</td>
<td>$(s \land y)$</td>
<td>1 0</td>
</tr>
</tbody>
</table>
Mixed 2TDBN

(a) Auxiliary network for the frame axiaom

(b) Auxiliary network for the mutual exclusivity constraint
Mixed 2TDBN

Diagram:

- Two treestructures are shown:
 - The left structure has a root labeled 'c' with children 'a1', 'a2', and 'a3'.
 - The right structure has a root labeled 't' with children 'c', 'a1', 'a2', and 'a3'.

The structures are connected by an arrow indicating a transformation or relationship.
Complexity of Translation

• Number of Variables per time
 – n_actions = ground actions, |A|
 – n_states = ground states, |S|
 – n_effects = n_action
 – n_hidden <= 2n_states* |E|
 • E : maximum number of effects that affecting a single state; depends on the problem
 – n_constraint = n_actions (including hidden variables)
 – O (|A| + |S| + |A| + 2|S| + |A| + |S|*|E|) = O(3|A| + (3+ |E|) |S|)

• |A|
 – number of action schema * K^p
 • K : maximum number of constant objects
 • p: maximum number of parameters for action schema

• |S|
 – number of predicates * K^q
Slippery Gripper Problem
Empirical Evaluation

• Benchmark Sets

• AOBB-JG vs. BBBTi vs. Yuan’s algorithm

• AOBB-JG vs. Probabilistic-FF
Benchmark Sets

- 3 Benchmark Problems

<table>
<thead>
<tr>
<th>PPDDL Domain</th>
<th>Source</th>
<th>Instance</th>
<th>Init. State</th>
<th>State Transition</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slippery Gripper</td>
<td>IPC 04</td>
<td>sg</td>
<td>Probabilistic</td>
<td>Probabilistic</td>
<td>Single state</td>
</tr>
<tr>
<td>Comm</td>
<td>IPC 06</td>
<td>p01</td>
<td>Nondeterministic</td>
<td>Deterministic</td>
<td>Single state</td>
</tr>
<tr>
<td>Blocks World</td>
<td>IPC 06</td>
<td>bw224</td>
<td>Deterministic</td>
<td>Probabilistic</td>
<td>Single state</td>
</tr>
</tbody>
</table>

- 3 Marginal MAP algorithms
 - AOBBA-JG : (i, c, j)
 AND/OR branch and bound search algorithm using weighted mini bucket heuristic with join graph cost shifting scheme
 - BBTi : (i, c)
 Branch and bound search algorithm using incremental mini cluster tree elimination heuristics
 - Yuan’s :
 Depth first branch and bound search algorithm using incremental joint tree upper bound with unconstrained variable orderings
Slippery Gripper

- 2TDBN
 - 4 state vars
 - 3 action vars
 - 23 vars
Slippery Gripper

• Run time results
 – Yuan < BBTI < AOBBI-JG

• Heuristic Upper bounds
 – WBM-JG provided the tightest bound
 – AOBBI-JG solved up to 7 horizon w/o search

• Induced width:
 – unconstrained induced width 6
 – constrained induced width increases with L
Comm

<table>
<thead>
<tr>
<th>Stats</th>
<th>L.</th>
<th>n, m</th>
<th>f</th>
<th>k</th>
<th>s</th>
<th>w*</th>
<th>h</th>
<th>sat var</th>
<th>sat clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>653, 94</td>
<td>653</td>
<td>2</td>
<td>5</td>
<td>103</td>
<td>140</td>
<td>1307</td>
<td>3671</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>957, 141</td>
<td>957</td>
<td>2</td>
<td>5</td>
<td>155</td>
<td>198</td>
<td>1915</td>
<td>5826</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1261, 188</td>
<td>1261</td>
<td>2</td>
<td>5</td>
<td>207</td>
<td>270</td>
<td>2523</td>
<td>7981</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1565, 235</td>
<td>1565</td>
<td>2</td>
<td>5</td>
<td>259</td>
<td>324</td>
<td>3131</td>
<td>10136</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1869, 282</td>
<td>1869</td>
<td>2</td>
<td>5</td>
<td>311</td>
<td>375</td>
<td>3739</td>
<td>12291</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2173, 329</td>
<td>2173</td>
<td>2</td>
<td>5</td>
<td>363</td>
<td>436</td>
<td>4347</td>
<td>14446</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2477, 376</td>
<td>2477</td>
<td>2</td>
<td>5</td>
<td>415</td>
<td>488</td>
<td>4955</td>
<td>16601</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2781, 423</td>
<td>2781</td>
<td>2</td>
<td>5</td>
<td>467</td>
<td>540</td>
<td>5563</td>
<td>18756</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>L.</th>
<th>i-bd</th>
<th>c-bd</th>
<th>OR</th>
<th>AND</th>
<th>pre time</th>
<th>total time</th>
<th>Solution</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOBG</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.18</td>
<td>1.18</td>
<td>0</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>JG</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3.07</td>
<td>3.07</td>
<td>0</td>
<td>0.00E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>7.13</td>
<td>7.13</td>
<td>0</td>
<td>4.50E+47</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>11.09</td>
<td>11.09</td>
<td>0</td>
<td>0.00E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2208</td>
<td>2234</td>
<td>17.8</td>
<td>19.06</td>
<td>0.25</td>
<td>1.09E+98</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>79776</td>
<td>81574</td>
<td>25.83</td>
<td>74.81</td>
<td>0.25</td>
<td>3.15E+133</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2478</td>
<td>2480</td>
<td>34.98</td>
<td>36.96</td>
<td>0.25</td>
<td>2.13E+139</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>6283</td>
<td>6641</td>
<td>49.04</td>
<td>54.87</td>
<td>0.25</td>
<td>1.86E+153</td>
</tr>
</tbody>
</table>

- 2TDBN : 45 state vars, 46 action vars, 349 vars
Comm

• AOBB-JG was the only algorithm that solved up to 9 time horizon.

• The induced width of the constrained ordering is 103 for the length 2 plan problem and 467 for the length 9 plan problem.

• The only probabilistic tables in the problem are two state variables at the initial state.

• AOBB-JG could solve the problem efficiently by detecting the zero probability subplans early by constraint processing.

• The large induced width of the problem not only makes the heuristic inaccurate but also consumes huge amount of memory.

• i-bound was limited by 2 up to 9 time horizon and solver was terminated due to out of memory from 10 time horizon.
Blocks World

- 2TDBN: 9 state vars, 8 action vars, 73 vars

<table>
<thead>
<tr>
<th>L</th>
<th>n, m</th>
<th>f</th>
<th>k</th>
<th>s</th>
<th>w*, uw*</th>
<th>h, uh</th>
<th>sat var</th>
<th>clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>201, 24</td>
<td>201</td>
<td>3</td>
<td>5</td>
<td>32, 17</td>
<td>54, 202</td>
<td>421</td>
<td>1719</td>
</tr>
<tr>
<td>4</td>
<td>265, 32</td>
<td>265</td>
<td>3</td>
<td>5</td>
<td>40, 17</td>
<td>66, 266</td>
<td>555</td>
<td>2353</td>
</tr>
<tr>
<td>5</td>
<td>329, 40</td>
<td>329</td>
<td>3</td>
<td>5</td>
<td>48, 17</td>
<td>78, 330</td>
<td>689</td>
<td>2987</td>
</tr>
<tr>
<td>6</td>
<td>393, 48</td>
<td>393</td>
<td>3</td>
<td>5</td>
<td>57, 17</td>
<td>90, 394</td>
<td>823</td>
<td>3621</td>
</tr>
<tr>
<td>7</td>
<td>457, 56</td>
<td>457</td>
<td>3</td>
<td>5</td>
<td>67, 17</td>
<td>99, 458</td>
<td>957</td>
<td>4255</td>
</tr>
<tr>
<td>8</td>
<td>521, 64</td>
<td>521</td>
<td>3</td>
<td>5</td>
<td>73, 17</td>
<td>111, 522</td>
<td>1091</td>
<td>4889</td>
</tr>
<tr>
<td>9</td>
<td>585, 72</td>
<td>585</td>
<td>3</td>
<td>5</td>
<td>85, 17</td>
<td>129, 586</td>
<td>1225</td>
<td>5523</td>
</tr>
<tr>
<td>10</td>
<td>649, 80</td>
<td>649</td>
<td>3</td>
<td>5</td>
<td>88, 17</td>
<td>132, 650</td>
<td>1359</td>
<td>6157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>algorithms</th>
<th>L</th>
<th>i</th>
<th>c</th>
<th>OR</th>
<th>AND</th>
<th>pre time</th>
<th>total time</th>
<th>Solution</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOBB</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>201</td>
<td>202</td>
<td>0.56</td>
<td>0.57</td>
<td>0.140625</td>
<td>1.410625</td>
</tr>
<tr>
<td>JG</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>2264</td>
<td>2294</td>
<td>0.9</td>
<td>1.06</td>
<td>0.5625</td>
<td>1.51E+09</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>33601</td>
<td>34166</td>
<td>1.28</td>
<td>4.99</td>
<td>0.703125</td>
<td>1.16E+08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>441711</td>
<td>450030</td>
<td>3.62</td>
<td>66.91</td>
<td>0.808594</td>
<td>7.68E+16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>16</td>
<td>16</td>
<td>4767559</td>
<td>4872884</td>
<td>55.59</td>
<td>879.03</td>
<td>0.870117</td>
<td>1.45E+18</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18</td>
<td>18</td>
<td>46897433</td>
<td>4817132</td>
<td>224.61</td>
<td>9390.6</td>
<td>0.91626</td>
<td>3.04E+15</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>80960476</td>
<td>81880618</td>
<td>2.57</td>
<td>out</td>
<td>nan</td>
<td>8.72E+19</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70629254</td>
<td>71552310</td>
<td>2.82</td>
<td>out</td>
<td>nan</td>
<td>1.09E+21</td>
</tr>
</tbody>
</table>

BBBT	3	12	12	177	178	0.24	0.35	0.140625	5.13E+06
	4	12	12	846	875	0.38	1.95	0.28125	3.79E+10
	5	10	10	5181	5660	0.32	8.93	0.28125	1.46E+13
	6	12	12	80184	87724	0.64	242.19	0.808594	2.49E+17
	7	26	26	947040	1036077	1.86	18231.81	0.870117	1.83E+02
	9	22	22	4074	4169	29.95	out	0.943176	2.02E+03
	10	28	28	2024	2068	31.67	out	0.990327	1.80E+04

Yuan	3	-	-	25	-	5.51	7.53	0.140625	0.140625
	4	-	-	62	-	7.55	10.81	0.5625	1.47E+06
	5	-	-	1148	-	12.1	92.88	0.703125	8.96E+04
	6	-	-	11982	-	13.46	1029.82	0.808594	49.533
	7	-	-	209726	-	17.55	18809.1	0.870117	296.851
	8	-	-	247596	-	21.31	out	0.870117	702.582
	9	-	-	380441	-	23.08	out	0.885498	2691.55
	10	-	-	245637	-	27.55	out	0.931504	20239.9
Comparison with COMPLAN

• COMPLAN
 – Depth First Branch & Bound Search using approximate marginal MAP query to DNNF (compiled diagram).
 • similar to Yuan’s algorithm
 – Compiles problems as SAT with chance variables → compile CNF as DNNF

• Running time comparison?
 – NA
Comaprisou with Probabilistic-FF

• Probabilistic-FF
 – Sub-optimal planner, returns any plan that achieves a threshold
 – Heuristic Forward Search in a Belief State Space
 – Built on
 • Fast Forward Classical Planner
 • Conformant-FF
 – Internally represent belief states by DBN, and compile it into weighted CNFs \(\rightarrow \) weighted model counting
Comparison with Probabilistic-FF

<table>
<thead>
<tr>
<th></th>
<th>slippery gripper</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pff (h1, w0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.7335</td>
<td>0.830925</td>
<td>0.884385</td>
<td>0.895077</td>
<td>0.898539</td>
</tr>
<tr>
<td>time</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>length</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>θ</td>
<td>0.899618</td>
<td>0.899859</td>
<td>0.899967</td>
<td>0.899989</td>
<td>0.899999</td>
</tr>
<tr>
<td>time</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
<td>0.11</td>
<td>out</td>
</tr>
<tr>
<td>length</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pff (h2, w1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.7335</td>
<td>0.830925</td>
<td>0.884385</td>
<td>0.895077</td>
<td>0.898539</td>
</tr>
<tr>
<td>time</td>
<td>0.03</td>
<td>0.19</td>
<td>0.42</td>
<td>1.22</td>
<td>1.27</td>
</tr>
<tr>
<td>length</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>θ</td>
<td>0.899618</td>
<td>0.899859</td>
<td>0.899967</td>
<td>0.899989</td>
<td>0.899999</td>
</tr>
<tr>
<td>time</td>
<td>3.05</td>
<td>6.29</td>
<td>13.89</td>
<td>31.56</td>
<td>156.86</td>
</tr>
<tr>
<td>length</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>AOBB JG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.7335</td>
<td>0.830925</td>
<td>0.884385</td>
<td>0.895077</td>
<td>0.898539</td>
</tr>
<tr>
<td>time</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>0.98</td>
<td>8.33</td>
</tr>
<tr>
<td>length</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>θ</td>
<td>0.899618</td>
<td>0.899859</td>
<td>0.899967</td>
<td>0.899989</td>
<td>0.899999</td>
</tr>
<tr>
<td>time</td>
<td>66.23</td>
<td>4.13</td>
<td>5.19</td>
<td>49.29</td>
<td>37.23</td>
</tr>
<tr>
<td>length</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>blocks world - bw224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pff (h1, w0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.14065</td>
<td>0.5625</td>
<td>0.703125</td>
<td>0.808594</td>
<td>0.870117</td>
</tr>
<tr>
<td>time</td>
<td>0.04</td>
<td>0.05</td>
<td>oom</td>
<td>oom</td>
<td>oom</td>
</tr>
<tr>
<td>length</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AOBB JG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.14065</td>
<td>0.5625</td>
<td>0.703125</td>
<td>0.808594</td>
<td>0.870117</td>
</tr>
<tr>
<td>time</td>
<td>0.57</td>
<td>1.06</td>
<td>5</td>
<td>67</td>
<td>879</td>
</tr>
<tr>
<td>length</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusion

- Converted PPDDL Format to UAI Format

- Empirical Evaluation
 - 3 Problems (Slippery Gripper, Comm, Blocks world)
 - AOBB-JG Performed Best in overall
 - AOBB-JG equipped with constraint processing
 - w/o zero probability detection,
 - Slippery Gripper : Yuan < BBBTi < AOBB-JG
 - Blocks World : AOBB-JG < BBBTi < Yuan
 - AOBB-JG vs. Probabilistic FF
 - Probabilistic-FF generates suboptimal plans really fast
 - For optimal length plan, AOBB-JG was faster
 - In blocks world, Probabilistic FF couldn’t find solution if threshold was >= 0.6
Conclusion

• Downsides of Current Compilation
 – The number of variables is exponential in the number of ground objects
 • comm domain had 46 actions in 1 step.
 • cannot solve blocks world problem having 4 blocks
 – Large scope sized deterministic constraints
 • Mutually exclusive action constraint
 • The state transition constraint
 – All tables have huge redundancy
 • Decision diagrams
Future Work

• Compact Translation (semi-lifted model)
 – Formulate Problems in SAS+ formalism
 • Actions will be splitted
 • Reduce the coupling between state variables

• Compressed Representation
 – Constraints, CNFs
 – Decision Diagrams

• Lifted Inference
 – Incorporated lifted inference algorithms on the relational representation

• Extend the Problem Formulation to
 – Probabilistic Planning with Rewards
 – POMDP