Beyond Static Mini-Bucket: Towards Integrating with Iterative Cost-Shifting Based Dynamic Heuristics

William Lam, Kalev Kask, Rina Dechter, and Alexander Ihler

Abstract

We explore the use of iterative cost-shifting as a dynamic heuristic generator for solving MPE in graphical models via Branch and Bound. When mini-bucket elimination is limited by its memory budget, it may not provide good heuristics. This can happen often when the graphical model has a very high induced width with large variable domain sizes. In addition, we explore a hybrid setup where both MBE and the iterative cost-shifting bound are used in a combined heuristic. We compare these approaches with the most advanced statically generated heuristics.

Introduction

Combinatorial optimization tasks are prevalent in many applications and can be formulated as a most probable explanation (MPE) query in graphical models. Graphical models are a widely-used framework for tasks not limited to optimization and provide structure to a problem, which can be used to reason about it and perform efficient computation (Pearl 1988).

Branch-and-Bound (BnB) is one such algorithm for solving combinatorial optimization queries in graphical models. It is guided by a heuristic evaluation function that provides an optimistic bound on the cost to go for every node. One such bounding scheme used is mini-bucket elimination (MBE) (Dechter and Rish 2003), which generates bounds for all of the nodes in the search space at once, given a static variable ordering for the problem. It duplicate variables in order to bound the treewidth of the problem and apply the exact bucket elimination (BE) algorithm (Dechter 1999) on the resulting relaxed problem. This is typically referred to as the static mini-bucket heuristic. Still, the heuristics generated by MBE can be poor when the treewidth of the problem is very high since we would need to relax the problem by duplicating many variables.

An alternative is to compute heuristics dynamically. In this setup, we recompute the heuristic we use on the subproblem induced by the current partial conditioning during search. However, this means that we must keep the computational cost of generating heuristics at each node, low. One such approach is maintaining soft arc consistency (SAC) (Larrosa and Schiex 2004) during branch-and-bound. Maintaining SAC is a method of re-parameterizing the problem by shifting costs from higher arity functions toward lower arity functions, which bounds the problem with a single nullary function that has cost shifted into it. One of these algorithms is optimal soft arc consistency (OSAC), which formulates the process of finding the set of re-parameterizations that maximize the cost shifted into the nullary function as a linear program (Cooper, de Givry, and Schiex 2007). However, maintaining OSAC entails solving a large LP for each search node, which is cost-prohibitive in terms of time. Another algorithm is virtual arc-consistency, which finds a sequence of cost shifts to tighten the bound based on a connection with classical arc consistency, yielding an iterative cost-shifting method (Cooper et al. 2008).

In other literature, there are several iterative approximation techniques based on solving linear programming (LP) relaxation of a graphical model (Wainwright, Jaakkola, and Willsky 2005). This initial work established connections between these LP relaxations and message-passing, which led to coordinate-descent update algorithms such as max-product linear programming (MPLP) (Globerson and Jaakkola 2007).

The ideas from this literature were used recently to extend the approach of static MBE (Ihler et al. 2012). It employs a similar algorithm to MPLP, known as factor graph linear programming/join graph linear programming (FGLP/JGLP) as a preprocessing step on the original problem. Next, it uses MBE with moment-matching (MBE-MM), an enhanced version of MBE that includes cost-shifting to enforce consistency between the duplicated variables, as the heuristic. However, as a static heuristic this still have similar drawbacks of generating weak heuristics for problems having large induced-width and large domains.

In this work, we aim to 1. explore the use of FGLP as a heuristic generator dynamically for every node during the search, and compare with the most advanced statically generated heuristics describe above as in (Ihler et al. 2012), and 2. to combine both static and dynamic schemes into a single, potentially more powerful heuristic for BnB search. While generating dynamic heuristics based on FGLP is closely related to the soft-arc consistency algorithms such as those in the toulbar2 solver (http://mulcyber.toulouse.}

Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
inra.fr/projects/toulbar2/, our work provides an alternative based on techniques that come from LP literature. In particular, FGLP solves a problem that is identical to that of the LP for Optimal Soft Arc Consistency. Since FGLP is an LP coordinate-descent algorithm, it allows us to aim towards an optimal re-parameterization, yet terminating short of solving it to optimality, based on a given computation budget. The comparison of our dynamic re-parameterization schemes against recent static mini-bucket based schemes is performed here for the first time. Also, the combination of the two approaches (static, mini-bucket-based and dynamic, re-parameterization-based) is carried out here for the first time.

We present preliminary empirical results showing that on some problem instances for which static mini-bucket evaluation is quite weak when we have very limited memory, the dynamic FGLP scheme can prune the search space far more effectively, and in some cases this is carried out in a cost-effective manner despite the significant overhead inherent to the dynamically generated heuristics. We acknowledge however that the overhead of the dynamic re-parameterization is often quite prohibited limiting its effectiveness both when applied in a pure form and within a hybrid scheme.

The remainder of this paper is structured as follows: Section 2 introduces the underlying concepts. Section 3 presents a faster FGLP algorithm. Section 4 identifies the differences between the heuristics generated by the static MBE heuristic and dynamic cost-shifting heuristics and shows how to combine them into a hybrid scheme. Section 5 presents empirical results and analysis before Section 6 concludes.

Background

We describe combinatorial optimization problems as graphical models, which include Bayesian networks, Markov networks, and constraint networks. We provide some definitions below. (Pearl 1988; Dechter 2003; 2013).

Definition 1. (graphical model) A graphical model is a 4-tuple $\mathcal{M} = (X, D, F, \otimes)$, where $X = \{X_i : i \in V\}$ is a set of variables indexed by a set V and $D = \{D_i : i \in D\}$ is the set of finite domains of values for each X_i. $F = \{f_\alpha : \alpha \in F\}$ is a set of discrete functions, where $\alpha \subseteq V$ and $X_\alpha \subseteq X$ is the scope of f_α. We associate a primal graph G by representing each variable X_i as a node and include an edge (X_i, X_j) if $i, j \in X_\alpha$ for any f_α. $\otimes = \prod_{i} \sum_{\alpha \in F} f_\alpha(X_\alpha)$ is a combination operator that defines the function represented by the graphical model \mathcal{M} as $\otimes_{\alpha \in F} f_\alpha(X_\alpha)$.

We focus on the max-sum problem, $C^* = \max_{X} \sum_{\alpha \in F} f_\alpha(X_\alpha)$, in this work and assume upper bounds when discussing bounds on this quantity.

Search in Graphical Models

The max-sum problem and other inference queries can be solved via traversing the search space of a graphical model. Internal nodes represent partial assignments and leaf nodes represent complete assignments. For a node n, the cost of an assignment is defined by the combination of the costs of all functions that have been fully instantiated, which we denote as $g(n)$.

The size of the OR search tree is $O(k^n)$, representing all possible assignments to the graphical model. In this work, we search a smaller graph-based representation of the search space, formed by capturing problem structure. Identical subproblems are identified by their context, which for a particular variable at depth d, is the partial instantiation that defines the subproblem, and can contain fewer variables than d. The size of the context-minimal OR search graph, formed by merging identical subproblems on their context is $O(nk^{pw})$. n is the number of variables, k is maximum domain size, and pw is the pathwidth of the primal graph G along the search ordering (Dechter and Mateescu 2007).

Branch and Bound (BnB) is a search algorithm which performs a depth-first traversal of the search space and maintains a lower bound on the cost of the optimal solution, which corresponds to the best solution found so far. At each node, a heuristic $h(n)$ is computed to give an upper bound of the cost to go, $c(n) = g(n) + h(n)$ then gives an upper bound of the best solution extending the current partial assignment. If the upper bound is smaller than the lower bound, then we can prune the search space below that node. The effectiveness of BnB is highly dependent on the quality of heuristics. We discuss two possible approaches that are used in the following section. One is the mini-bucket heuristic and the other is based on re-parameterization.

Mini-Bucket Elimination

Bucket elimination (BE) (Dechter 1999) is a standard algorithm for solving reasoning tasks over graphical models. The buckets correspond to variables to be eliminated and are formed by organizing the functions of the graphical model
The idea is to introduce a collection of functions over individual variables \(\Lambda = \{ \lambda_{\alpha}(X_i) \} \) and require
\[
\forall i, \; \sum_{\alpha \in F_i} \lambda_{\alpha}(X_i) = 0
\]
This yields
\[
C^* = \max_X \sum_{\alpha \in F} f_{\alpha}(X_\alpha)
= \max_X \sum_{\alpha \in F} f_{\alpha}(X_\alpha) + \sum_i \sum_{\alpha \in F_i} \lambda_{\alpha}(X_i)
= \max_X \sum_{\alpha \in F} f_{\alpha}(X_\alpha) + \sum_{\alpha \in F} \sum_{i \in \alpha} \lambda_{\alpha}(X_i)
= \max_X \left(\sum_{\alpha \in F} f_{\alpha}(X_\alpha) + \sum_{i \in \alpha} \lambda_{\alpha}(X_i) \right)
\leq \sum_{\alpha \in F} \max_{X_\alpha} f_{\alpha}(X_\alpha) + \sum_{i \in \alpha} \lambda_{\alpha}(X_i)
\tag{2}
\]
Our objective is to find \(\lambda \) such that we minimize (2), which serve to produce an optimal re-parameterization of the original model.

Depending on the literature, these \(\lambda \) functions are viewed as equivalence-preserving transformations (EPTs), in the soft arc consistency literature (Cooper and Schiex 2004), or as Lagrange multipliers enforcing consistency between the variable copies in the LP relaxation (Yedidia, Freeman, and Weiss 2005; Wainwright, Jaakkola, and Willksy 2005). In the latter view, these functions are computed by coordinate descent updates that can be viewed as message passing (Globerson and Jaakkola 2007).

Improving Factor Graph Linear Programming

Factor graph LP (FGLP) algorithm (Ihler et al. 2012) is a coordinate-descent algorithm for solving the LP in the previous section. We show the pseudocode in Algorithm 1.

Algorithm 1: FGLP(X, D, F)

Input: Graphical Model \((X, D, F, \sum)\), where \(f_{\alpha} \) is a function defined on variables \(X_\alpha \)

Output: Re-parameterized factors \(\mathcal{F}' \), bound on optimum value

1. **Iterate until convergence:**
2. **for each variable \(X_i \) do**
3. Let \(F_i = \{ \alpha : i \in \alpha \} \) with \(X_i \) in their scope
4. \(\forall \alpha \in F_i \), compute max-marginals:
 \(\lambda_{\alpha}(X_i) = \max_{X_j \setminus X_i} f_{\alpha}(X_\alpha) \)
5. \(\forall \beta \in F_i \), update parameterization:
 \[
 f_{\alpha}(X_\alpha) \leftarrow f_{\alpha}(X_\alpha) - \lambda_{\alpha}(X_i) + \frac{1}{|F_i|} \sum_{\beta \in F_i} \lambda_{\beta}(X_i)
 \]
6. **return** Re-parameterized factors \(\mathcal{F}' \) and bound \(\sum_{\alpha \in F} \max_{X_\alpha} f_{\alpha}(X_\alpha) \)

The main loop of the algorithm updates functions along a particular variable such that their max-marginals become

Mini-bucket elimination (MBE) (Dechter and Rish 2003) approximates BE with a systematic way to avoid the computational complexity of BE. We consider an integer parameter \(z \). For a bucket \(B_i \), we create a partition \(Q_i = \{ q_{i1}, \ldots, q_{iz} \} \), where \(q_{iz} \) is referred to as a mini-bucket and corresponds to a subset of the functions of \(B_i \) such that the combined scope of these functions have no more than \(z + 1 \) variables. We refer to this as satisfying the \(z \)-bound. Each mini-bucket is then processed separately as in BE and we denote the messages generated as \(h_i \). As such, each mini-bucket within \(B_i \) can be viewed as duplicate copies of variable \(i \) and the bucket tree of MBE corresponds to the bucket tree of BE for a relaxed version of the problem with such duplicate variables. The result is a bound (upper-bound in the case of maximization) on the solution to the original problem.

Using a single parameter \(z \), we have a simple way to trade off computational complexity and the tightness of the bound. Increasing \(z \) generally tightens this bound, and MBE is identical to BE when \(z \geq w \).

Bounds by Re-parameterization

The second orthogonal approach is based on re-parameterization coming from the literature on solving Linear Programming (LP) relaxations of the graphical model to generate bounds. The literature on enforcing soft arc consistency also offers various methods, instead based on varying strengths of soft arc consistency.

In the LP relaxation view, the idea is to consider bounding the max-sum objective by the maxima of each individual function:
\[
C^* = \max_X \sum_{\alpha \in F} f_{\alpha}(X_\alpha) \leq \sum_{\alpha \in F} \max_X f_{\alpha}(X_\alpha),
\tag{1}
\]
which exchanges the sum and max operators. One view of this is that each function has its own copy of each variable, and each are optimized separately. If each variable copy does happen to agree on its maximizing assignment, then this relaxation is tight and the bound produced is equal to the objective. However, this is generally not the case, so we need to compensate for the errors that accumulate.
identical, which is known to achieve the minimum given that we fix the updates along all of the other variables. (Sontag et al. 2008). A typical fixpoint from iteratively applying the updates on each variable is that all of the function maximums become identical.

In our version, we make improvements to the algorithm to make efficient execution during search. This includes a change that normalizes the functions and a improved schedule for updates.

Normalization

In the setup for dynamic heuristics, we apply conditioning on a single variable and compute our heuristic based on the conditioned functions. For FGLP, we want to leverage the state of the problem achieved by running FGLP before conditioning. After conditioning, the max-marginals of the conditioned functions may not be the same and updates can be performed to tighten the bound once again. A typical scenario is that the conditioning removes the maximum value of one or more functions. Since their max-marginals now have lower values, running FGLP will shift costs from the rest of the problem into the conditioned functions to reach a lower value, running FGLP will shift costs from the rest of the problem into the conditioned functions to reach a state of the problem achieved by running FGLP before conditioning.

In particular, we seek to identify the variables that are the most important to update next. Large changes to a function suggest that it has been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1). In each iteration, the variable with the highest priority value or if the number of iterations has not been exceeded (line 1).

We present this change as a subroutine that performs an update on a single variable in Algorithm 2. Figure 3 presents the update as message passing on a part of a factor graph. Line 4 describes the cost shift for normalization and line 5 is changed from the original FGLP algorithm to take into account the cost shifted into f_0.

![Figure 3: View of FGLP update as message passing. The numbers 1, 2, 3 indicate the order that the messages are computed.](image)

Algorithm 2: FGLP-Variable-Update(X_i)

Input: Graphical Model (X, D, F, \sum_{α}), where f_α is a function defined on variables X_α, variable X_i to update, current upper bound f_0

Output: Re-parameterized factors $f_\alpha'(X_\alpha)$ \hspace{1em} $\forall \alpha \in F_i$

1. Let $F_i = \{\alpha : i \in \alpha\}$ with X_i in their scope
2. $\forall \alpha \in F_i$, compute max-marginals:
 \[\lambda_\alpha(X_i) = \max_{X_i} f_\alpha(X_\alpha) \]
3. Shift costs into f_0:
 \[f_0 \leftarrow f_0 + \sum_{\alpha \in F_i} \max_{X_i} \lambda_\alpha(X_i) \]
4. $\forall \alpha \in F_i$, update parameterization:
 \[\lambda_\alpha'(X_i) = \lambda_\alpha(X_i) - \max_{X_i} \lambda_\alpha(X_i) \]
 \[\hat{\lambda}'(X_i) = \frac{1}{|F_i|} \sum_{\alpha \in F_i} \lambda_\alpha'(X_i) \]
 \[f_\alpha'(X_\alpha) \leftarrow f_\alpha(X_\alpha) - \lambda_\alpha(X_i) + \hat{\lambda}'(X_i) \]
5. return Re-parameterized F' containing updates to f_α

Theorem 1. (complexity of FGLP-Variable-Update)

Computing each max-marginal takes $O(k^a)$ time, where k is the maximum domain size and a is the maximum arity size over the functions in the problem. Since we need to do this $|F_i|$ times, the total time complexity is $O(|F_i| k^a)$.

Scheduling Updates

Unlike Algorithm 1 where the scheduling is left undefined, we address here scheduling to achieve faster performance. In particular, we seek to identify the variables that are the most important to update next.

Residual BP (Elidan, McGraw, and Koller 2006) maintains a priority queue of messages by computing them as if it were the next message to update and comparing them to the previously applied update via a distance measure known as a message norm. Message norms are computed by comparing the messages as vectors and taking vector norms (L_1, L_2, $L\infty$, etc.) between them. This yields a weight indicating the importance of an update.

However, since this requires the calculation of messages we may possibly not use, we instead calculate priorities based on the changes made to functions that would affect a particular variable. Large changes to a function suggest that variables in that function should be updated. We maintain a priority p_i for each variable X_i. For a particular function and variable, the magnitude of an update is quantified by taking a message norm between the two normalized update messages $||\lambda'_i(X_i) - \hat{\lambda}'(X_i)||$. Each variable in f_α, except X_i, then gets a priority value based on this quantity, or stays with its current priority value, whichever is greater. To stop the computation early we have two parameters: a tolerance ϵ that stops updates with the highest priority p_α is less than that value, and a maximum number of iterations m. Our full version of the FGLP algorithm with normalization and scheduling (FGLP-S) is given in Algorithm 3. The algorithm runs in a main loop that runs while the maximum priority is greater than the ϵ value or if the number of iterations m has not been exceeded (line 1). In each iteration, the variable with the highest priority value and its priority value is set to 0 (lines 2-3). The following lines are those of FGLP-S.
Variable-Update (Algorithm 2) (lines 4-8). Finally, we update all of the neighboring variable priorities with a priority based on the magnitude of the update just performed on variable \(i \). The initial bound and priorities parameters are primarily used when we are computing dynamic heuristics, which we describe in a later section. Otherwise, the initial bound is 0, as no cost has been shifted from the problem at the start. The initial priorities are all \(\infty \), to ensure that all variable updates are performed at least once.

Algorithm 3: FGLP-S (X, D, F, f_0, p_1, ..., p_n, c, m)

Input: Graphical Model \((X, D, F, \sum) \), where \(f_0 \) is a function defined on variables \(X_\alpha \), initial bound \(f_0 \), initial priorities \(p_1, ..., p_n \) for each \(X_i \), tolerance value \(c \), maximum number of iterations \(m \).

Output: Re-parameterized factors \(F' \), bound on optimal value \(f'_0 \), updated priorities \(p'_i \)

1. **while** \(\max_i p_i > c \) and \# iterations \(<= m \) **do**
 2. \(i \leftarrow \arg\max p_i \)
 3. \(p_i \leftarrow 0 \)
 4. Let \(F_0 = \{ \alpha : i \in \alpha \} \) with \(X_i \) in their scope
 5. \(\forall \alpha \in F_0 \), compute max-marginals:
 6. \(\lambda_\alpha(X_i) = \max X_{\alpha \setminus i}, f_0(X_\alpha) \)
 7. Shift costs into \(f_0 \):
 8. \(f_0 \leftarrow f_0 + \sum_{\alpha \in F_0} \max_{X_i} \lambda_\alpha(X_i) \)
 9. \(\forall \alpha \in F_0 \), update parameterization:
 10. \(\lambda'_\alpha(X_i) = \lambda_\alpha(X_i) - \max_{X_i} \lambda_\alpha(X_i) \)
 11. \(\lambda'(X_i) = \frac{1}{|\alpha|} \sum_{\alpha \in F_0} \lambda'_\alpha(X_i) \)
 12. \(f_\alpha(X_\alpha) \leftarrow f_\alpha(X_\alpha) - \lambda_\alpha(X_i) + \lambda'(X_i) \)
 13. \(\forall \alpha, \forall j \in \alpha, j \neq i \), update priorities:
 14. \(p_j \leftarrow \max(p_j, ||\lambda'_\alpha(X_i) - \lambda'(X_i)||) \)
15. Let \(F' \) and \(p'_1, ..., p'_n \) be the set of updated functions and priorities, respectively
16. **return** Re-parameterized factors \(F' \), updated bound \(f'_0 \), and updated priorities \(p'_1, ..., p'_n \)

Heuristics for Branch-and-Bound

We now turn to heuristic generation for Branch-and-Bound. We present static and dynamic methods of evaluating heuristics. In addition, we propose a hybrid that combines both methods.

Static Heuristics

The existing static mini-bucket schemes include MBE and MBEMM, with augmentations based on re-parameterizations via FGLP and JGLP (Ihler et al. 2012). The augmentations are based on executing FGLP/JGLP only once on the original problem to re-parameterize it, followed by an MBE variant (typically MBEMM) is run on the re-parameterized set of functions.

In any of these schemes, MBE is computed once and the \(h_j \) messages are then used to compute the heuristics \(h_{MBE}(n) \), corresponding to a bound on the cost to go from any node in the search space. The value \(c_{MBE}(n) = g(n) + h_{MBE}(n) \) is then compared against the best solution so far to decide whether to prune.

Dynamic Re-parameterization Heuristics

In a cost shifting approach, we instead focus re-parameterizing the problem during search to generate bounds dynamically. As is common in any dynamic heuristic scheme, the state of the functions are maintained at each node along a search path, allowing for backtracking and leveraging the re-parameterization performed at ancestor nodes. We also maintain the state of the priorities at each node. To quickly incorporate information from conditioning a variable with a value, we additionally set the priorities of all variables in functions that contain the conditioning variable to \(\infty \).

We present the pure dynamic FGLP algorithm (dFGLP) in Algorithm 4. We start by selecting the functions that form the subproblem at the parent node of the search (line 1). Next, we condition on the parent variable \(X_{i-1} \) to form the subproblem at the current node (line 2). Since the functions may have been changed (especially if conditioning removes the maximum of the function), we set the priority of all of the remaining variables of these functions to \(\infty \). The following line then calls the FGLP-S algorithm (Algorithm 3) (line 4).

In order to generate a bound for each assignment to \(X_i \), we select the remaining functions in the problem that contain variable \(X_i \) and maximize over the other variables. We then sum up these functions to generate a single unary function. This function represents a bound on the summation of the functions that contain \(X_i \), for each assignment \(x_i \). Each of the values of this function are then combined with the bound generated by FGLP-S to create a bound for each assignment (line 5).

Functions that are fully conditioned are implicitly collected into the \(f_0 \) function, so \(f_0 \) (and the \(c(x_i) \) outputted by dFGLP) correspond to a bound on the best solution we can get from extending the current assignment \(c_{FGLP}(n) \), rather than only bounding a best cost to go.

Hybrid Heuristic

We can also combine the power of the static heuristic directly with the cost-shifting methods by taking the minimum of the two at each node. The hybrid heuristic is then given by \(c_{hybrid}(n) = \min(c_{MBE}(n), c_{FGLP}(n)) \), taking the minimum of the two for the tighter upper bound.

Experiments

We experimented with running branch-and-bound with several heuristics.

For static heuristic schemes, we have:

- MBE with only FGLP preprocessing (FGLP+MBEMM)
- MBE with both FGLP and JGLP preprocessing (FGLP+JGLP+MBEMM)

For dynamic/hybrid heuristic schemes, we have:

- Dynamic FGLP alone with FGLP preprocessing (FGLP+dFGLP(m))
Algorithm 4: dFGLP(X, D, F, f_0, p_1,..., p_n, ϵ, m, X_i)

Input: Graphical Model \{X, D, F, S\} formed after conditioning on previous search variables \(X_1,...,X_{i-2}\), where \(f_0\) is a function defined on variables \(X_i\), current bound \(f_0\), current priorities \(p_1,...,p_n\), tolerance value \(\epsilon\), maximum number of iterations \(m\), parent variable assignment \(X_{i-1} = x_{i-1}\), current search variable \(X_i\).

Output: Re-parameterized factors \(F'\), best solution cost bounds given the assignment to ancestors of \(X_i\) for each assignment \(x_i\): \(c(X_i)\), updated bound \(f_0'\), updated priorities \(p_1',...,p_n'\).

1. Let \(F_{i-1} = \{\alpha : X_{i-1} \in \alpha\}\), set of scopes with \(X_{i-1}\) in their scope.
2. \(\forall \alpha \in F_{i-1}\), condition:
 \(f_\alpha \leftarrow f_\alpha|X_{i-1} = \alpha\).
3. Set maximum priority for variables of affected functions, \(\forall \alpha \in F_{i-1}, \forall i \in \alpha\):
 \(p_i \leftarrow \infty\).
4. Re-parameterize factors, get bound and updated priorities:
 \(F' = (f_0', p_1',...,p_n') \leftarrow \)
 \(\text{FGLP-S}(X, D, F, \epsilon, m, f_0, p_1,...,p_n, \epsilon, m)\).
5. Compute the bounds for each assignment, \(c(X_i)\):
 \(c(X_i) \leftarrow f_0' + \sum_{\alpha \in F_i : i \in \alpha} \max_{X_i \setminus X_i} f_\alpha(X_\alpha)\).
6. Return \(c(X_i)\), re-parameterized factors \(F'\), updated bound \(f_0'\), updated priorities \(p_1',...,p_n'\).

- Hybrid Dynamic FGLP with static FGLP+MBEMM (F+MBEMM+dFGLP(m)).
- Hybrid Dynamic FGLP with static FGLP+JGLP+MBEMM (F+J+MBEMM+MFGLP(m)).

where \(m\) indicates the maximum number of variable updates performed per search node. We varied this parameter with 50, 100, and 150 updates. We set the schedule tolerance value \(\epsilon = 10^{-7}\) and used the \(L_1\)-norm as the message norm.

In all of the setups, the same variable ordering was used for search and compiling the static heuristics. Each algorithm also searches the context-minimal OR graph of the problem. We present the list of benchmarks we experimented with along with summary statistics on their properties in Table 1.

The block world benchmark is taken from block world conformant planning instances expressed as unrolled dynamic Bayesian networks. The CPD benchmark comes from work on modeling computational protein design as a cost function network problem (Allouche et al. 2014). The rest of the benchmarks are taken from the PASCAL2 Probabilistic Inference Challenge problems.

We ran the experiments on an Intel Xeon X5650 2.66GHz processor and limited the memory usage to 1GB,1 which

1 We chose a 1GB limit, based on our experimentation with the algorithms and a range of test problems, in order to focus on problems that were neither trivial nor impossible, to get a meaningful comparison of the relative performance of the algorithms.

Results
We report the preprocessing time, total execution time, and the number of nodes processed for each algorithm setting in Table 2 on a selected set of instances from each benchmark. A '-' indicates that the algorithm was unable to solve the problem within the time limit. On each benchmark, we focus on pointing out which method performs better.

We can interpret the results by looking across the columns for each problem instance. In terms of heuristic strength, we see that the number of nodes processed decreases on many instances when using any of the dynamic schemes.

Block World Planning These instances, based on unrolled dynamic Bayesian networks, have relatively large induced widths ranging up to 60. Due to their moderate domain size of 3, we are still able to use relatively larger \(z\)-bounds for MBEMM. However, there are also high amounts of determinism in these problems that FGLP is able to propagate throughout the network. As such, although the static heuristic alone does not solve the harder instances in this benchmark, augmenting it with dynamic FGLP helps greatly.

Graph Coloring For the instances we managed to solve with our schemes, the \(z\)-bound used was relatively close to the induced width, allowing MBEMM to produce good bounds. Therefore, although there were savings in terms of the number of nodes when applying our dynamic schemes, the savings were often not substantial enough to trade well with the increased node processing time.

Computation Protein Design Notably, the primal graphs for these instances are complete graphs. As such their induced width is always \(n - 1\). In addition, the domain sizes are extremely large, ranging up to 198. As such, this places a great restriction on the \(z\)-bound that MBEMM can use, which heavily hinders its performance. On the other hand, the number of variables is relatively low (mostly < 100) compared to the other benchmarks and all of the functions are binary, which makes FGLP updates fast. In the hybrid setups, the dynamic FGLP component was often the heuristic that was actually used.

PDB (Protein DB) We managed to solve only 2 of the instances in this benchmark. Similar to the previous benchmark, the domain sizes are large compared to the other benchmarks we experimented on, which has the same expected effect of limiting the \(z\)-bound for MBEMM. How-
ever, unlike the CPD instances, there is also a high number of variables and functions, which makes them difficult to solve even with dynamic FGLP, each update step can take a long time. The two solved instances are the two with the lowest number of variables and functions. For one of them, the preprocessing from FGLP/JGLP is sufficient to make the problem easy. For the other, we see that the dynamic FGLP scheme produces a much better heuristic.

Pedigrees The relationship between the z-bound used and the induced width is similar to those of the coloring instances, where z is relatively close to the induced width. We can note that for many of the instances, using the dynamic FGLP scheme alone does not return a solution. In the few cases that it does, considering the number of nodes processed, it is also producing weaker bounds.

Planning For many of these instances, the z-bound used is once again limited relative to the induced width, due to the larger domain sizes. As expected, the dynamic FGLP scheme is producing much of the heuristics that are actually being used at each node.

Radio Frequency Assignment This benchmark has similar properties to the protein problems (high domain sizes and induced width). For the two instances shown, though the dynamic FGLP scheme alone has the best runtime, it is not significantly better than those of the static heuristic.

Summary

| Benchmark | # inst | # solved | n | w | pw | k | $|F|$ | max arity | z |
|-----------------|--------|----------|-----|-----|------|-----|------|-----------|-----|
| Block world | 15 | 13 | 192-2695 | 17-60 | 101-1699 | 3 | 196-2/03 | 5 | 12-17 |
| Coloring | 12 | 8 | 25-450 | 6-287 | 15-387 | 2-5 | 82-5715 | 2 | 6-15 |
| CPD | 47 | 33 | 11-120 | 10-119 | 10-119 | 48-198 | 67-7261 | 2 | 2-5 |
| PDB | 10 | 2 | 337-1972 | 22-51 | 151-988 | 81 | 1360-8817 | 2 | 3 |
| Pedigree | 22 | 19 | 298-1015 | 15-39 | 86-357 | 3-7 | 335-1290 | 4-5 | 10-21 |
| Planning | 13 | 7 | 45-431 | 9-90 | 18-226 | 4-27 | 272-9689 | 2 | 5-12 |
| Radio frequency | 11 | 3 | 14-458 | 7-119 | 10-295 | 44 | 58-1878 | 2 | 3-4 |

Table 1: Benchmark statistics. # inst - number of instances, # solved - number of instances solved by methods in this work, n - number of variables, w - induced width, pw - pathwidth, k - maximum domain size, $|F|$ - number of functions, a - maximum arity, z - z-bound used for MBE

We can note that for many of the instances, using the dynamic FGLP scheme alone does not return a solution. In the few cases that it does, considering the number of nodes processed, it is also producing weaker bounds.

Conclusion

We explored FGLP, a method that keeps the objective of finding the set of optimal cost shifts to tighten in mind, placing our focus on improving the coordinate descent procedure used. Results show that it generates a powerful heuristic compared to static mini-bucket heuristics in many cases where our memory budget is limited. In addition, the hybrid heuristic yields the smallest number of nodes expanded in the search space for some instances.

Existing scheduling work for message passing algorithms lead us in the correct direction, but they are not designed for our scenario of search. The current schedule which is parameterized by the maximum number of variable updates and a tolerance has its shortcomings in that it may not balance the computation load correctly. For instance, one might consider performing more updates at a higher level of the search space to allow descendant nodes to start at a better parameterization. This suggests future work into more sophisticated scheduling schemes tuned for use at every node within search. Additionally, expanding the heuristic to work in AND/OR search spaces could also help by decomposing the subproblems into independent parts, making both the search space smaller and possibly allowing FGLP to operate on much smaller problems. Lastly, we did not investigate the scheme’s strength when searching along dynamic variable orderings. Though this would result in not being able to use the hybrid scheme, it would be interesting to observe how our FGLP heuristic compares to the various soft-arc consistency methods in the literature.
Table 2: Results on selected instances of each benchmark. \(n \) - number of variables, \(w \) - induced width, \(pw \) - pathwidth, \(k \) - maximum domain size, \(| F|\) - number of functions, \(a \) - maximum arity, \(z \) - bound used for MBE. In bold are the minimum running time/nodes achieved for a problem over all of the heuristic setups. Time limit: 1 hour, memory limit 1GB.
Acknowledgements This work was sponsored in part by NSF grants IIS-1065618 and IIS-1254071, and by the United States Air Force under Contract No. FA8750-14-C-0011 under the DARPA PPAML program.

References