From Exact to Anytime Solutions for Marginal MAP

Junkyu Lee*, Radu Marinescu**, Rina Dechter* and Alexander Ihler *

*University of California, Irvine
**IBM Research, Ireland

AAAI 2016 Workshop on Beyond NP
Feb 12. 10:15 ~ 10:30 Poster Spotlights Paper 3
Introduction

- **Marginal MAP**
 - Mode of probability distribution after marginalizing subset of variables
 - Complexity Class: NP^{PP} Complete
 - MPE (NP-Complete): optimizing over max variables
 - PR (#P-Complete): evaluating full instantiation

- **Application to Probabilistic Planning**
 - Marginal MAP query returns optimal probabilistic conformant plan*

* “Applying Search Based Probabilistic Inference Algorithms to Probabilistic Conformant Planning: Preliminary Results”, 2016 ISAIM
Earlier Works on Marginal MAP Inference

Earlier Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description</th>
</tr>
</thead>
</table>
| [Park & Darwiche 2003] | • Exact Solution
• Depth First Branch and Bound
with Dynamic Variable Ordering
• Join-tree upper bound
Relax ordering
Systematic Search Algorithm |
| [Yuan & Hansen 2009] | • Exact Solution
• Depth First Branch and Bound
with Static Variable Ordering
• Incremental Join-tree upper bound
Reduced heuristic computation time |
| [Marinescu, Dechter, Ihler 2014] | • Exact Solution
• AND/OR Branch and Bound
• WMB + Cost shifting schemes
Stronger Heuristic
Compacter AND/OR Search Space |
| [Marinescu, Dechter, Ihler 2014] | • Exact Solution
• AND/OR Best First
• AND/OR Recursive Best First
Best First Based Search Strategy
Avoid Solving Summation Problems |

- [Liu, Ihler 2013] Variational algorithms
- [Maua, De Campos 2012] Factor-set elimination algorithm

Motivation

- Best First Schemes avoid evaluating summation sub problems, but they requires enormous amount of memory ➔ Turn to anytime approach
Probabilistic Graphical Models

- A graphical model ($\mathbf{X}, \mathbf{D}, \mathbf{F}$)
 - $\mathbf{X} = \{X_1, \ldots, X_n\}$ variables
 - $\mathbf{D} = \{D_1, \ldots, D_n\}$ domains
 - $\mathbf{F} = \{f_1, \ldots, f_m\}$ functions

- Operators
 - Combination (product)
 - Elimination (max/sum)

- Tasks
 - Probability of Evidence (PR)
 \[
 Pr(e) = \sum_{X_s} \prod_j f_j(X_s, e)
 \]
 - Most Probable Explanation (MPE)
 \[
 x_{MPE} = \arg \max_x \prod_j f_j(x)
 \]
 - Marginal MAP (Maximum A Posteriori)
 \[
 x_{MMAP} = \arg \max_{x_m \in X_M} \sum_{X_s \in X_s} \prod_j f_j(x_m, x_s)
 \]

All these tasks are NP-hard

Exploit problem structure (primal graph)
AND/OR Search Space for MMAP

- **Constrained variable ordering**
- **Primal graph**
 \[X_M = \{A, B, C, D\} \]
 \[X_S = \{E, F, G, H\} \]
- **Constrained pseudo tree as backbone**
 - Merge identical sub-problems
 - (Conditional independence)
Anytime AND/OR Search for MMAP

- **Anytime AOBB (BRAOBB)**

 Depth First Branch and Bound (AOBB)

 Breadth Rotate AOBB

 Prune node n if current best solution is better than optimistic evaluation at n

 Problem decomposition rejects anytime performance of AOBB
 Rotate through sub-problems
Anytime AND/OR Search for MMAP

- Weighted Best First Search
 - AND/OR Best First
 - Expand Nodes with best heuristic evaluation value $f(n)$

- Weighted Best First Search
 - Initialize w
 - While $w \geq 1$
 - Inflate heuristic by w
 - AOBF (sub-optimal solution within w)
 - Optionally Revise traversed search space
 - Reduce w

- Weighted Restarting AOBF (WAOBF)
- Weighted Restarting RBFAOO (WRBFAOO)
- Weighted Repairing AOBF (WRAOBF)
Experiment Setup

Benchmark Instances

<table>
<thead>
<tr>
<th>Domain</th>
<th># instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID</td>
<td>75</td>
</tr>
<tr>
<td>PEDIGREE</td>
<td>50</td>
</tr>
<tr>
<td>PROMEDAS</td>
<td>50</td>
</tr>
</tbody>
</table>

Problem instances are modified from PASCAL2 Probabilistic Inference Challenge Data Set (http://www.cs.huji.ac.il/project/PASCAL/)

Algorithm Parameters

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameters</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Mini Bucket Heuristic</td>
<td>i-bound from 2 to 20</td>
<td>-</td>
</tr>
<tr>
<td>BRAOBB</td>
<td>Rotation Limit 1000</td>
<td>Max 24 GB</td>
</tr>
<tr>
<td>WAOBF / WRAOBF / WRBFAOO</td>
<td>Starting Weight 64</td>
<td>Max 24 GB, Cache 4 GB</td>
</tr>
</tbody>
</table>

Performance Measures

- Responsiveness, Quality Score
Performance Regimes

<table>
<thead>
<tr>
<th>AND/OR Search for MMAP</th>
<th>Overall</th>
<th>Pedigree</th>
<th>Promedas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resp.</td>
<td>Quality</td>
<td>Resp.</td>
</tr>
<tr>
<td>Exact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOBB</td>
<td>89%</td>
<td>339%</td>
<td>84%</td>
</tr>
<tr>
<td>AOBF</td>
<td>50%</td>
<td>208%</td>
<td>42%</td>
</tr>
<tr>
<td>RBFAOO</td>
<td>58%</td>
<td>90%</td>
<td>42%</td>
</tr>
<tr>
<td>Anytime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAOBF</td>
<td>82%</td>
<td>365%</td>
<td>88%</td>
</tr>
<tr>
<td>WRBFAOO</td>
<td>86%</td>
<td>394%</td>
<td>90%</td>
</tr>
<tr>
<td>WRAOBF</td>
<td>82%</td>
<td>339%</td>
<td>88%</td>
</tr>
<tr>
<td>BRAOBB</td>
<td>86%</td>
<td>365%</td>
<td>58%</td>
</tr>
</tbody>
</table>

- Summarized from 1 hour time bound,
- Responsiveness: WMB-MM(18), Quality Score: WMB-MM(12) heuristic

- WRBFAOO is the overall best performed algorithm
- BRAOBB is the second best performer, but the best at PROMEDAS DOMAIN
WRBFAOO vs. BRAOBB

- Closer look at individual problem instances

- Each point \((W_c, W_s)\) represents difficulty of problem

- Time/ Memory Complexity is Exponential in \(W\)

- Easy Problems: \(W_c < 60\)

- Harder Problems: \(200 < W_c, 10 < W_s\)

- \(60 < W_c < 200, W_s < 10\)
Conclusion

- Improvement from Exact to Anytime
 - Anytime Best-First approach
 - Recovers responsiveness close to Depth-First schemes
 - Provide high quality solutions

- Future Work
 - Better Search Strategy
 - Memory issue with hard problems (Ws > 10, Wc > 200)
 - Integrate approximation for summation problems
 - From exact to approximation