Anytime Best+Depth-First Search for Bounding Marginal MAP

Radu Marinescu
IBM Research - Ireland

Junkyu Lee, Alex Ihler and Rina Dechter
University of California, Irvine

AAAI 2017 Technical Session: RU: Reasoning under Uncertainty
Feb. 8th. 2017 10:00 am – 11:00 am Oral Presentation Paper 2066
Motivation and Contribution

• Marginal MAP Inference
 – Probabilistic inference query
 • Optimal partial configuration after marginalizing hidden/latent variables in a probability distribution
 – Complexity: \(\text{NP}^{\text{pp}} \) complete
 – Often it is the right task on various applications
 • Probabilistic conformant planning [Lee, Marinescu, Dechter, 2015]
 • Natural language processing task [Bird, Klein, Loper, 2009]
 • Image completion task [Xue, Li, Ermon, Gomes, Selman, 2016]

• Contributions
 – Anytime hybrid (best+depth-first) search for MMAP
 – Improvement of anytime performance for finding upper and lower bounds
 • Upper-bound: estimate of optimal solution from a partial solution
 • Lower-bound: sub-optimal solution
Outline

● Background
 - Graphical model
 - AND/OR search space & WMB heuristic
 - Previous MMAP search algorithms

● Best+Depth-First search for MMAP
 - LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 - AAOBF (Alternating Best-First and Depth-First AND/OR search)
 - LnDFS (Learning Depth-First AND/OR search)

● Experiments

● Conclusion
Background – graphical model

- **Graphical model** \(\mathcal{M} = \langle X, D, F \rangle \)
 - variables \(X = \{ X_1, \ldots, X_n \} \)
 - domains \(D = \{ D_1, \ldots, D_n \} \)
 - functions \(F = \{ \psi_1, \ldots, \psi_r \} \)

\[
P(x) = \frac{1}{Z} \prod_{\alpha \in F} \psi_\alpha(x_\alpha)
\]

- **Marginal Map task**
 \(x^*_M = \text{argmax}_{x_M} \sum_{x_S} \prod_\alpha \psi_\alpha(x_\alpha) \)
 - \(x = x_M \cup x_S \)
 - Max and sum not commute

- **Primal graph**
 - nodes are variables
 - two nodes are connected if they appear in the same function

\[\begin{align*}
X_M &= \{ A, B, C, D \} \\
X_S &= \{ E, F, G, H \}
\end{align*} \]
Background – AND/OR search space

- Bucket elimination [Dechter, 1999]

- AND/OR search graph [Mateescu, Dechter, 2007]

- Pseudo tree [Freuder, Quinn, 1985]
Background - WMB heuristics

- **Mini-bucket elimination** [Dechter, Rish 2001]
 - “i-bound”, limit on the number of variables in a single mini-bucket

- **Weighted Mini-bucket** [Liu, Ihler, 2012]
 - Holder’s inequality
 \[
 \sum_r \left(\prod_{i=1}^w \psi_{kr} \right) \leq \prod_r \left(\sum_x f(x)^{1/w} \right) w = \sum_r w_r
 \]

- **WMB Moment Matching** [Liu, Ihler, 2011]
 - MAP variables
 \[
 \psi_{kr} = \psi_{kr} \left(\frac{\mu}{\mu_r} \right)
 \]
 \[
 \mu_r = \max \psi_{kr}; \quad \mu = \left(\prod_r \mu_r \right)^{1/R}
 \]
 - SUM variables
 \[
 \psi_{kr} = \psi_{kr} \left(\frac{\mu}{\mu_r} \right)^{w_{kr}}
 \]
 \[
 \mu_r = \sum_{Y_r} \psi_{kr}^{1/w_{kr}}; \quad \mu = \prod_r (\mu_r)^{w_{kr}}
 \]

- **Mini-bucket upper bound**
 \[
 \sum_{E} \left[\psi(A, E) \psi(C, E) \right] \leq \left[\sum_{E} \psi(A, E) \right] \left[\sum_{E} \psi(C, E) \right]
 \]
Previous MMAP search algorithms

- **Park, Darwiche (2003)**
 - Depth-First BnB
 - Join-tree upper bound (relaxed variable ordering)
 - depth-first search
 - dynamic heuristic

- **Marinescu, Dechter, Ihler (2014)**
 - Depth-First BnB
 - AND/OR Search
 - WMB Heuristic
 - compact AND/OR search space
 - more accurate WMB heuristics

- **Lee, Marinescu, Dechter, Ihler (2016)**
 - Weighted Best-First
 - Anytime Depth-First AND/OR
 - WMB heuristic
 - anytime solutions
 - infrequent solution updates
 - still memory intensive

- **Yuan, Hansen (2009)**
 - Depth-First BnB
 - Incremental
 - Join-tree upper bound
 - static heuristic

- **Marinescu, Dechter, Ihler (2015)**
 - Best-First/Recursive BF
 - AND/OR Search
 - WMB heuristic
 - BF avoids solving summation problems
 - very memory intensive
 - no anytime, return optimal solution or no solution

- **Marinescu, Lee, Ihler, Dechter (2017)**
 - Best+Depth-First
 - high quality upper/lower bounds
 - more frequent solution updates
 - memory efficiency
Outline

- Background
 - Graphical model
 - AND/OR search space & WMB heuristic

- Best+Depth-First search for MMAP
 - LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 - AAOF (Alternating Best-First and Depth-First AND/OR search)
 - LnDFS (Learning Depth-First AND/OR search)

- Experiments

- Conclusion
Best+Depth-First Search

- Better guidance for depth-first dives using improved heuristics
- Frequent solution updates
- Cutoff frontier of best-first search using improved lower bounds
- Learn accurate heuristics by depth-first lookahead

When Global UB = Global LB, Optimal Solution Discovered
Notations – solution tree

MAX

OR
AND
OR
AND
OR
AND
OR
AND

partial solution tree tip of partial solution tree solution tree
Notations – basic operations

- \(q(n) \) : upper bound at \(n \)
- \(q(\text{root}) \) : global upper bound

- \(l(n) \) : lower bound at \(n \)
- \(l(\text{root}) \) : global lower bound

- \(T_b \) : best partial solution tree (partial solution tree where OR nodes direct the child \(m \) with best \(q(m) \))

Expand(\(n \))
- backup \(q \) and \(l \) values

Update(\(n \))
- re-direct best partial solution tree
LAOBF (best-first AND/OR search with depth-first lookaheads)

- Best-first selection
 - T_b
 - $Select(T_b)$

- Depth-first lookahead
 - depth-first dive at the tip of T_b
 - compute global lower bound
 - cache summation subproblems

- Best-first expansion & update
 - Select a tip node n
 - Expand and Update n

- Update(n)
- Expand(n)

Cutoff parameter: control depth-first lookahead (at every θ number of node expansions.)
AAOBF (alternating best-first with depth-first AND/OR search)

Depth-first greedy expansion T_l
Best-first re-direct T_b

Depth-first selection
Best-first selection

- Expand(n) and Update(n)
 $n \in T_l$
- depth-first greedy search
 $\max w(n, m)q(m)$

- redirect T_l from explicated search graph from the root with updated q and l
 $\min \frac{l(n)}{w(n, m)q(m)}$
- select T_b
 Expand and Update a tip node
LnDFS (learning depth-first AND/OR search)

Best-first selection

\[T_b \]

Select\((T_b)\)

Depth-first expansion

\[\text{Expand}(T_b) \]

Best-first update

\[UB(T_b) \leq \text{global lower bound} \]

\[\text{Update}(T_b) \]

Select\((T_b)\)

\[T_b \]

\[\text{tip}(T_b) == \text{empty} \]

\[\text{new global lower bound!} \]

\[\text{Update}(T_b) \]

Select\((T_b)\)

\[T_b \]

\[\text{Expand}(T_b) \] Keep expanding tips nodes of \(T_b \)

\[\text{Update}(T_b) \] Update values from tip nodes of \(T_b \)
Outline

● Background
 – Graphical model
 – AND/OR search space & WMB heuristic

● Best+Depth-First search for MMAP
 – LAOBF (Best-First AND/OR Search with Depth-First Lookaheads)
 – AAOBF (Alternating Best-First and Depth-First AND/OR search)
 – LnDFS (Learning Depth-First AND/OR search)

● Experiments

● Conclusion
Experiments

• Anytime Algorithms
 – Presented Best+Depth-First Search
 • LAOBF \(\theta = 1000 \)
 • AAOBF
 • LnDFS
 – State-of-the-art
 • Weighted Recursive Best-First AND/OR Search \([\text{Lee, Marinescu, Ihler, Dechter, 2016}]\) with Overestimation \(w_{i+1} = \sqrt{w_i} \quad w_0 = 64 \)
 • Breadth Rotate AND/OR Branch and Bound \([\text{Lee, Marinescu, Ihler, Dechter, 2016}]\)
 • Anytime Factor Set Elimination \([\text{Maua, Campos, 2012}]\)

• Memory
 – total 24 GB
 – WMB-MM(i) i-bound: 20 or the largest within 4 GB
 – caching for AND/OR search graph max 4 GB
Experiment

- **Benchmark**
 - derived from UAI inference competitions for MPE query
 - randomly choose 50% of the variables as MAP variables
 - generate 4 random MMAP instances
 - Grid, Pedigree, Promedas domain

- **Problem instance parameters**

<table>
<thead>
<tr>
<th>Domain (#. instances)</th>
<th>N_{min}</th>
<th>N_{ave}</th>
<th>N_{max}</th>
<th>F_{min}</th>
<th>F_{ave}</th>
<th>F_{max}</th>
<th>K_{min}</th>
<th>K_{max}</th>
<th>S_{min}</th>
<th>S_{max}</th>
<th>W_{min}</th>
<th>W_{ave}</th>
<th>W_{max}</th>
<th>H_{min}</th>
<th>H_{ave}</th>
<th>H_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid (128)</td>
<td>144,649,2500</td>
<td>144,649,2500</td>
<td>2,2</td>
<td>3,3</td>
<td>25,163,814</td>
<td>42,189,834</td>
<td></td>
</tr>
<tr>
<td>Pedigree (88)</td>
<td>334,917,1289</td>
<td>334,917,1289</td>
<td>3,7</td>
<td>4,5</td>
<td>35,127,289</td>
<td>63,152,312</td>
<td></td>
</tr>
<tr>
<td>Promedas (100)</td>
<td>381,1064,1997</td>
<td>385,1077,2024</td>
<td>2,2</td>
<td>3,3</td>
<td>11,137,552</td>
<td>33,171,577</td>
<td></td>
</tr>
</tbody>
</table>

- N: number of variables, F: number of functions, K: domain size, S: scope size
- W: constrained induced width, H: constrained pseudo tree height
Experiment – individual instances

- Anytime search status for individual instances

- search: LAOBF (lab), AAOBF (aab), LnDFS (ldt), BRAOBB (bra)
- heuristic: WMB-MM (20)
- memory: 24 GB

Other algorithms couldn’t find any solution due to memory out
Experiment - average solution quality

- Average solution quality: $Ave\left[\frac{\text{best solution found}}{\text{optimal solution}}\right]$
 - anytime quality of lower bound normalized by optimal solution
 - when optimal solution is not available, used best-known solution

- Result
 - How the quality of solution improves over time
 - LAOBF, AAOBF, LnDFS
 - improved upon WRBFAOO on 3 domains
 - BRAOBB
 - best on promedas domain, second worst on pedigree domain
 - AFSE: worst performance on 3 domains
Experiment - average gap quality

- **Average gap quality**
 \[
 \text{Ave} \left[\frac{\text{upper bound} - \text{lower bound}}{\text{upper bound}} \right]
 \]
 - anytime gap (difference between upper and lower bound) normalized by upper bound (If no lower bound available, gap = 1)

- **Result**
 - How the gap between lower/upper bound decreases over time (gap=0 optimal)
 - LAOBF, AAOBF, LnDFS
 - All similar improvements over time, especially at shorter time bounds
 - AAOBF was overall best
 - AFSE: worst performance on 3 domains
Experiment – memory robustness

- **Memory robustness**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>M_{out}</th>
<th>M_{∞}</th>
<th>ΔG</th>
<th>T_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAOBF</td>
<td>22%</td>
<td>0%</td>
<td>7%</td>
<td>1208s</td>
</tr>
<tr>
<td>LAOBF</td>
<td>48%</td>
<td>0%</td>
<td>32%</td>
<td>1345s</td>
</tr>
<tr>
<td>WRBFAOO</td>
<td>41%</td>
<td>11%</td>
<td>42%</td>
<td>645s</td>
</tr>
<tr>
<td>LnDFS</td>
<td>0%</td>
<td>0%</td>
<td>-%</td>
<td>-s</td>
</tr>
<tr>
<td>AFSE</td>
<td>77%</td>
<td>76%</td>
<td>99.9%</td>
<td>64s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>M_{out}</th>
<th>M_{∞}</th>
<th>ΔG</th>
<th>T_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedigree</td>
<td>13%</td>
<td>0%</td>
<td>6%</td>
<td>1596s</td>
</tr>
<tr>
<td></td>
<td>59%</td>
<td>5%</td>
<td>17%</td>
<td>1418s</td>
</tr>
<tr>
<td></td>
<td>53%</td>
<td>10%</td>
<td>38%</td>
<td>707s</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>0%</td>
<td>27%</td>
<td>942s</td>
</tr>
<tr>
<td>promedas</td>
<td>0%</td>
<td>0%</td>
<td>-%</td>
<td>-s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>M_{out}</th>
<th>M_{∞}</th>
<th>ΔG</th>
<th>T_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62%</td>
<td>0%</td>
<td>77%</td>
<td>1012s</td>
</tr>
<tr>
<td></td>
<td>28%</td>
<td>28%</td>
<td>100%</td>
<td>749s</td>
</tr>
<tr>
<td></td>
<td>74%</td>
<td>74%</td>
<td>100%</td>
<td>58s</td>
</tr>
</tbody>
</table>

- How search algorithm effectively utilized the memory and improves gap within the memory limit
- M_{out} $\%$ of instances terminated by memory limit
- M_{∞} $\%$ of instances terminated by memory limit and no solution found at all
- ΔG average gap computed from out of memory instances only
- T_M average search time computed from out of memory instances

Result

- LnDFS is the most memory robust algorithm
- AAOBF (LAOBF) improved memory robustness compared to WRBFAOO
- AFSE is the worst among 5 algorithms
Conclusion

- Anytime Best+Depth-First search algorithms improved upon the state-of-the-art algorithms
 - higher quality anytime solutions
 - tighter anytime upper bounds
 - more effective use of memory

- Future work
 - New anytime search + approximate summation inference
 - variational bounds with search
 - probabilistic bounds from sampling