# Stochastic Anytime Search for Bounding Marginal MAP 

Radu Marinescu IBM Research

Rina Dechter and Alexander Ihler
University of California, Irvine


## Types of queries

| Max-Inference | $f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$ |
| :---: | :---: |
| Sum-Inference | $Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$ |
| Mixed-Inference | $f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathbf{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$ |

- NP-hard: exponentially many terms


## Why Marginal MAP?

- Often, Marginal MAP is the right task
- We have a model describing a large system

- We care about predicting the state of some part
- Complexity: NPPP complete
- Not necessarily easy on trees
- Example: decision making
- Sum over random variables (random effects, etc.)
- Max over decision variables (specify action policies)

Sensor network


## Motivation and Contribution

- Marginal MAP Inference
- Probabilistic inference query
- Optimal partial configuration after marginalizing hidden/latent variables in a probability distribution
- Complexity: NPpp complete
- Often it is the right task on various applications
- Probabilistic conformant planning [Lee, Marinescu, Dechter, 2015]
- Natural language processing task [Bird, Klein, Loper, 2009]
- Image completion task [Xue, Li, Ermon, Gomes, Selman, 2016]
- Conditioned summation subproblem is often intractable
- Contributions
- Stochastic anytime search algorithms for bounding MMAP
- Probabilistic bounds (lower/upper) on the optimal MMAP value
- Applicable to MMAP with intractable conditioned summation


## Background: graphical models

- Graphical model $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}\rangle$
- variables $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$
- domains $\mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\}$
- functions $\mathbf{F}=\left\{\psi_{1}, \ldots, \psi_{r}\right\}$

$$
P(\mathbf{x})=\frac{1}{Z} \prod_{\alpha \in F} \psi_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

- Marginal MAP task

$$
\begin{aligned}
& \mathrm{x}_{M}^{*}=\operatorname{argmax}_{\mathbf{x}_{M}} \sum_{\mathbf{x}_{s}} \prod_{\alpha} \psi_{\alpha}\left(\mathbf{x}_{\alpha}\right) \\
& -\mathbf{x}=\mathbf{x}_{M} \cup \mathbf{x}_{S}
\end{aligned}
$$

- Max and sum not commute
- Primal graph
- nodes are variables
- two nodes are connected if they appear in the same function


$$
\begin{aligned}
& \mathbf{X}_{M}=\{A, B, C, D\} \\
& \mathbf{X}_{S}=\{E, F, G, H\}
\end{aligned}
$$

## Background: AND/OR search spaces

- Bucket elimination [Dechter, 1999]

- Pseudo tree
[Freuder \& Quinn, 1985]
$O\left(\exp \left(w^{*}\right)\right)$
- AND/OR search graph [Mateescu \& Dechter, 2007]


Node value v(n):

- max for MAP vars
- sum for SUM vars


## Background: WMB heuristics

- Mini-bucket elimination[Dechter\& Rish 2001] • Weighted Mini-bucket [Liu \& Ihler, 2012]
- "i-bound", limit on the number of variables in a single mini-bucket

- Mini-bucket upper bound
$\sum_{E}[\psi(A, E) \psi(C, E)] \leq\left[\sum_{E} \psi(A, E)\right]\left[\sum_{E} \psi(C, E)\right]$
- Holder's inequality

$$
\begin{gathered}
\left.\sum_{r}^{w}\left[\prod_{r}\left(\psi_{r}\right)\right] \leq \prod_{r}^{\left[\sum_{x}\right.}\right] \\
\sum_{x}^{w} f(x) \triangleq\left[\sum_{x}^{w_{r}} f(x)^{\frac{1}{w}}\right]^{w} w=\sum_{r} w_{r}
\end{gathered}
$$

- WMB Moment Matching [Liu \& Ihler, 2011]
- MAP variables

$$
\begin{aligned}
& \psi_{k r}=\psi_{k r}\left(\frac{\mu}{u_{m}}\right) \\
& \mu_{r}=\max _{\mathbf{Y}_{r}} \psi_{k r} ; \mu=\left(\prod_{r} \mu_{r}\right)^{1 / R}
\end{aligned}
$$

- SUM variables

$$
\begin{aligned}
& \psi_{k r}=\psi_{k r}\left(\frac{\mu}{\mu_{r}}\right)^{w_{k r}} \\
& \mu_{r}=\sum_{\mathbf{Y}_{r}}\left(\psi_{k r}\right)^{1 / w_{k r}} ; \mu=\prod_{r}\left(\mu_{r}\right)^{w_{k r}}
\end{aligned}
$$

## AND/OR search with mini-bucket heuristics

- Explore the AND/OR search space
- Heuristic estimates for nodes: WMB scheme
- Conditioned SUM suproblems: exact search



## Probabilistic Lower Bounds



$$
Z=\left.\sum_{\mathbf{X}_{S}} P(X)\right|_{\bar{x}_{M}}
$$

Solving the conditioned SUM subproblem is hard!

$$
\# P-\text { complete }
$$

[Liu et al. 2015]
Compute a (probabilistic) lower bound on the conditioned sum subproblem

$$
\operatorname{Pr}(\hat{Z}-\Delta(n, \delta) \leq Z) \geq(1-\delta)
$$

## WMB based importance sampling scheme:

$n$ - number of samples
$\delta$ - confidence value
$Z_{w m b}$ - result of WMB
$\hat{Z}$ - Importance Sampling estimate

$$
\Delta(n, \delta)=\sqrt{\frac{2 v \hat{a} r(w(x)) \log (2 / \delta)}{n}}+\frac{7 Z_{w m b} \log (2 / \delta)}{3(n-1)}
$$

4 AND/OR Search
AND
AND
OR
AND
OR
AND
OR
AND
MAX

$$
q(n), l(n)
$$

## AND/OR search over

 the MAP variables only!- $q(n)$ : upper bound at $n$
- $I(n)$ : lower bound at $n$
- $T_{b}$ : best partial solution tree (partial solution tree where OR nodes direct the child $m$ with best $q(m)$




Update(n)


- re-direct best partial solution tree


## AnySBFS (anytime stochastic best-first search)

Stochastic node selection


$\operatorname{Select}\left(\bar{T}_{b}\right)$
$\operatorname{Select}\left(T_{b}\right)$

- Probability p :
$\rightarrow$ select tip node in best partial solution tree $T_{b}$
- Probability (1-p):
$\rightarrow$ select tip node NOT in best partial solution tree $\bar{T}_{b}$

Best-first expansion \& update


- Select a tip node n
- Expand and Update n
$T_{b}$ solution tree
- Lower bound SUM evaluation based on the WMB-IS scheme

Search is conduced over the MAP variables only!

## AnyLDFS (anytime learning depth-first search)

Best-first update


Search is conduced over the MAP variables only!

## Experiments

- Anytime Algorithms
- State-of-the-art
- LAOBF [Marinescu, Lee, Dechter, Ihler, 2017]
- AAOBF [Marinescu, Lee, Dechter, Ihler, 2017] Hybrid best+depth-first search
- LnDFS [Marinescu, Lee, Dechter, Ihler, 2017]
- UBFS [Qi, Ihler, 2018]
- Proposed schemes
- AnySBFS ( $\mathrm{p}=0.5$ )
- AnyLDFS
- Benchmarks
- Grid, pedigree, promedas, planning (UCIrvine graphical models repo)
- 10\% of variables selected randomly as MAP variables
- Hard (intractable) conditioned summation subproblems
- Parameters: confidence 0.05


## IBM Research

## Results


$l_{t}$ - lower bound at time $t$
$l^{*}$ - tightest lower bound found
Average over 150 instances

$$
\begin{aligned}
& \operatorname{acc}_{u b}=\frac{\left|u_{t}-u^{*}\right|}{u^{*}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{t} \text { - upper bound at time } t \\
& u^{*} \text { - tightest upper bound found } \\
& \text { Average over } 150 \text { instances }
\end{aligned}
$$

## Conclusion

- Stochastic anytime search algorithms improved upon the state-of-the-art algorithms, especially upon hybrid search
- higher quality anytime solutions with high probability
- tighter anytime upper bounds
- effective use of memory
- Applicable to MMAP with intractable summation subproblems where existing schemes could not produce a single solution

