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Abstract
The Marginal MAP inference task is known to be
extremely hard particularly because the evaluation
of each complete MAP assignment involves an ex-
act likelihood computation (a combinatorial sum).
For this reason, most recent state-of-the-art solvers
that focus on computing anytime upper and lower
bounds on the optimal value are limited to solv-
ing instances with tractable conditioned summation
subproblems. In this paper, we develop new search-
based bounding schemes for Marginal MAP that pro-
duce anytime upper and lower bounds without per-
forming exact likelihood computations. The empiri-
cal evaluation demonstrates the effectiveness of our
new methods against the current best-performing
search-based bounds.

1 Introduction
Probabilistic graphical models provide a powerful framework
for reasoning about conditional dependency structures over
many variables. Marginal MAP (MMAP) distinguishes be-
tween maximization variables (called MAP variables) and
summation variables; it is more difficult than either max- or
sum- inference tasks alone, primarily because summation and
maximization operations do not commute, forcing processing
along constrained variable orderings that may have signifi-
cantly higher induced widths [Dechter, 2013]. This implies
larger search spaces (when using search algorithms) or larger
messages (when using message-passing schemes). MMAP
is NPPP-complete but despite its complexity it is often the
appropriate task when there exist hidden variables or uncertain
parameters.

Current state-of-the-art schemes focus on solvers that pro-
vide not only anytime lower bounds but also anytime up-
per bounds on the optimal MMAP value. Indeed, the most
advanced bounding schemes for MMAP combine best-first
search with depth-first search over an AND/OR search graph,
and were recently shown to be superior to previous approaches
in anytime performance [Marinescu et al., 2017].

However, the major drawback of all existing search-based
bounding schemes for MMAP is that they rely on exact con-
ditional likelihood evaluations in order to provide anytime
lower bounds. That is, evaluating the probability of any full

assignment to the MAP variables amounts to solving exactly a
sum-inference subproblem which is known to be PP-complete
[Roth, 1996]. For this reason, these methods are only appli-
cable to problem instances where the summation subproblem
is tractable, which is not typically the case in many practical
applications [Lee et al., 2016b].

Contributions: In this paper, we present two new search-
based bounding schemes for MMAP that compute anytime
upper and lower bounds on the optimal MMAP value with-
out performing exact summations. Instead, for each of the
MAP solutions found, they use only a lower bound on the
corresponding likelihood computation. These schemes also
implement different strategies for conducting the exploration
of the search space. Specifically, ANYSBFS (anytime stochas-
tic best-first AND/OR search) extends the best-first principle
by allowing the expansion of those nodes whose heuristic
function deems them less promising in order to uncover a
potentially suboptimal solution quickly. ANYLDFS (anytime
learning depth-first AND/OR search) smoothly interleaves a
greedy depth-first search step aimed at quickly finding a sub-
optimal solution with a learning step that updates the heuristic
node values and directs the search towards a more promising
region. Our empirical evaluation on various difficult bench-
marks demonstrates the effectiveness of the new schemes com-
pared with some of the current best-performing solvers based
on hybrid best+first-search. Finally, we should emphasize that
our proposed approach can potentially exploit and improve
over any lower bounding algorithm for sum-inference. In this
work we illustrate our methodology using a recent weighted
mini-bucket scheme augmented with importance sampling
[Liu et al., 2015].

2 Background
A graphical model is a tupleM = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of
values. F = {ψα : α ∈ F} is a set of discrete positive
real-valued factors defined on subsets of variables, where
F ⊆ 2V , and we use α ⊆ V and Xα ⊆ X to indicate the
scope of factor ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}.
Specifically, ψα : Ωα → R+, where Ωα is the Cartesian
product of the domains {Di : i ∈ α}. The factors scopes yield
a primal graph whose vertices are the variables and whose
edges connect any two variables that appear in the scope of



(a) Primal graph (b) Pseudo tree

(c) Context minimal AND/OR search graph

Figure 1: A simple graphical model.

the same factor. The modelM defines a factorized probability
distribution on X, P (x) = 1

Z

∏
α∈F ψα(xα). The partition

function, Z, normalizes the probability.
Let XM = {X1, ..., Xm} be a subset of X called MAP

variables and XS = X \ XM be the complement of XM ,
called sum variables. The Marginal MAP (MMAP) task
seeks an assignment x∗M to variables XM having maximum
probability. This requires access to the marginal distribution
over XM , which is obtained by summing out variables XS :
x∗M = argmaxxM

∑
xS

∏
α∈F ψα(xα). For numerical stabil-

ity, the latter is typically solved in log space.

2.1 AND/OR Search Spaces
AND/OR search is guided by a spanning pseudo tree of the
graphical model’s primal graph (in which any arc of the model
not in the tree is a back-arc in the pseudo- tree) and the search
space is exponential in the depth of the pseudo tree (rather
than in the number of variables). Therefore, mixed inference
such as MMAP over a graphical model can be computed by
traversing the AND/OR search space [Marinescu et al., 2014].
Definition 1 (pseudo tree). A pseudo tree of an undirected
graph G = (V,E) is a directed rooted tree T = (V,E′) such
that every arc of G not in E′ is a back-arc in T connecting a
node in T to one of its ancestors. The arcs in E′ may not all
be included in E.

For MMAP we need to restrict the collection of pseudo trees
to valid ones. A pseudo tree T is valid for MAP variables
XM if T restricted to XM forms a connected start pseudo, a
subgraph of pseudo tree T that has the same root as T . Given
a graphical modelM = 〈X,D,F〉 with primal graph G and

valid pseudo tree T of G, the AND/OR search tree ST based
on T has alternating levels of OR nodes corresponding to the
variables, and AND nodes corresponding to the values of the
OR parent’s variable, with edge weights extracted from the
original functions F (for details see [Dechter and Mateescu,
2007]). Identical sub-problems, identified by their context
(the partial instantiation that separates the sub-problem from
the rest of the problem graph), can be merged, yielding an
AND/OR search graph. Merging all context-mergeable nodes
yields the context minimal AND/OR search graph, denoted
CT . The size of CT is exponential in the induced width of G
along a depth-first traversal of the valid pseudo tree T (also
known as the constrained induced width).

Definition 2 (solution subtree). A solution subtree x̂M of CT
relative to the MAP variables XM is a subtree ofCT restricted
to XM that: (1) contains the root of CT ; (2) if an internal OR
node n∈CT is in x̂M , then n is labeled with a MAP variable
and exactly one of its children is in x̂M ; (3) if an internal AND
node n∈CT is in x̂M then all its OR children which denote
MAP variables are in x̂M .

Each node n in CT can be associated with a value v(n);
for MAP variables v(n) captures the optimal MMAP value
of the conditioned sub-problem rooted at n, while for a sum
variable it is the likelihood of the partial assignment denoted
by n. It is easy to see that v(n) can be computed recursively
based on the values of n’s successors, as follows: OR nodes
by maximization or summation (for MAP or sum variables,
respectively), and AND nodes by multiplication.

Example 1. Figure 1(a) depicts the primal graph of an undi-
rected graphical model representing a distribution over 8
variables, X = A, . . . ,H , with 10 functions defined by the
arcs. The highlighted variables XM = {A,B,C,D} de-
note the MAP variables. Figure 1(b) is a valid pseudo tree
(dashed lines denote back-arcs). Figure 1(c) displays the
context minimal AND/OR search graph based on the pseudo
tree (the contexts are shown next to the pseudo tree nodes).
A solution subtree corresponding to the MAP assignment
(A=0,B=1,C=1,D=0) is indicated in red.

2.2 Earlier Anytime Search for Bounding MMAP
The two most prominent anytime search methods for bound-
ing MMAP are based on hybrids of best-first and depth-first
AND/OR search in order to facilitate the generation of up-
per bounds (via the best-first component) alongside lower
bounds (via the depth-first component) in an anytime fash-
ion [Marinescu et al., 2017]. Specifically, best-first AND/OR
search with depth-first lookaheads (LAOBF) traverses the
search space in a best-first manner while performing explicit
depth-first dives (or lookaheads) below the leaf nodes of the
best partial solution tree. Alternating best-first with depth-first
AND/OR search (AAOBF) is a parameter-free scheme that
interleaves an outer best-first loop with an aggressive depth-
first loop that aims to find improved suboptimal solutions as
quickly as possible. Recent extensive empirical evaluations on
various difficult benchmarks demonstrated the effectiveness
of these schemes compared with previous anytime pure depth-
first and weighted best-first search solvers [Lee et al., 2016a]



Algorithm 1: EXPAND(n) and UPDATE(n)
Input: node n, pseudo tree T , search graph G′T , heuristic

function h(·), MAP variables XM = X \XS

1 Function EXPAND(n):
2 if n is OR node labeled by 〈Xi〉 and Xi ∈ XM then
3 foreach values xi ∈ Di do
4 Create AND child m in G′T labeled by 〈Xi, xi〉
5 if m is terminal then 〈l(m), q(m)〉 ← 〈0, 0〉
6 else 〈l(m), q(m)〉 ← 〈−∞, h(m)〉

7 else if n is AND labeled by 〈Xi, xi〉 and Xi ∈ XM then
8 foreach successors Xj of Xi in T do
9 Create OR child m in G′T labeled by 〈Xj〉

10 if Xj ∈ XS then mark node m as terminal in G′T
11 〈l(m), q(m)〉 ← 〈−∞, h(m)〉

12 Function UPDATE(n):
13 forall the ancestor p of n in G′T , including n do
14 if p is OR node then
15 〈l(p), q(p)〉 ← 〈maxm∈ch(p)(logw(p,m) +

l(m)),maxm∈ch(p)(logw(p,m) + q(m))〉
16 m′ ← argmaxm∈ch(p)(logw(p,m) + q(p))

17 Mark with symbol ? the arc p→ m′

18 else if p is AND node then
19 〈l(p), q(p)〉 ← 〈

∑
m∈ch(p) l(m),

∑
m∈ch(p) q(m)〉

as well as with anytime factor set elimination methods [Maua
and Campos, 2012].

Weighted Mini-Bucket Heuristics. The effectiveness of
the above search algorithms greatly depends on the quality
of the upper bound heuristic function that guides the search.
Specifically, algorithms AAOBF and LAOBF use a recently
developed weighted mini-bucket (WMB) based heuristic [Liu
and Ihler, 2011] which can be pre-compiled along the reverse
order of the pseudo tree. First, WMB improves the naïve
mini-bucket bound [Dechter and Rish, 2003] with Hölder’s
inequality. For a given variable Xk, the mini-buckets Qkr as-
sociated with Xk are assigned a non-negative weight wkr ≥ 0,
such that

∑
r wkr = 1. Then, each mini-bucket r is eliminated

using a powered sum, (
∑
Xk

f(X)1/wkr )wkr . Subsequently,
the cost shifting scheme (or reparameterization) is performed
across mini-buckets to match the marginal beliefs (or “mo-
ments”) to further tighten the bound. The single-pass message
passing algorithm yields a scheme denoted by WMB-MM(i),
where i is called the i-bound and controls the accuracy of the
approximation [Dechter and Rish, 2003]. The heuristic can be
pre-compiled along a reversed depth-first traversal of a pseudo
tree and used to guide the search [Kask and Dechter, 2001;
Marinescu et al., 2014].

3 New Anytime Bounding Schemes
A major limitation of the existing search-based bounding
schemes for MMAP is that they rely on exact conditional
likelihood computations in order to generate effective lower
bounds [Lee et al., 2016a; Marinescu et al., 2017]. There-
fore, they are applicable to problem instances with tractable

conditioned summations and cannot be used to tackle more
difficult problems, which often occur in practice [Lee et al.,
2016b]. In this section, we propose two anytime search based
schemes that compute upper and lower bounds on the optimal
MMAP without performing exact likelihood computations.
Our schemes conduct the search over the MAP variables only
and propagate upper and lower bounds on the summation parts
in the search space to provide improved global upper and
lower bounds in an anytime fashion.

3.1 Lower Bounding the Conditioned Summations
The performance of our proposed bounding schemes depends
on the quality of the lower bounds on the summation subprob-
lems. In principle, our schemes can potentially exploit and
improve over any lower bounding approach for sum-inference,
e.g., [Bidyuk et al., 2010]. We elaborate next on two WMB
based approaches which we will use. A simple way to compute
a lower bound on the partition function Z is to use the WMB
scheme with negative instead of positive weights [Liu and Ih-
ler, 2011]. Namely, for a given variable Xk, the mini-buckets
Qkr are assigned a negative weight wkr < 0, all except for
one which gets a non-negative weight such that

∑
wkr = 1.

Then, it can be shown that eliminating all variables (and corre-
sponding mini-buckets) using the power sum operator yields a
lower bound Ẑ on Z.

More recently, [Liu et al., 2015] developed a set of anytime
probabilistic bounds that improve directly on the determin-
istic WMB bounds, combining importance sampling from a
WMB-based proposal with concentration inequalities to pro-
vide confidence intervals on the true summation value. The
method, denoted by WMB-IS(i, δ), was shown to produce a
lower bound Ẑ on Z with at least probability (1− δ), namely
Pr(Ẑ ≤ Z) ≥ (1− δ), where δ > 0 is known as a confidence
value. Since we perform multiple approximations to different
conditional summations (corresponding to possible solutions),
we use a simple union bound to ensure that our confidence
interval on the maximum of our sums is correct. If we perform
r conditional sums, we can ensure with confidence δ that:

Ẑ −∆(n, δ/2r) ≤ Z ≤ Ẑ + ∆(n, δ/2r)

where ∆(n, δ) is defined in [Liu et al., 2015] eq (8).

3.2 Notations
We denote by G′T the explicated context minimal AND/OR
search graph relative to pseudo tree T . In particular, G′T is
defined over the MAP variables only with one additional layer
of terminal OR nodes labeled by sum variables that root the
summation subproblems. A node n ∈ G′T is called a tip (or
frontier) node if it has not been expanded yet. An expanded
node n ∈ G′T is terminal if it has no successors in G′T . Each
node n ∈ G′T maintains two values: q(n) which represents
an upper bound provided by the heuristic function at node n,
and l(n) which is a lower bound on the optimal solution in the
search space below n, respectively. We use U and L to denote
the current best global upper and lower bounds on the optimal
MMAP value. For node n ∈ G′T , ch(n) denotes its children
in G′T , while w(n,m) is the weight labeling the arc n → m
in G′T . Algorithm 1 describes the node expansion procedure



Algorithm 2: ANYSBFS
Input: Graphical modelM = 〈X,D,F〉, pseudo tree T ,

heuristic function h(·), XM = X \XS , probability p,
restarts cutoff τ

Output: Anytime lower and upper bounds on MMAP value
1 while not TIMEOUT do
2 Create an OR node s labeled by the root of T
3 U = q(s) = h(s), L = l(s) = −∞, G′T = {s}, Tb = {s}
4 while #expansions < τ do
5 Select non-terminal tip node n from G′T \ Tb with

probability p, or from Tb with probability (1− p)
6 EXPAND(n)
7 foreach m ∈ ch(n) do
8 if m is terminal OR node labeled by Xj ∈ XS then
9 l(m)← max(l(m), LOWERBOUND(m))

10 UPDATE(n)
11 Let 〈U ,L〉 ← 〈q(s),max(L, l(s))〉 and output 〈L,U〉
12 Select new Tb by tracing down ?-marked arcs from root s

13 Remove G′T from memory

14 return 〈L,U〉

during search, as well as how the q- and l-values are updated
bottom-up based on the corresponding values of their children
in the search graph. During the update of q-values, the arc
from an OR node n to its best AND child m′ is marked with
a ? symbol. These markings are used to compute the current
best partial solution subtree Tb in G′T .

Function LOWERBOUND(m) computes a lower bound on
the exact summation subproblem rooted at terminal node m
in G′T , where m is labeled by a summation variable. For
our purpose, we integrated the WMB-IS(i, δ) scheme into
LOWERBOUND(m) in order to ensure a true lower bound
below m with high probability.

3.3 Anytime Stochastic Best-First Search
Our first bounding scheme is called Anytime Stochastic Best-
First Search (ANYSBFS). The algorithm performs a best-first
traversal of the search space that aims at improving the up-
per bound on the optimal solution value and occasionally
expands frontier nodes whose heuristic evaluation function
deems them unpromising. Expanding further the subspace be-
low these nodes will eventually uncover suboptimal solutions
which in turn yield (anytime) lower bounds on the optimal
value. A similar idea was explored by [Bonet and Geffner,
2012] in the context of action selection in MDPs. In contrast
to the previous best+depth-first search hybrids AAOBF and
LAOBF, algorithm ANYSBFS does not rely on depth-first
search traversals to discover improved lower bounds.

ANYSBFS is described by Algorithm 2. Rather than always
selecting a tip node from G′T that is in the current best partial
solution tree Tb, ANYSBFS selects with probability p a tip
node that does not belong to Tb and thus is in {G′T \ Tb}
(line 5). As mentioned earlier, the search is conducted over
the MAP variables and therefore the algorithm expands only
those nodes that are labeled by MAP variables. Following the
expansion of node n, the algorithm updates the q- and l-values
of all the ancestors on n in G′T (line 10). Notice that when an

Algorithm 3: ANYLDFS
Input: Graphical modelM = 〈X,D,F〉, pseudo tree T ,

heuristic function h(·), XM = X \XS

Output: Anytime lower and upper bounds on MMAP value
1 Create an OR node s labeled by the root of T
2 U = q(s) = h(s), L = l(s) = −∞, G′T = {s}, Tb = {s}
3 while not TIMEOUT do
4 while tips(Tb) 6= ∅ OR f(Tb) > L do
5 Select non-terminal tip node n in Tb

6 EXPAND(n)
7 if n is OR node then
8 q(n)← maxm∈ch(n)(log(w(n,m)) + q(m))
9 m′ ← argmaxm∈ch(n)(w(n,m) · q(m))

10 Mark with symbol ? the arc n→ m′

11 Tb ← Tb ∪ {m′}
12 else if n is AND node then
13 q(n)←

∑
m∈ch(n) q(m)

14 foreach m ∈ ch(n) do
15 if m is terminal OR node labeled by Xi ∈ XS then
16 l(m)← max(l(m), LOWERBOUND(m))

17 Tb ← Tb ∪ {ch(n)}

18 forall the nodes m ∈ leaves(Tb) do
19 UPDATE(m)

20 Let 〈U ,L〉 ← 〈q(s),max(L, l(s))〉 and output 〈L,U〉
21 Select new Tb by tracing down ?-marked arcs from root s

22 return 〈L,U〉

AND node n is expanded, if any of its OR childrenm is labeled
by a summation variable (in this case m is a terminal node),
then the corresponding node value l(m) is initialized with
the lower bound on the conditioned summation subproblem
below m computed by function LOWERBOUND(m) (lines 8–
9). During search, the algorithm also keeps track and reports
the current best global upper and lower bounds based on the q-
and l-values of the root node s (line 11). Finally, ANYSBFS
continues with the selection of a new best partial solution tree
Tb by tracing down the ?-marked arcs from the root of G′T or
terminates the search if conditions are met.

In order to improve diversification which in turn is likely
to yield tighter lower and upper bounds, ANYSBFS employs
a restarting strategy. Specifically, the algorithm restarts the
search when the number of node expansions exceeds a thresh-
old τ (line 4). The threshold can be fixed, or it can be adaptive
following for example a Luby sequence [Luby et al., 1993].

3.4 Anytime Learning Depth-First Search
Our second bounding scheme interleaves a sequence of depth-
first traversals of the search space where a current best partial
solution is expanded greedily to a complete solution in order
to provide an (anytime) lower bound on the optimal value,
with a learning step which consists of a bottom-up revision
of the relevant node values in the search space in order to
identify the next best partial solution to be explored further
as well as to generate an improved upper bound on the op-
timal solution. Algorithm 3 describes this approach which
we call Anytime Learning Depth-First Search (ANYLDFS).



A similar idea was explored by [Bonet and Geffner, 2005]
for solving MDPs, and more recently by [Marinescu et al.,
2017] for bounding MMAP but in the context of exact sum-
mation evaluations. Notice that unlike AAOBF and LAOBF
which alternate between best-first and depth-first search in a
relatively balanced manner, ANYLDFS uses an aggressive
depth-first search exploration of the search space that is aimed
at discovering improved lower bounds as quickly as possible.

Specifically, ANYLDFS maintains the global bounds (U
and L, respectively) and consists of two main steps. During
the first top-down step (lines 4–17), the algorithm expands the
current best solution subtree Tb to a solution tree in a greedy
depth-first manner, as follows. It selects a tip node n from Tb
and expands it by generating its successors. As before, only
nodes labeled by MAP variables are expanded further. If n
is an OR node then Tb is extended only with n’s best AND
successor according to its q-value (lines 10–11). Otherwise
(it is an AND node), all of n’s OR successors are added to Tb.
Notice that in the latter case if any of node n’s OR successors
m is labeled by a summation variable (i.e., m is a terminal
node in G′T ) then the corresponding l-value l(m) is initialized
with the lower bound on the respective conditioned summation
subproblem computed by function LOWERBOUND(m) (lines
14–16). This process stops when Tb becomes a complete
solution tree or when it cannot improve over the current global
lower bound (line 4). The function f(Tb) is used to compute
a heuristic upper bounding estimate on the optimal extension
of Tb by summing up the weights on the arcs of Tb with the
q-values of the leaf nodes in Tb, respectively.

The second phase is a learning step that updates the node
values in G′T bottom-up starting from the leaf nodes of Tb
and towards the ancestors of these nodes in G′T (lines 18–19).
Following this step, the algorithm uses the q- and l-values of
the root node to revise the global upper and lower bounds.
Then, it computes the next best partial solution subtree by
following the ?-marked arcs from the root of G′T and either
continues the search or terminates if a time limit is reached.

3.5 Towards Adaptive Bounding Schemes
It is important to notice that unlike the existing best+depth-first
search hybrid schemes [Marinescu et al., 2017], algorithms
ANYSBFS and ANYLDFS do not mark any of the OR nodes
labeled by sum variables as solved when they are first evalu-
ated. This means that the same summation OR node n may be
selected and evaluated multiple times during search. There-
fore, a possible enhancement applicable to both algorithms is
to use an adaptive strategy for sampling, in which each time
the same node n is selected for re-evaluation, we increase
slightly the time spent by LOWERBOUND(n) for sampling
in order to compute a potentially tighter lower bound at the
expense of some additional computational overhead.

Unlike their predecessors which rely on exact summation
evaluations and thus prove optimality, algorithms ANYS-
BFS and ANYLDFS equipped with the importance sam-
pling scheme discussed earlier can only produce probabilistic
lower bounds that improve with time. However, if function
LOWERBOUND(n) implements a bounding scheme that con-
verges to the exact value of the conditioned subproblem below
n and if such nodes are marked solved then both algorithms

benchmark # inst n k w∗c w∗s
grid 160 144–2500 2 20–309 13–93
pedigree 110 334–1289 3–7 34–138 13–48
promedas 50 453–1849 2 48–259 5–99
planning 15 192–2695 3 32–446 19–207

Table 1: Benchmark statistics.

can provide optimality guarantees.

4 Experiments
We evaluate empirically the anytime performance of the pro-
posed algorithms ANYSBFS and ANYLDFS against recent
state-of-the-art anytime bounding schemes on benchmark
problems generated from standard probabilistic inference net-
works as well as from planning under uncertainty domains.
The competing algorithms, are the earlier AAOBF and LAOBF,
respectively, which are the current best-performing best+first-
search hybrid schemes for providing anytime lower and up-
per bounds on the optimal MMAP value [Marinescu et al.,
2017]. In addition, we also ran LnDFS which is a variant of
ANYLDFS explored recently in [Marinescu et al., 2017] that
solves the condition summation subproblems exactly. For ref-
erence, we also considered UBFS which is a recent bounding
scheme for MMAP that is based on best-first search [Lou et
al., 2018]. However, unlike our algorithms, UBFS provides
anytime upper bounds only. The parameter p that controls
the exploration strategy of ANYSBFS was set to 0.5 and
its restarts threshold τ followed a standard Luby sequence
(1,1,2,1,1,2,4, . . .). All competing algorithms used the same
heuristic function WMB-MM(i). We set i = 10 for both the
heuristic WMB-MM(i) and the sampling scheme WMB-IS(i),
respectively. The time limit was set to 1 hour and we ran
all algorithms as memory intensive schemes with a 20GB of
RAM limit. We also allowed ANYLDFS and ANYSBFS to
perform up to r = 10, 000 calls to the lower bounding scheme
for summation within the time limit and we set δ = 0.05 to
ensure that they produce true lower bounds with probability at
least 95%. Finally, the proposed algorithms also implemented
the adaptive strategy described in the previous section and
increased the number of samples used by WMB-IS(i) by 25%
every time the same summation OR node m is selected for
re-evaluation (the initial number of samples was set to 1,000).

Our benchmark set includes 3 standard problem do-
mains from grid networks (grid), genetic linkage anal-
ysis (pedigree), and medical diagnosis expert systems
(promedas). Since the original problems are pure MAP
tasks, we generated 5 synthetic MMAP instances for each
pure MAP instance by randomly selecting 10% of the vari-
ables as MAP variables. The reason for selecting that many
MAP variables was to increase significantly the difficulty
of the conditioned summation subproblems. Therefore, we
created 160 grid, 110 pedigree, and 50 promedas MMAP
instances. In addition, we also considered 15 problem in-
stances derived from probabilistic conformant planning with
finite time horizon [Lee et al., 2016b]. These instances corre-
spond to MMAP queries over equivalent dynamic Bayesian
network (DBN) encodings of the original planning problems.
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Figure 2: Anytime average relative accuracy with respect to the tightest upper (top) and lower bounds (bottom), respectively.

algorithm grid pedigree promedas planning
upper bounds (1min/10min/60min)

AAOBF 24/48/61 6/20/24 14/17/18 0/0/0
LAOBF 56/72/87 89/91/92 44/48/48 13/13/13
LnDFS 24/48/64 6/20/24 14/17/18 0/0/0
UBFS 159/160/160 110/110/110 50/50/50 15/15/15
AnySBFS 112/152/159 95/103/109 49/49/50 5/11/14
AnyLDFS 157/160/160 102/109/110 50/50/50 14/14/15

lower bounds (1min/10min/60min)
AAOBF 24/48/66 6/20/24 14/17/18 0/0/0
LAOBF 2/17/29 1/10/19 11/15/17 0/0/0
LnDFS 24/48/64 6/20/24 14/17/18 0/0/0
UBFS 0/0/0 0/0/0 0/0/0 0/0/0
AnySBFS 160/160/160 110/110/110 50/50/50 15/15/15
AnyLDFS 160/160/160 110/110/110 50/50/50 15/15/15

Table 2: Number of instances with non-trivial upper and lower
bounds at 1 min, 10 min and 60 min time intervals.

Table 1 shows the typical ranges of the problem instance pa-
rameters where n is the number of variables, k is the do-
main size, w∗c is the constrained induced width and w∗s is
the induced width of the conditioned summation subproblem.
Note that, this paper illustrates much harder MMAP prob-
lem instances compared to previous papers [Lee et al., 2016a;
Marinescu et al., 2017].

Responsiveness. The responsiveness characterizes how fast
an algorithm can discover non-trivial bounds. For AAOBF,
LAOBF, LnDFS, UBFS, ANYSBFS and ANYLDFS, we re-
quire them to produce upper bounds other than the initial
bounds from the heuristic. Similarly, we require the lower
bounds found to be different from the default one−∞. Table 2
shows the number of instances for which each algorithm found
non-trivial upper (top) and lower (bottom) bounds within 1
minute, 10 minutes and 1 hour, respectively. The best perfor-
mance points are highlighted. We can see the ANYSBFS and
ANYLDFS significantly outperform AAOBF, LAOBF and

algorithm grid pedigree promedas planning
tightest upper bound

AAOBF 0/1/3 0/0/0 1/0/0 0/0/0
LAOBF 0/0/1 1/1/2 3/0/0 1/0/0
LnDFS 1/1/0 0/0/0 1/0/0 0/0/0
UBFS 158/158/150 108/109/107 44/50/48 14/15/15
AnySBFS 0/0/0 0/0/0 0/0/0 0/0/0
AnyLDFS 2/0/6 1/0/1 1/0/2 0/0/0

tightest lower bound
AAOBF 15/32/40 5/16/19 9/11/13 0/0/0
LAOBF 0/5/5 0/1/2 0/9/11 0/0/0
LnDFS 22/44/51 6/14/17 13/12/13 0/0/0
UBFS 0/0/0 0/0/0 0/0/0 0/0/0
AnySBFS 63/39/35 26/24/20 1/0/0 9/6/3
AnyLDFS 80/78/74 79/66/66 36/36/35 7/9/12

Table 3: Number of instances for which an algorithm found the
tightest upper bound and the tightest lower bound, respectively,
at 1 min, 10 min and 60 min time intervals.

LnDFS as they discover non-trivial upper and lower bounds
on most of the problem instances, across all time bounds. Most
notably, algorithms AAOBF, LAOBF and LnDFS fail to find
non-trivial lower bounds on many problem instances, espe-
cially on the on the most difficult planning instances because
of the sheer difficulty of their conditioned summation subprob-
lems. This is important, because the lower bounds correspond
to complete MAP solutions which in turn yield actual plans.

Quality of the Bounds. Table 3 summarizes the winners in
terms of finding the tightest upper (top) and lower (bottom)
bounds within a given time bound of 1 minute, 10 minutes and
1 hour, respectively. In terms of upper bounds, we can see that
UBFS typically finds the tightest bounds, across all reported
time bounds. This is because UBFS also explores best-first the
subspace associated with the summation subproblem whereas
ANYLDFS and ANYSBFS do not. However, in terms of
lower bounds, we observe that ANYLDFS whose strategy is



geared towards finding lower bounds quickly dominates all
other algorithms as it discovers the tightest bounds across all
domains and time bounds. Algorithms AAOBF and LnDFS
produce tighter lower bounds than ANYLDFS only on prob-
lem instances where the conditioned summation subproblem
is manageable and can be solved exactly.

In Figure 2 we plot the average relative accuracy with re-
spect to the tightest upper (resp. lower) bounds as a function
of time for all four domains and for all competing algorithms.
For a given problem instance and algorithm we compute the
relative accuracy at time t as |(ut−u∗)/u∗)| and |(lt−l∗)/l∗|,
where ut (resp. lt) is the current upper (resp. lower) bounds
and u∗ (resp. l∗) is the tightest upper (resp. lower) bound
found for that instance. If an algorithm did not find a lower
bound at time t then we compute the relative accuracy as
|(2 ∗ l− − l∗)/l∗|, where l− is the worst lower bound for
that particular instance. As before, we see that in terms of
upper bounds UBFS is the best performing algorithm, while
ANYLDFS dominates in terms of lower bounds. The reduced
computational overhead due to bounding the exact summa-
tion values allows ANYLDFS to explore a much larger search
space which often translates into discovering improved bounds
compared to AAOBF/LAOBF/LnDFS.

5 Conclusions
We proposed the first two bounding schemes that compute
anytime upper and lower bounds on the optimal MMAP value
without evaluating exactly the probability of each MAP assign-
ment generated. The proposed algorithms overcome the most
serious limitation of recent search-based bounding schemes
that perform the conditional summation computation exactly.
Our new algorithms bound the conditional summation using
a sampling-based method that generates probabilistic bounds.
Our extensive empirical evaluation on various benchmarks
demonstrates the effectiveness of the new algorithms com-
pared with existing state-of-the-art bounding schemes. Our
approach can accommodate any lower bounding scheme for
summation values. Here, we show empirically that exploit-
ing a recent sampling-based probabilistic bounds often yields
superior quality bounds on the optimal MMAP.
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