Abstraction Sampling in Graphical Models

Filjor Broka*, Rina Dechter, Alexander Ihler, and Kalev Kask UCI

*In memory of Filjor (1985-2018)

Outline

- Background: Graphical models, search, sampling
- Motivation and the main idea
\square Abstraction sampling algorithm - OR
- The AND/OR case, properness
\square Properties
- Experiments
\square Conclusion and Future Directions

Graphical models

Bayesian Networks

Markov Logic

Deep Boltzmann Machines

Graphical models

A graphical model consists of:
Example:

$$
\begin{aligned}
X & =\left\{X_{1}, \ldots, X_{n}\right\} & & \text {-- variables }
\end{aligned} \quad A \in\{0,1\}
$$

A	B	$f(A, B)$
0	0	2
0	1	4
1	0	3
1	1	1

and a combination operator
$f_{A B}(A, B), \quad f_{B C}(B, C)$

The combination operator defines an overall function from the factors,

$$
\text { e.g., "x" : } p(A, B, C) \propto f_{A B}(A, B) \times f_{B C}(B, C)
$$

Inference: compute quantities of interest about the distribution, e.g.,

$$
\begin{array}{rr}
p\left(x_{i}\right)= & \frac{1}{Z} \sum_{\mathbf{x} \backslash x_{i}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \\
\text { (marginals) } & \text { or } \quad Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \\
\text { (partition function) }
\end{array}
$$

Primal graph

Search trees \&

 Enumeration

Context minimal OR search graph
28 nodes
126 nodes
(A)
(D)

(D) $(D) F B$ (D) \subset

01010101001010101
OR
(A)

Context minimal AND/OR search graph
Full AND/OR search tree Any query can be computed
18 AND nodes over any of the search spaces

Search vs. Sampling

- Search
\square Enumerate states; no stone unturned, none more than once.
- Sampling
\square Exploit randomization "typicality"; concentration inequalities
(Heuristic) Search
Structured enumeration over all possible states

(Monte Carlo) Sampling

Use randomization to estimate averages over the state space

Motivation 1: Sampling to Searching

 Importance sampling
Z estimate

2-config-subtree sampling
2-config-subtree sampling
(2)

4-config-subtree sampling

S1
S2

Z estimate

Motivation 2: Searching to Sampling

 similar- Merge nodes that root identical subtrees

Stratified sampling

■ Knuth 1975, Chen 1992 estimate search space size

- Partially enumerate, partially sample
\square Subdivide space into parts
\square Enumerate over parts, sample within parts
\square "Probe": random draw corresponding to multiple states
\square Theorem (Rizzo 2007): The variance reduction moving from Importance Sampling (IS) to Stratified IS with k strata's (under some conditions) is

$$
k \cdot \operatorname{var}\left(Z_{J}\right)
$$

Full OR Tree

Method 1 - OR Tree

Abstraction Sampling - AND/OR

 Improper AbstractionFull AND/OR Search Tree

16 Solution trees

Sampled AND/OR Search Tree

Not a subset of solution trees Estimate \widehat{Z} is biased

a proper abstraction

The Proposal Distribution

- Our scheme is like any IS-based scheme where any proposal can be used
- In our experiments we use a proposal

$$
p \propto w(s) \cdot g(s) \cdot h(s)
$$

Properties of AS

Theorem. [unbiasedness] Estimate \hat{Z} generated by AS is unbiased ($E \hat{Z}=Z$).

Theorem. [exact proposal] If $h(n)=Z(n)$ then \hat{Z} is exact for any choice of abstraction function a.

Theorem. If the abstraction a is Z-isomorph, namely: $\left(a(n)=a\left(n^{\prime}\right)\right) \rightarrow\left(Z(n)=Z\left(n^{\prime}\right)\right)$ then \hat{Z} is exact for any choice of proposal.

Experimental Setup

■ Use 4 classes of problems
\square Grids, DBN, Promedas, Pedigree
■ Use weighted MB to generate the h
■ Evaluate 2 context-based abstractions
\square Randomized, Relaxed
■ Competing algorithms
$\square A S-(O R, A O)$, WMB-IS, IJGP-SS
■ Questions :
AS impact on variance, OR vs AO, vs competition

Abstractions Based on Context

- context $(X)=$ ancestors of X in pseudo tree, that disconnect its subtree from the rest of the problem

■ Context-based (CB) Abstractions:
\square assignments to context
\square Relaxed: most recent subset of context variables
\square Randomized : random subset of context variables

Grids\grid20x20.f15.uai - OR - i = 10

$$
N=400, k=2, w=26
$$

Benchmark\#inst, $\bar{n}, \bar{w}, \bar{k},\|\bar{F}\|, \bar{s}$	Scheme	1 min	20 min	60 min
		a_{0}, a_{1}, a_{2}	a_{0}, a_{1}, a_{2}	a_{0}, a_{1}, a_{2}
$\begin{array}{\|l\|} \hline \text { DBN-small } \\ 60,70,30,2,16950,2 \\ \hline \end{array}$	OR-RelCB	1.18, 1,93, 2.58	$0.88,1.86,1.77$	$0.78,1.43,1.65$
	OR-RandCB	$1.18,1.04,0.81$	$0.88,0.71,0.63$	0.78, 0.42, 0.54
$\begin{aligned} & \text { Grids-small } \\ & 7,271,24,2,791,2 \end{aligned}$	OR-ReICB	$6.68,5.19,5.07$	6.06, 4.71, 4.25	4.94, 4.31, 3.39
	OR- PandCB	$6.68,5.05,1.97$	6.06, 4.10, 1.55	4.94, 3.83, 1.41
	AO-RelCB	$5.46,3.84,4.70$	5.43, 3.68, 3.74	$4.83,2.97,3.83$
	AO-RandCB	5.46, 1.97, 4.27	$5.43,1.72,3.36$	4.83, 0.84, 2.77
Pedigree-small 22, 917, 26, 5, 917, 4	OR-RelCB	0.17, $0.19,0.26$	0.17, 0.17, 0.19	0.17, 0.17, 0.16
	OR-RandCB	0.17, $0.20,0.25$	$0.17,0.17,0.19$	0.17, 0.17, 0.19
	AO-RelCB	$0.18,0.47,0.21$	$\mathbf{0 . 1 5 , 0 . 3 6 , ~} 0.17$	0.16, 0.20, 0.16
	AO-RandCB	$0.18,0.24,0.18$	$\mathbf{0 . 1 5 , 0 . 1 9 , ~} 0.16$	0.16, 0.18, 0.16
Promedas-small 41, 666, 26, 2, 674, 3	OR-RelCB	0.68, 0.77, 1.59	0.33, 0.44, 0.70	0.16, 0.34, 0.47
	OR-RandCB	$0.69,0.69,0.62$	$0.33,0.28,0.38$	$0.16,0.15,0.21$
	AO-RelCB	0.56, 0.59, 0.66	$0.30,0.34,0.40$	$0.15,0.23,0.23$
	AO-RandCB	0.56, 0.32, 0.28	0.30, 0.19, 0.15	0.15, 0.10,0.10
$\begin{aligned} & \text { DBN-large } \\ & 48,216,78,2,66116,2 \end{aligned}$	OR-RelCB	366.77, 368.29, 369.59	365.32, 366.49, 367.44	363.93, 365.04, 366.20
	OR-RandCB	366.77, 365.56, 365.14	365.32, 364.04, 363.53	363.93, 363.14, 362.88
$\begin{aligned} & \text { Grids-large } \\ & 19,3432,117,2,10244,2 \end{aligned}$	OR-RelCB	966.46, 925.86, 927.60	933.64, 900.71, 909.37	928.35, $889.53,894.59$
	OR-RandCB	966.46, 945.98, 918.19	933.64, 912.19, 907.30	$928.35,900.01,894.15$
	AO-RelCB	949.25, 875.81, 910.60	925.85, 863.23, 892.96	918.74, 854.53, 885.18
	AO-RandCB	949.25, 860.66, 885.97	925.85, 845.20, 876.74	918.74, 841.84, 871.05
$\begin{array}{\|l\|} \hline \text { Promedas-large } \\ 88,962,48,2,974,3 \end{array}$	OR-RelCB	inf, inf, inf	30.29 , inf, inf	29.54, 30.28, 31.89
	OR-RandCB	inf, inf, 30.24	30.29 , inf, 29.27	29.54, 29.26, 28.59
	AO-RelCB	inf, 30.45, 30.55	30.00, 29.31, 29.32	$29.06,28.67,28.44$
	AO-RandCB	inf, 29.23, 28.97	$30.00,28.47,28.06$	$29.06,27.89,27.66$

Benchmark \#inst, $\bar{n}, \bar{w}, \bar{k},\|\bar{F}\|, \bar{s}$	Scheme	$\begin{gathered} 1 \text { min } \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} \mathbf{2 0} \text { min } \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} \mathbf{6 0} \mathbf{~ m i n i n} \\ a_{0}, a_{1}, a_{2} \end{gathered}$
$\begin{aligned} & \text { Grids-small } \\ & 7,271,24,2,791,2 \end{aligned}$	OR-RelCB	$6.68,5.19,5.07$	6.06, 4.71, 4.25	4.94, 4.31, 3.39
	OR-RandCB	$6.68,5.05,1.97$	$6.06,4.10,1.55$	4.94, 3.83, 1.41
	AO-RelCB	5.46, 3.84, 4.70	$5.43,3.68,3.74$	4.83, 2.97, 3.83
	AO-RandCB	$5.46,1.97,4.27$	$5.43,1.72,3.36$	$4 . 8 3 \longdiv { 0 . 8 4 , ~ 2 . 7 7 ~ }$
$\begin{aligned} & \text { Pedigree-small } \\ & 22,917,26,5,917,4 \end{aligned}$	OR-RelCB	0.17, 0.19, 0.26	0.17, 0.17, 0.19	0.17, 0.17, 0.16
	OR-RandCB	0.17, $0.20,0.25$	$0.17,0.17,0.19$	0.17, 0.17, 0.19
	AO-RelCB	$0.18,0.47,0.21$	$\mathbf{0 . 1 5 , ~ 0 . 3 6 , ~} 0.17$	0.16, 0.20, 0.16
	AO-RandCB	$0.18,0.24,0.18$	$\mathbf{0 . 1 5 , ~ 0 . 1 9 , ~} 0.16$	0.16, 0.18, 0.16
Promedas-small $41,666,26,2,674,3$	OR-RelCB	0.68, 0.77, 1.59	0.33, 0.44, 0.70	0.16, 0.34, 0.47
	OR-RandCB	$0.69,0.69,0.62$	$0.33,0.28,0.38$	$0.16,0.15,0.21$
	AO-RelCB	$0.56,0.59,0.66$	$0.30,0.34,0.40$	$0.15,0.23,0.23$
	AO-RandCB	0.56, 0.32, 0.28	0.30, 0.19, 0.15	$0.150 .10,0.10$
$\begin{aligned} & \text { Grids-large } \\ & 19,3432,117,2,10244,2 \end{aligned}$	OR-RelCB	966.46, 925.86, 927.60	933.64, 900.71, 909.37	$928.35,889.53,894.59$
	OR-RandCB	966.46, 945.98, 918.19	933.64, 912.19, 907.30	928.35, 900.01, 894.15
	AO-RelCB	949.25, 875.81, 910.60	925.85, 863.23, 892.96	918.74, 854.53, 885.18
	AO-RandCB	$949.25,860.66,885.97$	$925.85,845.20,876.74$	918.74, 841.84, 871.05
$\begin{aligned} & \text { Promedas-large } \\ & 88,962,48,2,974,3 \end{aligned}$	OR-RelCB	inf, inf, inf	30.29 , inf, inf	29.54, 30.28, 31.89
	OR-RandCB	inf, inf, 30.24	30.29 , inf, 29.27	29.54, 29.26, 28.59
	AO-RelCB	inf, 30.45, 30.55	30.00, 29.31, 29.32	29.06, 28.67, 28.44
	AO-RandCB	inf, 29.23, 28.97	30.00, 28.47, 28.06	$29.06,27.89,27.66$

Benchmark \#inst, $\bar{n}, \bar{w}, \bar{k},\|\bar{F}\|, \bar{s}$	Scheme	$\begin{gathered} 1 \text { min } \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} 20 \mathrm{~min} \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} \mathbf{6 0} \mathbf{m i n} \\ a_{0}, a_{1}, a_{2} \end{gathered}$
$\begin{aligned} & \text { DBN-small } \\ & 60,70,30,2,16950,2 \end{aligned}$	OR-RandCB WMB-IS IJGP-SS	$\begin{gathered} 1.18,1.04,0.81 \\ 9.40 \end{gathered}$	$\begin{gathered} 0.88,0.71,0.63 \\ 5.69 \end{gathered}$	$\begin{gathered} 0.78, \sqrt{\mathbf{0 . 4 2}} \frac{0.54}{3.27} \\ 1.22 \end{gathered}$
$\begin{aligned} & \text { Grids-small } \\ & 7,271,24,2,791,2 \end{aligned}$	AO-RelCB AO-RandCB WMB-IS IJGP-SS	$\begin{gathered} 5.46,3.84,4.70 \\ 5.46,1.97,4.27 \\ 2.94 \end{gathered}$	$\begin{gathered} 5.43,3.68,3.74 \\ 5.43,1.72,3.36 \\ 1.94 \end{gathered}$	$\begin{gathered} 4.83,2.97,3.83 \\ 4.83,0.84 \\ 2.77 \\ 1.21 \\ 38.81 \end{gathered}$
$\begin{aligned} & \text { Pedigree-small } \\ & 22,917,26,5,917,4 \end{aligned}$	AO-RelCB AO-RandCB WMB-IS IJGP-SS	$\begin{aligned} & 0.18,0.47,0.21 \\ & 0.18,0.24,0.18 \\ & \quad \inf (1 / 22) \end{aligned}$	$\begin{gathered} 0.15,0.36,0.17 \\ 0.15,0.19,0.16 \\ \inf (3 / 22) \end{gathered}$	$\mathbf{0 . 1 6}, 0.20 .0 .0 .16$ $\mathbf{0 . 1 6}, 0.180 .16$ 1.06 11.10
Promedas-small $41,666,26,2,674,3$	AO-RelCB AO-RandCB WMB-IS IJGP-SS	$\begin{aligned} & 0.56,0.59,0.66 \\ & 0.56,0.32,0.28 \\ & \inf (5 / 41) \end{aligned}$	$\begin{gathered} 0.30,0.34,0.40 \\ 0.30,0.19,0.15 \\ 1.77 \end{gathered}$	$0.15,0.23,0.23$ $0.15, \mathbf{0 . 1 0 , 0 . 1 0}$ 1.15 3.06
DBN-large $48,216,78,2,66116,2$	OR-RelCB OR-RandCB WMB-IS IJGP-SS	$366.77,368.29,369.59$ $366.77,365.56,365.14$ $\inf (0 / 48)$	$\begin{gathered} 365.32,366.49,367.44 \\ 365.32,364.04,363.53 \\ \inf (0 / 48) \end{gathered}$	$363.93,365.04,366.20$ $363.93,363.14, \mathbf{3 6 2 . 8 8}$ $\inf (0 / 48)$ $\mathbf{3 5 6 . 9 1}$
$\begin{aligned} & \text { Grids-large } \\ & 19,3432,117,2,10244,2 \end{aligned}$	AO-RelCB AO-RandCB WMB-IS IJGP-SS	$949.25,875.81,910.60$ $949.25,860.66,885.97$ $\inf (6 / 19)$	$925.85,863.23,892.96$ $925.85,845.20,876.74$ $\inf (6 / 19)$	918.74, 854.53, 885.18 $918.74,841.84,871.05$ $\inf (7 / 19)$ $\inf (0 / 19)$
Promedas-large $88,962,48,2,974,3$	AO-RelCB AO-RandCB WMB-IS IJGP-SS	$\begin{aligned} & \text { inf, } 30.45,30.55 \\ & \text { inf, } 29.23,28.97 \\ & \inf (1 / 88) \end{aligned}$	$\begin{aligned} & 30.00,29.31,29.32 \\ & 30.00,28.47,28.06 \\ & \quad \inf (1 / 88) \end{aligned}$	$\begin{gathered} 29.06,28.67,28.44 \\ 29.06,27.89,27.66 \\ \inf (2 / 88) \\ 35.50 \end{gathered}$

Future Directions

- Explore choice of abstraction in order to reduce variance: relaxed-path based, relaxed-context based, heuristic based abstractions.

Further explore tradeoffs between:

- Portion of search space sampled in a probe vs. number of probes
\square Accuracy of sampling probability (heuristic) vs. time/memory needed to compute it
\square Sampling in OR space vs. AND/OR space
\square Sampling search trees vs. search graphs

University of California

THANK YOU

