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Abstract

We present a new sampling scheme for approx-
imating hard to compute queries over graphical
models, such as computing the partition func-
tion. The scheme builds upon exact algorithms
that traverse a weighted directed state-space
graph representing a global function over a
graphical model (e.g., probability distribution).
With the aid of an abstraction function and ran-
domization, the state space can be compacted
(or trimmed) to facilitate tractable computa-
tion, yielding a Monte Carlo Estimate that is
unbiased. We present the general scheme and
analyze its properties analytically and empiri-
cally, investigating two specific ideas for pick-
ing abstractions - targeting reduction of vari-
ance or search space size.

1 INTRODUCTION

Imagine that we want to compute a function over a
weighted directed graph where the graph is given im-
plicitly, e.g., using a generative state-space search model
whose explicit state graph is enormous. We therefore
need to resort to approximations such as Monte-Carlo
schemes. We focus on weighted search trees over prob-
abilistic graphical models where nodes represent partial
variable assignments (or configurations) and arcs are as-
sociated with weights describing probabilistic quantities
from the model. The task is to compute the partition
function - sum cost of all paths in the tree. Some Monte
Carlo methods draw independent samples of full config-
urations (full paths) one variable at a time (e.g., Forward
sampling). The key idea of the scheme we propose is
that, guided by an abstraction function, each sample (or a
“probe”) is a sampled subtree representing multiple con-
figurations. We argue that, under some conditions over

the abstraction, such a sampled tree representing k con-
figurations can be a more accurate estimator than k inde-
pendent samples.

Our sampling scheme uses an abstraction function that
partitions the nodes at each level in the search tree into
subsets of abstract states under the intuition that nodes
in the same abstract state root similar subtrees and there-
fore a single member from each can represent all others.
Our Abstraction Sampling (AS) scheme brings together
ideas from statistics and search to exploit their respective
strengths. Search is a systematic process that can explore
all configurations in a structured manner, once. ”It does
not leave any stone unturned and does not turn any stone
more than once” [Pearl, 1984]. Sampling on the other
hand explores only a subset of the paths, that can stochas-
tically cover the whole search space. Abstraction Sam-
pling allows a transition between search and sampling
by generating and searching a subtree, and therefore a
corresponding subset of configurations, in a coordinated
manner that can overcome redundancy and some of the
variance associated with random independent samples.

From a search perspective abstraction can be viewed as
a license to merge nodes that root similar subtrees, sam-
pling one of the subtrees, thus creating a more compact
graph that can be searched more efficiently. From a sam-
pling perspective, an abstract state can be viewed as a
form of a ”strata” within a stratified sampling scheme
[Rubinstein and Kroese, 2007, Rizzo, 2007] where the
process of stratified sampling is applied layer by layer.
The variance reduction we hope to get rests on similar
principles of variance reduction in stratified sampling, as
we will elaborate more later.

Abstraction Sampling is inspired by the early work of
Knuth and Chen [Knuth, 1975, Chen, 1992] who pro-
posed a method for estimating quantities that can be ex-
pressed as aggregates (e.g., sum) of functions defined
over the nodes in the graph. Our work extends this work
to more general queries over graphical models such as



the partition function and to weighted AND/OR trees.

Our Contributions. In this paper we present a new algo-
rithmic framework, Abstraction Sampling, that combines
search with stratified importance sampling for answering
summation queries (e.g., partition function) over graphi-
cal models. Using the notion of abstraction function we
can find a cost-effective balance betwen seach and sam-
pling, that is tuned to the problem instance and to time
and memory resources, using OR or AND/OR search al-
gorithms. We prove unbiasedness and discuss variance
reduction properties, and carry out an extensive empir-
ical evaluation over multiple challenging benchmarks.
Our results show that two classes of context-based ab-
stractions (deterministic and randomized) can often sig-
nificantly improve performance over the baseline of im-
portance sampling, for both OR and AND/OR trees. We
also show that our scheme is competitive by comparing it
with two state-of-the-art importance sampling schemes.

2 BACKGROUND

A graphical model, such as a Bayesian or a Markov net-
work [Pearl, 1988, Darwiche, 2009, Dechter, 2013] can
be defined by a 3-tuple M = (X,D,F), where X =
{Xi : i ∈ V } is a set of variables indexed by a set V
and D = {Di : i ∈ D} is the set of finite domains of
values for each Xi. Each function ψα ∈ F is defined
over a subset of the variables called its scope, Xα, where
α ⊆ V are the indices of variables in its scope and Dα

denotes the Cartesian product of their domains, so that
ψα : Dα → R≥0. The primal graph of a graphical
model associates each variable with a node, while arcs
connect nodes whose variables appear in the scope of
the same local function. A graphical model represents a
global function, often a probability distribution, defined
by Pr(X) ∝

∏
α ψα(Xα). An important task is to com-

pute the normalizing constant, also known as the parti-
tion function Z =

∑
X

∏
α ψα(Xα).

AND/OR search spaces. A graphical model can be ex-
pressed via a weighted state space graph. In a simple OR
search space, the states (or nodes) are partial assignments
relative to a variable ordering, where each layer corre-
sponds to a new assigned variable. A graphical model
can be transformed into a more compact AND/OR search
space [Dechter and Mateescu, 2007] by capturing condi-
tional independences, thus facilitating more effective al-
gorithms [Marinescu and Dechter, 2009]. The AND/OR
search space is defined relative to a pseudo tree of the
primal graph.

DEFINITION 1 (pseudo tree) A pseudo tree of an undi-
rected graph G = (V,E) is a directed rooted tree T =
(V,E′) such that every arc of G not in E′ is a back-arc

Figure 1: A Simple Graphical Model.

in T connecting a node in T to one of its ancestors. The
arcs in E′ may not all be included in E.

Given a pseudo tree T of a primal graph G, the AND/OR
search tree TT guided by T has alternating levels of
OR nodes corresponding to the variables, and AND
nodes corresponding to an assignment from its domain
with edge costs extracted from the original functions
F [Dechter and Mateescu, 2007]. Let s be a node in
Tτ . We denote by var(s) the last variable of the par-
tial value assignment associated with s. So if s stands
for x̄1..p = (x1, x2, ..., xp), then var(s) = Xp. Each
AND node s has a cost c(s) defined to be the product of
all factors ψα that are instantiated at s but not before.

DEFINITION 2 (solution subtree) A solution subtree
x̂M is a subtree of TT satisfying: (1) it contains the root
of TT ; (2) if an OR node is in x̂M , exactly one of its AND
child nodes is in x̂M ; (3) if an AND node is in x̂M then
all its OR children are in x̂M . The product of arc-costs
on any full solution tree equals the cost of a full configu-
ration of the modelM.

Example 1 Figure 1a is a primal graph of 4 bi-valued
variables and 4 binary factors of a graphical model. Fig-
ure 1b is a pseudo tree. Figure 1c displays the AND/OR
search tree guided by the pseudo tree. A solution subtree
is (B = 1, A = 0, C = 1, D = 0) having a cost of 72.

Each node s in TT can be associated with a value, Z(s)
expressing the conditioned partition function rooted at s.
Clearly, Z(s) can be computed recursively based on the
values of the children of s: OR nodes by summation and
AND nodes by multiplication. The value of TT , is the
value of its root node, which is the partition function of
the underlying model,M.

The size of the AND/OR search tree, TT is exponen-
tial in the height of the pseudo tree. It is possible to
merge some subtrees using a concept known as con-



Figure 2: Motivating Example; Z=126.

Figure 3: Motivating Example Tree

text (defined later), yielding an AND/OR graph that
is exponential in the tree-width of the primal graph
[Dechter and Mateescu, 2007]. As noted, Z(s) can be
computed by a depth-first search scheme from leaves to
root of the AND/OR tree (See Figure 1 where the val-
ues attached to each node). When the pseudo tree is a
chain we get back the regular OR tree, where each path
corresponds to a full variable configuration.

Stratified sampling is a variance reduction tech-
nique that can be used with importance sam-
pling [Rubinstein and Kroese, 2007] [Liu et al., 2015]
[Gogate and Dechter, 2011] to achieve further reduction
in variance. Let f be a non-negative function defined
on a sample space X. We want to estimate the value
Z =

∑
x∈X f(x). In importance sampling, we can esti-

mate Z by drawing samples from X according to a pro-
posal distribution q and estimating the equivalent expres-
sion Z =

∑
x∈X

f(x)
q(x) q(x), leading to an importance

sampling estimator ẐI . In stratified importance sam-
pling, we first divide the sample space X into k strata
of equal area under the distribution q. Let J be a ran-
dom variable with k values {1, .., k} assigning to each
configuration in the sample space the index of its strata.
For each j ∈ J , we compute importance sampling es-
timators ẐIj of Zj =

∑
x∈X

fj(x)
qj(x)qj(x) from samples

drawn from the conditional distributions qj = q|(J = j)
and fj(x) be defined as f(x) if J(x) = j and 0 oth-
erwise. The stratified importance sampling estimator is
ẐSI = 1

k

∑k
j=1 Ẑ

I
j . It can be shown

THEOREM 1 ([Rizzo, 2007]) Let ZJ be a uniform ran-

dom variable defined on {1, ..., k} assigning value Zj to
j. Let ẐSI be the stratified importance sampling esti-
mator computed using m samples drawn in each of the
k strata. Let ẐI be the importance sampling estimator
computed with M = mk samples. The variance reduc-
tion achieved by moving from ẐI to ẐSI is k

mV ar(ZJ).

3 ABSTRACTION SAMPLING

A Motivating Example. Our proposed Abstraction
Sampling (AS) algorithm emulates stratified importance
sampling on partial configurations (nodes in the search
tree) layer by layer (each layer corresponding to a vari-
able). To illustrate the idea consider a small two dimen-
sional function over variables X1 and X2 with domains
D1 = D2 = {1, 2, 3, 4, 5} in Figure 2. Partial configu-
rations of length 1 (corresponding to X1) are partitioned
into two abstract states: one where X1 ∈ {1, 2} and the
other where X1 ∈ {3, 4, 5}. Note that this abstraction
function tries to put into the same abstract states rows
which have roughly the same total mass (sum of entries).
At the level of X2 we have abstract states defined just by
variable X2 - one where X2 ∈ {1, 2} and the other by
X2 ∈ {3, 4, 5}. We assume a uniform proposal distribu-
tion; note that the exact answer is Z = 126 (summing all
entries in the table).

The sampling process is illustrated in Figure 3. Assume
we pick X1 = 1 and X1 = 3 as representatives of their
respective abstract states, and give them weights 2 and
3, to account for the number of states they represent.
All extensions of these 2 assignments to X2 are gener-
ated, with abstract states indicated as diamonds and tri-
angles. There are now 4 candidates for a representative
of triangle abstraction with values {10, 9, 8, 7} and corre-
sponding weights {2, 2, 3, 3}, and 6 diamond candidates
with values {3, 5, 4, 2, 3, 2} and corresponding weights
{2, 2, 2, 3, 3, 3}. We select a representative at random in
proportion to their weights. Assume this yields config-
urations (X1 = 3, X2 = 2) and (X1 = 1, X2 = 4).
We next update the weights of the selected represen-
tatives to account for the mass they represent yielding:
w(X1 = 3, X2 = 2) ← w(X1 = 3, X2 = 2)/(3/10) =
3/(3/10) = 10 and w(X1 = 1, X2 = 4) ← w(X1 =
1, X2 = 4)/(2/15) = 2/(2/15) = 15, yielding an esti-
mate for the partition function Ẑ = 7 ·10+5 ·15 = 145.

We also compared the empirical variance of our estima-
tor with a simple importance sampler, using 100000 trials
and observed variance reduction from 2337 to 398, an al-
most 6 fold decrease. While in this example the abstract
states were not equal size, the abstractions were selected
to yield a large variance between the different abstract
states.



Algorithm 1: OR Abstraction Sampling(AS) one probe
Require: An implicit OR search tree T of a modelM.

c(s, s′) is the cost of arc (s, s′) extracted fromM.
g(s) is the product of arc-costs from root to s and
h(s) (heuristic function) is an upper bound on the
partition function defined on nodes based on
graphical modelM. Abstraction a.

Ensure: Sampled tree T̃ . Estimate Ẑ = Z(T̃ ).
1: initialize T̃ ← ∅, Z̃ ← 0, OPEN ← {< s0, 1 >},
2: while OPEN is not empty do
3: < s,w(s) >← remove node in OPEN with

smallest a
4: if s is a leaf node in T then
5: Ẑ ← Ẑ + w(s) · g(s)
6: else
7: for each child s′ of s do
8: w(s′)← w(s)
9: if a(s′) = i and OPEN contains a node

< s{i}, w{i} > of abstraction {i} then
10: p← w(s′)g(s′)h(s′)

w(s′)g(s′)h(s′)+w{i}g(s{i})h(s{i})

11: w{i} ←
w{i}
(1−p)

12: with probability p do:
13: remove s{i} from OPEN

14: OPEN ← OPEN ∪ {< s′, w(s′)
p >}

15: add s′ to T̃
16: else
17: OPEN ← OPEN ∪ {< s′, w(s′) >}
18: T̃ ← T̃ ∪ {< s,w(s) >}

(a) A weighted OR tree (b)
Probe 1

(c) Probe 2

(d) Full AND/OR search
tree

(e) Probe - AND/OR

Figure 4: Example of Probes

3.1 THE ALGORITHM

Our proposed Abstraction Sampling algorithm is a
Monte Carlo process that generates compact represen-
tatives T̃ of T , guided by an abstraction function. Ab-
straction Sampling for OR trees (Algorithm 1) builds a
subtree T̃ of T , level-by-level, in a breadth-first man-
ner. Starting from the root of T , at each step, it picks
a leaf node having the smallest (as explained next) ab-
stract value, and expands it to its child nodes. Each node
s is associated with a weight w(s) representing the mass
the abstract state stands for (root weight is 1). For each
newly generated node, the algorithm checks if there al-
ready exists a node having the same abstraction. If this
is the case, (line 9), it decides with some probability p,
which of the representative nodes to keep and which to
discard. The weight of the selected representative is ad-
justed to account for the discarded one (step 11). Other-
wise, it adds the new node to the frontier of nodes called
OPEN with the weight of its parent node (step 17).

Layered Abstractions. Given a weighted directed
AND/OR tree T , an abstraction function, a : T → I+,
where I+ are integers, partitions the nodes in T , layer
by layer, with the requirements that i) if var(s1) 6=
var(s2) → a(s1) 6= a(s2), and ii) if s′ ∈ ch(s) then
a(s) < a(s′) (this enforces breadth-first exploration;
ch(s) denotes the children of s in T ). Abstraction states
are denoted by {i} for an integer i.

The Sampling Proposal. We use p proportional to
w(s) · g(s) · h(s), where h is a heuristic that provides an
upper bound on the partition function (of the subprob-
lem rooted at s). While the algorithm is unbiased for
any sampling probability, the heuristic yields a proposal
function whose accuracy can significantly impact its con-
vergence, as in any importance sampling scheme.

Example 2 Consider the (OR) search tree T in Fig. 4a.
The cost of each solution is obtained by a product on its
solution arcs. In Figure 4b we show a probe generated
via an abstraction function that puts all nodes that repre-
sent a single variable in a single abstract state. In 4c, we
see a probe where each domain value of a variable corre-
sponds to a different abstract state, yielding 2 states per
variable, and thus 2 nodes per level of the generated tree.
The estimate for (b) is Ẑ = 180 and for (c) Ẑ = 156.

Abstraction Sampling for AND/OR trees requires sev-
eral modifications. The underlying search tree is an
AND/OR tree TT along a pseudo-tree T , and the ab-
straction function is defined on AND nodes. The algo-
rithm builds a subtree T̃T of TT , level-by-level, breadth
first. At each step, it picks a leaf AND node having the
smallest abstraction, and expands two levels down - child
OR nodes, and their child AND nodes. For newly gen-



(a) A full AND/OR
tree with improper ab-
straction (colors)

(b) AND/OR sample
tree generated by im-
proper abstraction

Figure 5: Improper Abstraction for AND/OR

erated AND nodes, the algorithm proceeds as in the OR
case to select stochastically the representative node. The
estimate is not accumulated during the sampling process.
Rather, once a probe T̃T is generated, its partition func-
tion estimate can be computed in a depth-first manner.
Figures 4d and 4e provide an example AND/OR search
tree and a possible probe. 1

3.2 PROPER ABSTRACTIONS

To guarantee the validity and unbiasedness of our sam-
pling scheme for general AND/OR trees, we need to
ensure that the sampled AND/OR probe would include
only full solution subtrees of the underlying AND/OR
tree. For example, the sampled subtree in Figure 5b
could have been generated from the tree in Figure 5a
with the colors as abstraction, yet it contains a solution
tree that corresponds just to a partial configurations (e.g.
(B=0, A=0)) and therefore may lead to unbiased esti-
mates. This situation can be avoided if we require ab-
stractions to be proper, i.e. any two AND nodes of the
same variable, X , can have the same abstract state, only
if they are descendant of a common AND node in the
sampled AND/OR tree.

DEFINITION 3 (Branching variable, Proper abstraction)
A variable Y in a pseudo-tree T is a branching variable
of X , if Y is X’s closest ancestor with at least 2 child
nodes. An abstraction function a over AND nodes in TT
is proper if for any two AND nodes n1 and n2 having
var(n1) = var(n2) = X , if a(n1) = a(n2), then
n1 and n2 have a common ancestor AND node n3 s.t.
var(n3) = Y where Y is the branching variable of X .

Clearly, any OR tree abstraction is proper as there are no
branching variables. Abstraction Sampling for AND/OR
trees enforces the generation of proper probes during the
sampling process (for details see AND/OR algorithm in

1Note that while the AND/OR-AS algorithm is defined
here as a breath-first (BF ) traversal of the search space, other
formulations are possible. Our AND/OR-AS implementation
uses BF traversal on non-branching variables (chains) and
depth-first (DF ) traversal on branching variables, due to su-
perior time/space complexity of DFS algorithms.

supplementary material). For the remainder of the paper
we assume that AS is the general algorithm extended to
AND/OR spaces that enforces the proper condition.

4 PROPERTIES

Complexity The proper restriction limits compactness
of the sampled AND/OR trees. More branchings in the
pseudo tree yield more abstract states and consequently
larger probes. We can show that:

THEOREM 2 (size and complexity) Given a pseudo-
tree, the number of states in a probe by AS is O(n ·
mb+1), where n is the number of variables, b bounds the
number of branchings along any path of the pseudo-tree
and m bounds the maximum number of abstract states in
the input abstraction function, a, per variable. Clearly
for OR trees, b = 0 yielding size bounded by O(nm).

Notice that when we have many branchings in the pseudo
tree T , the underlying AND/OR tree from which we
sample is far more compact than the underlying OR tree.

Unbiasedness We can show that our sampling scheme
generates an unbiased estimate of the partition function.
Detailed proof is in the supplementary materials.

THEOREM 3 (unbiasedness) Given a weighted directed
AND/OR search tree T derived from a graphical model,
the estimate Ẑ generated by AS is unbiased.

5 ON VARIANCE AND ABSTRACTION
SELECTION

The proof of unbiasedness works for any sampling distri-
bution p. The reason for choosing our specific proposal
probabilities is to reduce the variance. We can show that

THEOREM 4 (exact proposal) If the proposal function p
in AS uses an exact heuristic h(n) = Z(n), then Ẑ has
zero variance (single probe is exact), for any abstraction.

Theorem 4 addresses the extreme case when the proposal
is exact. Next we talk about the other extreme when the
abstraction is exact.

THEOREM 5 (exact abstraction) When the abstraction
function satisfies that a(n) = a(n′) ⇒ Z(n) = Z(n′)
then, Ẑ is exact (i.e. Ẑ = Z) with one probe, if h satisfies
a(n) = a(n′)⇒ h(n) = h(n′) .

Since AS is a type of stratified importance sampling our
sampling perspective, (e.g., Theorem 1), suggests sev-
eral variance reduction ways. The first advises to use



abstractions that at each layer partition nodes into equal
area abstract states under the proposal. The second is
advising towards increasing the variance of the estima-
tors between abstract states. The third encourages hav-
ing more refined abstractions with more abstract states
per layer, as long as the condition of equal size abstract
states can be maintained. At the same time, our search
perspective suggests to always unify nodes that root the
same subtrees, whenever such information is available.
One possibility is to use the notion of context.

The context of a variable X in a pseudo-tree T identi-
fies a subset C(X) of its ancestor variables, whose as-
signment uniquely determines the AND/OR subtree be-
low the node ([Dechter and Mateescu, 2007]). There-
fore, two nodes in the search tree having the same con-
text, (namely, the same assignment along their contexts)
root identical subtrees. So, if we use abstractions that are
context-isomorph and if h is the mini-bucket heuristic,
the two conditions of Theorem 5 hold, yielding:

Corollary 1 When the abstraction function is context-
isomorph, namely, a(n) = a(n′) ↔ C(n) = C(n′) and
if h is a mini-bucket heuristic, then the partition function
estimate, Ẑ, is exact.

In the following we construct two abstraction function
families based on the notion of context: relaxed context-
based and randomized context-based abstractions.

DEFINITION 4 (relaxed context-based abstractions)
An abstraction a at X is context-based relative
to a subset S, S ⊆ C(X), iff for every n1 and
n2 having var(n1) = var(n2) = X , we have:
a(n1) = a(n2) ↔ πSC(n1) = πSC(n2). If |S| = j
we say that we use a j-level context-based abstraction.
In particular, 0-level abstractions puts all the nodes of a
variable in a single abstract state.

This family of abstract functions will lead to abstract
states in each level having the same number of nodes,
which can be viewed as a first approximation to abstract
states having the same area under the proposal.

Our second family of abstractions introduces random-
ness into the actual way the abstraction depends on the
context. This can facilitate the generation of many ab-
stractions in an automated manner and potentially lead
to tighter estimates. We randomly assign nodes into ab-
stract states based on the value of a random hash func-
tion, taking into consideration only the context of a node.

DEFINITION 5 (randomized context-based abstraction)
Let k ∈ I+ and d ∈ I+ be parameters. Let N be the
number of variables in the model and K = {1, 2, .., k}.
We assume that all domains Di of the variables are

subsets of the positive integers. We construct an abstrac-
tion a, by first sampling a vector c = (c1, c2, ..., cN )
uniformly at random from KN . Given a node nj at level
j in the search tree, corresponding to the partial as-
signment x̄j = (x1, x2, x3, ..., xj), we compute its hash
value hash(nj) =

∑j
i=1 cixiIC(Xj)(Xi), where I is

the indicator function. We define its abstraction function
value a(nj) = hash(nj) mod d. The parameter d
determines the number of abstract states for each layer
of the tree.

6 EMPIRICAL EVALUATION

6.1 METHODOLOGY

Implementation and Configuration. We evaluate our
algorithm on 4 benchmark sets using several configu-
rations of the abstraction sampling algorithm. We im-
plemented the algorithm in C++ and ran experiments
on a 2.66 GHz processor with 2GB of memory. For
our heuristic we use Weighted Mini-Bucket Elimination
(WMBE) [Dechter and Rish, 2003, Liu and Ihler, 2011],
whose strength is controlled by a parameter called the i-
bound. Higher i-bounds lead to stronger heuristics at the
expense of higher computation and memory cost. We use
i-bound 10 in our experiments. While there is an inter-
play between the heuristic strength and the abstraction
level, we defer such investigation to future work.

Abstraction Functions. We use the two types of
context-based abstractions introduced in the previous
section: relaxed context-based (RelCB) and randomized
context-based (RandCB). RelCB is parametrized by its
level j, while RandCB by its parameter d. We compare
the more refined abstractions (higher j or d) to the 0-level
abstraction, that combines all nodes in a layer into a sin-
gle abstract state, corresponding to baseline regular im-
portance sampling. For OR trees, using a fixed variable
order, we experiment with abstractions having j ∈ {4, 8}
for RelCB, and d ∈ {16, 256} for RandCB.

For AND/OR trees we introduce hybrid abstractions that
allow a better control of probe size. A hybrid abstraction
with parameter j k (d k for RandCB) performs a j-level
abstraction (parameter d for RandCB) for nodes having
no more than k branching variables in the path to the
root, and 0-level abstraction below it. For RelCB abstrac-
tion family, we experiment with a pure 1-level abstrac-
tion (j = 1) and a hybrid abstraction with parameter 2 5.
For RndCB family, we experiment with a pure abstrac-
tion with d = 2 and a hybrid abstraction with parameter
4 5. For randomized abstractions, we tested three dif-
ferent random seeds and observed overall similar results;
we present results from one seed selected randomly.



Figure 6: Convergence Plots for Different Abstraction Levels (aL) for Selected Problem Instances. #p – number of
probes, #n – average number of expanded nodes per probe, h – height of pseudo tree, maxNBVC – max number of
branching variables in any path of pseudo tree, error – distance from true value

Benchmarks. We tested on instances from 4 bench-
marks (BN, DBN, Pedigree, Promedas). We classify in-
stances as small (we do have the exact value of the par-
tition function) or large (we don’t, due to high induced
width). We use 130 small and 155 large instances. Sum-
mary statistics are in the first column of the results table.
Since DBN instances have chain-like pseudo-trees (sim-
ilar to OR), we test them only on OR trees.

Performance Measure. For each instance and config-
uration (abstraction family, tree type, abstraction level),
we ran theAS algorithm for 1 hour and recorded the par-
tition function estimate Ẑ at different times. For small
instances (exact Z known), we compute the log partition
function absolute error | log10 Ẑ − log10 Z|. For large
instances (exact Z unknown), we use as a proxy the dis-
tance of the log of the estimate from the log of an upper
bound of the partition ZUB (computed using heuristic
function) | log10 ZUB − log10 Ẑ|. We present the mean

of these errors aggregated by benchmark in Table 1.

Comparison with other schemes. We compare our esti-
mates with two state-of-the-art importance sampling al-
gorithms: Weighted Mini-Bucket Importance Sampling
(WMB-IS) [Liu et al., 2015] and IJGP-SampleSearch
(IJGP-SS) [Gogate and Dechter, 2011]. We use original
implementations from the authors and set the common
i-bound parameter to 10. For our algorithms and WMB-
IS, we use the same fixed variable order, while IJGP-SS
computes its own variable order.

The goal of WMB-IS algorithms [Lou et al., 2017a],
[Lou et al., 2017b] is to provide (determinis-
tic/probabilistic) upper/lower bounds of the estimate.
For that, they use a ”mixture wmb-is” proposal yielding
bounded importance weights so that known concentra-
tion theorems can be applied. This does not necessarily
yield optimal convergence. Our focus is to improve the
estimate by aiming to reduce the variance. Our approach



(abstraction sampling) should work with any proposal
function. We investigated two proposals, 1) multiplica-
tive one (leading to IS weights that are unbounded),
2) ”mixture wmb-is” proposal. We observed improved
performance with abstraction sampling in both cases, yet
the multiplicative proposal yielded faster convergence in
most cases, and it is therefore the one that we report.

6.2 RESULTS

The questions addressed by the empirical evaluation are:

• Does Abstraction Sampling result in improved con-
vergence and what insight do we gain on the 2
classes of abstractions?

• What is the impact of tree type (OR vs. AND/OR)?

• Performance of AS across benchmarks?

• Comparison of AS with state-of-the-art?

Individual plots. Figure 6 has convergence plots for se-
lected problem instances for both OR and AND/OR, us-
ing the family of randomized context-based abstractions
(RandCB). For each abstraction level we plot the anytime
estimate of the log partition function. The dashed line
represents the ground truth for the log partition function.

In the first row we show OR and AND/OR plots for the
same Grids instance. This is an example where moving
to higher level abstractions leads to faster performance
(AND/OR error is reduced from 22.66 to 2.93). In the
second row (a Promedas instance), the 0-level error is al-
ready small, so higher level abstractions have about the
same performance. In the third row we present two in-
stances, one from DBN and one from Pedigrees and see
that higher level abstractions speed up convergence. In
the Pedigree instance, all abstraction levels show similar
convergence pattern (the error is small).

Aggregate table. Table 1 presents mean errors aggre-
gated over each benchmark for all sampling schemes.
This includes our AS algorithm with both types of trees
(OR and AND/OR), and both families of abstractions
(RelCB and RandCB) and the two competing schemes.
For rows corresponding to our scheme, we present er-
rors for 3 abstraction levels: a0, a1, a2, where a0 is 0-
level abstraction and independent of the abstraction fam-
ily (RelCB or RandCB). a1 and a2 correspond to higher
level abstractions and their definition varies for OR and
AND/OR as described earlier. We show errors at 1 min,
20 min, 60 min. In column three we also show the aver-
age number of nodes per probe for each abstraction level.
For IJGP-SS, we report results only at the 1 hour mark.
An ”inf” in the table means that the respective algorithm

generates a zero estimate for one or more instances in the
benchmark, so the error would be infinity. In parenthe-
ses we show the fraction of instances where competing
scheme outperforms 0-level abstraction in OR trees.

We see that in both small and large Grids instances and
for all configurations (OR/AO, RelCB/RandCB), higher
level abstractions lead to performance improvement over
0-level abstraction. For grids, randomized (RandCB) ab-
straction may lead to more significant improvements than
RelCB, with AND/OR trees performing even better. For
example, after 60 min with OR-RelCB for Grids-small
we improve the average error from 4.94 to 3.39, while
with OR-RandCB we can improve to 1.41, and AO-
RandCB drives down error to 0.84. For both small and
large DBN instances, only RandCB shows improvement
(reducing error from 0.78 to 0.42 for DBN-small, and
from 363.93 to 362.88 for DBN-large). For Pedigree,
the 0-level abstraction is already good, so as expected,
higher level abstractions yield little extra benefit. In large
Promedas instances, RandCB abstraction improved per-
formance in both OR and AND/OR cases, while RelCB
was good in the AND/OR case. For small instances, all
errors are quite small, still some benefits are gained with
the randomized scheme over AND/OR space.

OR vs. AND/OR. AND/OR trees usually lead to im-
proved performance over OR. This is expected since
AND/OR search spaces are smaller. This is particu-
larly evident for Promedas (small and large) and for large
Grids. For example, in Grids-large going from OR-
RandCB to AO-RandCB reduces error from 900.01 to
841.84 after 60 min, for a1 abstraction. For Grids-small
the results are mixed on OR vs AND/OR for benchmarks
where errors are already small in the 0-level scheme.

Comparing with state-of-the-art Importance Sam-
pling. In most benchmarks our 0-level importance sam-
pling baseline is competitive and often outperforms com-
peting sampling algorithms. The point to remember is
that the abstraction scheme can be augmented on top of
any importance sampling scheme.

Discussion. From the analysis of results we gain several
valuable insights. Firstly, RandCB abstraction consis-
tently demonstrates equal and mostly improved perfor-
mance compared to the baseline scheme (0-level), while
RelCB abstraction is not consistently better. We hypoth-
esize that this difference is due to the ability of RandCB
abstractions to generate more uniformly sized abstract
states under the proposal. Secondly, we observe that
in general the AND/OR schemes lead to larger improve-
ments than OR ones. This was not obvious because of
the ”proper” condition. Thirdly, we observe that as ex-
pected larger gains are achieved when the baseline im-
portance sampling results in large errors, yet the perfor-



Table 1: Mean Error Aggregated Over Benchmark for a Given Scheme, Time and Abstraction Level (a0, a1, a2) . a0 is
0-level abstraction, (a1, a2) are: OR-RelCB:(4, 8), OR-RandCB:(16, 256), AO-RelCB:(1, 2 5), AO-RandCB:(2, 4 5)
. (#inst, n̄, w̄, k̄, ¯|F |, s̄) are number of instances and averages of number of variables, induced width, max domain
size, number of functions, max scope size.

Benchmark Scheme #nodes per probe 1 min 20 min 60 min
#inst, n̄, w̄, k̄, ¯|F |, s̄ a0, a1, a2 a0, a1, a2 a0, a1, a2 a0, a1, a2
DBN-small OR-RelCB 141, 1963, 22687 1.18, 1,93, 2.58 0.88, 1.86, 1.77 0.78, 1.43, 1.65
60, 70, 30, 2, 16950, 2 OR-RandCB 141, 1611, 13449 1.18, 1.04, 0.81 0.88, 0.71, 0.63 0.78, 0.42, 0.54

WMB-IS 9.40 5.69 3.27
IJGP-SS 1.22

Grids-small OR-RelCB 180, 2774, 42184 6.68, 5.19, 5.07 6.06, 4.71, 4.25 4.94, 4.31, 3.39
7, 271, 24, 2, 791, 2 OR-RandCB 180, 2755, 34101 6.68, 5.05, 1.97 6.06, 4.10, 1.55 4.94, 3.83, 1.41

AO-RelCB 224, 13388, 91154 5.46, 3.84, 4.70 5.43, 3.68, 3.74 4.83, 2.97, 3.83
AO-RandCB 224, 9418, 65423 5.46, 1.97, 4.27 5.43, 1.72, 3.36 4.83, 0.84, 2.77

WMB-IS 2.94 1.94 1.21
IJGP-SS 38.81

Pedigree-small OR-RelCB 270, 6115, 271925 0.17, 0.19, 0.26 0.17, 0.17, 0.19 0.17, 0.17, 0.16
22, 917, 26, 5, 917, 4 OR-RandCB 270, 4967, 75980 0.17, 0.20, 0.25 0.17, 0.17, 0.19 0.17, 0.17, 0.19

AO-RelCB 294, 10286025, 337777 0.18, 0.47, 0.21 0.15, 0.36, 0.17 0.16, 0.20, 0.16
AO-RandCB 294, 1171192, 92627 0.18, 0.24, 0.18 0.15, 0.19, 0.16 0.16, 0.18, 0.16

WMB-IS inf (1/22) inf (3/22) 1.06
IJGP-SS 11.10

Promedas-small OR-RelCB 115, 1091, 12801 0.68, 0.77, 1.59 0.33, 0.44, 0.70 0.16, 0.34, 0.47
41, 666, 26, 2, 674, 3 OR-RandCB 115, 2174, 28712 0.69, 0.69, 0.62 0.33, 0.28, 0.38 0.16, 0.15, 0.21

AO-RelCB 110, 825, 5818 0.56, 0.59, 0.66 0.30, 0.34, 0.40 0.15, 0.23, 0.23
AO-RandCB 110, 753, 6162 0.56, 0.32, 0.28 0.30, 0.19, 0.15 0.15, 0.10, 0.10

WMB-IS inf (5/41) 1.77 1.15
IJGP-SS 3.06

DBN-large OR-RelCB 434, 6586, 91881 366.77, 368.29, 369.59 365.32, 366.49, 367.44 363.93, 365.04, 366.20
48, 216, 78, 2, 66116, 2 OR-RandCB 434, 4858, 71545 366.77, 365.56, 365.14 365.32, 364.04, 363.53 363.93, 363.14, 362.88

WMB-IS inf (0/48) inf (0/48) inf (0/48)
IJGP-SS 356.91

Grids-large OR-RelCB 2827, 45112, 719763 966.46, 925.86, 927.60 933.64, 900.71, 909.37 928.35, 889.53, 894.59
19, 3432, 117, 2, 10244, 2 OR-RandCB 2827, 45104, 710675 966.46, 945.98, 918.19 933.64, 912.19, 907.30 928.35, 900.01, 894.15

AO-RelCB 3326, 5485338, 2849697 949.25, 875.81, 910.60 925.85, 863.23, 892.96 918.74, 854.53, 885.18
AO-RandCB 3326, 3896561, 2826722 949.25, 860.66, 885.97 925.85, 845.20, 876.74 918.74, 841.84, 871.05

WMB-IS inf (6/19) inf (6/19) inf (7/19)
IJGP-SS inf (0/19)

Promedas-large OR-RelCB 194, 2092, 25156 inf, inf, inf 30.29, inf, inf 29.54, 30.28, 31.89
88, 962, 48, 2, 974, 3 OR-RandCB 194, 3586, 54901 inf, inf, 30.24 30.29, inf, 29.27 29.54, 29.26, 28.59

AO-RelCB 158, 1561, 10840 inf, 30.45, 30.55 30.00, 29.31, 29.32 29.06, 28.67, 28.44
AO-RandCB 158, 1319, 12082 inf, 29.23, 28.97 30.00, 28.47, 28.06 29.06, 27.89, 27.66

WMB-IS inf (1/88) inf (1/88) inf (2/88)
IJGP-SS 35.50

mance does not deteriorate when the baseline errors are
small, especially with RandCB abstractions. This sug-
gests using abstraction sampling as a robust enhance-
ment to importance sampling schemes, especially in sce-
narios when finding a good proposal is difficult or com-
putationally prohibitive. Fourthly, the results show that
our scheme is competitive with state-of-the art schemes.
Finally, our 0-level scheme outperforms WMB-IS al-
though they both rely on WMB-base proposal, but one
is multiplicative and the other is mixture.

7 CONCLUSION

The paper presents Abstraction Sampling, a scheme that
augments search with sampling, exploiting the strength
of both. The scheme can be viewed as extending strati-
fied importance sampling to search spaces, allowing the
generation of sub-trees representing multiple configu-
rations, rather than a set of independent samples. We
proved the scheme’s correctness (unbiasedness for both

OR and AND/OR search spaces), analyzed it complexity,
discussed convergence properties and provided an exten-
sive empirical evaluation, showing its potential.

The key question is how to design effective abstraction
families. In particular, can we devise abstractions yield-
ing equal partitions under the given proposal function, as
suggested by theory. Should we aim at domain depen-
dent abstractions? What level of abstraction refinement
is cost-effective? Theory suggests that more refined ab-
stractions are superior. We observed that (higher level)
abstractions get more effective as the proposals gets less
effective. We would like to investigate the interaction
between these two functions. Finally, since AND/OR
search spaces are superior overall, can we overcome the
proper restriction to allow more flexible exploration of
abstraction functions.
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SUPPLEMENTARY MATERIALS -
AND/OR ALGORITHM

Algorithm 2: AOAS, a single probe
Require: A graphical modelM = (X,D,F) over

X = {X1, ..., Xn}, a pseudo-tree T . An implicit
AND/OR tree TT ofM. g(s) is the product of
arc-costs from root to s and h(s) (heuristic function)
An abstraction a. s0 is the root of the tree.

Ensure: A sampled subtree T̃T = (Ñ, E,C) of TT . Each
n ∈ Ñ is a pair n =< s,w(s) > where w(s) is a
weight. Note that OR node weight is always 1.

1: initialize T̃T ← {< s0, 1 >},
2: while OPEN is not empty do
3: < s,w(s) >← remove smallest a node in OPEN
4: Expand s, generating all its child nodes variables

in the pseudo-tree {X1, ...Xr}, each yielding OR
nodes denoted s1, ..., sr (var(sj) = Xj) and add
them to T̃T .

5: for each OR child node sj do
6: expand sj , generating all its AND child nodes

sji =< Xj , xji >, xji ∈ DXj
with w(sji ) = w(s).

7: for each child sji do
8: if T̃T contains a representative < s{k}, w{k} >

of abstraction {k}, a(sji ) = k that shares the
same configuration up to its branching
variable (i.e., obeys properness) then

9: p← w(sji )g(sji )h(sji )

w(sji )g(sji )h(sji )+w{k}g(s{k})h(s{k})

10: with probability p do:
11: remove s{k} from T̃T and OPEN
12: add < sji ,

w(sji )

p
> as a child of sj in T̃T

representing {k} and add it to OPEN
13: else
14: w{k} ←

w{k}
1−p

15: else
16: add < sji , w(sji ) > as a child of sj in T̃T

representing {k} and add it to OPEN.
17: T̃T is the final tree generated.
18: return Ẑ ← compute Z of T̃ AOAS-Z-estimator

SUPPLEMENTARY MATERIALS -
EXTENDED UNBIASEDNESS PROOF

THEOREM 6 (unbiasedness) Given a weighted directed
AND/OR search tree T derived from a graphical model,
the estimate Ẑ generated by AS is unbiased.

Proof. (sketch) Clearly, for any node in the
AND/OR tree the partition function it roots
can be expressed recursively by: Z(n) =∏
n′∈ch(n)

∑
n′′∈ch(n′) c(n

′, n′′)Z(n′) , Z(n) = 1

Algorithm 3: AOAS-Z-estimator
Require: A graphical modelM = (X,D,F) over

X = {X1, ..., Xn}, a pseudo-tree T . An AND/OR
tree TT ofM; its subtree T̃T = (Ñ, E,C) of TT .
c(s) is the cost of an OR-to-AND arc
(parent(s), s) in TT .

Ensure: An estimate Ẑ of the partition function Z.
1: Compute an estimate for each node in T̃T , bottom

up, with the following rules
2: For leaf node < s,w(s) >, its value is
Ẑ(s) = w(s)c(s).

3: For internal OR node s, its value is
Ẑ(s) =

∑
c∈ch(s) Ẑ(c).

4: For internal AND node < s,w(s) >, its value is
Ẑ(s) = w(s)

w(parent(s))c(s)
∏
c∈ch(s) Ẑ(c).

5: return Value of the root node Ẑ(r).

if n is a leaf AND node. At each step, the algorithm
maintains the current, partially generated, AND/OR tree
denoted T̃ (t) where t index the algorithm’s steps. The
partial tree T̃ (t) is a stochastic subtree of T whose nodes
are assigned weights by the algorithm.

Let OPEN be the set of AND leaf nodes of the partial
tree T̃ (t) and let CLOSED be the rest of the nodes in
T̃ (t). We define an intermediate estimator of Z at step t
denoted Ẑ(t)(n), over T̃ (t) recursively as follows. For an
AND node n ∈ T̃ (t).

Ẑ(t)(n) =


Z(n) if n ∈ OPEN∏
n′∈ch(n)

∑
n′′∈ch(n′)

w(n′′)c(n′, n′′)Ẑ(t)(n′′)

if n ∈ CLOSED
(1)

This recursive estimate combines information from the
sampled nodes and estimated weights in T̃ (t) with exact
values of Z for the nodes in OPEN at time t. We can
show that at any step t, E(Ẑ(t+1)(r)− Ẑ(t)(r)|T̃ t) = 0,
where r is the root. Consequently the expected value of
our successive approximation at the end of sampling is
equal to its initial value: Ẑ(0)(r) = Z(r) = Z. (For
more details see supplement.) �

DEFINITION 6 (recursive function on AND/OR trees)
Given a weighted directed AND/OR tree, having costs,
c, labeling its OR to AND arcs. We define a recursive
value function denoted Z(n) for an AND node by:

Z(n) =
∏

n′∈ch(n)

∑
n′′∈ch(n′)

c(n′, n′′)Z(n′) (2)

The initial value for leaves: Z(n) = 1 if n is a leaf AND
node.



THEOREM 7 Given a weighted directed AND/OR search
tree T derived from a graphical model, and a value func-
tion Z(n) defined recursively over T and given a proper
abstraction function over T , the estimate generated by
AOAS and AOAS-Z-estimator, Ẑ(r), is unbiased. Namely
EẐ(r) = Z(r), when r is the dummy root AND node of
T .

Proof. At each step, the algorithm maintains the current,
partially generated, AND/OR tree denoted T̃ (t) (we drop
the subscript of the pseudo-tree for simplicity), where
t index the algorithm’s steps in generating the sampled
tree. The partial tree T̃ (t) is a stochastic subgraph of T
whose nodes are assigned weights by the algorithm. Let
OPEN be the set of AND leaf nodes of the partial tree
T̃ (t) and let CLOSED be the rest of the nodes in T̃ (t).

We define an intermediate estimator of Z at step t de-
noted Ẑ(t)(n), over T̃ (t) recursively as follows. For an
AND node n ∈ T̃ (t).

Ẑ(t)(n) =


Z(n) if n ∈ OPEN∏
n′∈ch(n)

∑
n′′∈ch(n′)

w(n′′)c(n′, n′′)Ẑ(t)(n′′)

if n ∈ CLOSED
(3)

This recursive estimate combines information from the
sampled nodes and estimated weights in T̃ (t) with exact
values of Z for the nodes in OPEN at time t.

We will show that at any step t, E(Ẑ(t+1)(r) −
Ẑ(t)(r)|T̃ t) = 0. Consequently the expected value of
our successive approximation at the end of sampling is
equal to its initial value: Ẑ(0)(r) = Z(r) = Z.

Deterministic changes. The algorithm performs de-
terministic steps of node expansions. These operations
grow T̃ (t) but do not change the value of the estimator
at all. According to EQ. (3), when the algorithm per-
forms node expansion, namely expanding an AND node
whose current estimate is Z(n) to its children and grand-
children and re-evaluate the resulting estimate at n, we
will get back Z(n) because the recursion obeys the re-
cursive definition of Z(n) (see EQ. (2) when w = 1,
which are the initial weights). So, since the estimate
does not change at the leaves of T̃ (t), no change will
be propagated up the tree, to the root. In other words
in thos cases we need no expectation. We have that:
(Ẑ(t+1)(r)− Ẑ(t)(r)|T̃ t) = 0.

Stochastic changes. The only stochastic change occurs
when an AND node, u, is examined (step 9) and the al-
gorithm identifies a representative AND node v having
the same abstraction in OPEN. We denote by s the first
common ancestor of u and v in T̃ (t) through an OR tree.
Since the abstraction is proper, the subtree of T̃ (t) rooted

at s, denoted by T̃ (t)
s , is an OR tree. Therefore, there

would be no product in the second expression of EQ. (3)
and we can see that the estimate at node s can be ex-
pressed by a sum over all paths from s to each leaf node
in T̃ (t)

s . Noting explicitly the leaf nodes u and v we get,
from recursing EQ. ( 3),

Ẑ(t)(s) =
∑

{n 6=u,v|leafs in T̃ (t)
s }

Ẑ(t)(n) ·
∏

q∈path(s..n)

w(q)c(q)

+ Z(u)
∏

q∈path(s..u)

w(q)c(q) + Z(v)
∏

q∈path(s..v)

w(q)c(q) (4)

The first term in EQ. (4) is not affected by the stochastic
process. We denote this term by B:

Once node u is processed, the resulting graph T̃ (t+1) de-
pends on the stochastic choice made. If u is selected,
(which occurs with probability 1− p) we get

Ẑ(t+1)(s) = B +
w(u)

1− p
Z(u)c(u)

∏
q∈path(s..par(u))

w(q)c(q)

else, v is selected with probability p then we get

Ẑ(t+1)(s) = B +
w(u)

p
Z(v)c(v)

∏
q∈path(s..par(v))

w(q)c(q)

By simple algebraic manipulation it is possible to show
that for node s we get: E(Ẑ(t+1)(s)− Ẑ(t)(s)|T̃ (t)) =
0. Since at all the leaf nodes of T̃ (t+1), excluding s and
its subtree, Ẑ(t+1)(n)− Ẑ(t)(n) = 0, and since at s, we
proved no change in expectation between the successive
approximations. We get also at the root E(Ẑ(t+1)(r) −
Ẑ(t)(r)|T̃ (t)) = 0. �

SUPPLEMENTARY MATERIALS - FULL
EXPERIMENTAL RESULTS



Table 2: Mean Error Aggregated Over Benchmark for a Given Scheme, Time and Abstraction Level (a0, a1, a2) . a0 is
0-level abstraction, (a1, a2) are: OR-RelCB:(4, 8), OR-RandCB:(16, 256), AO-RelCB:(1, 2 5), AO-RandCB:(2, 4 5)
. (#inst, n̄, w̄, k̄, ¯|F |, s̄) are number of instances and averages of number of variables, induced width, max domain
size, number of functions, max scope size.

Benchmark scheme #nodes per probe 1 min 20 min 60 min
#inst, n̄, w̄, k̄, ¯|F |, s̄ a0, a1, a2 a0, a1, a2 a0, a1, a2 a0, a1, a2
DBN-small OR-RelCB 141, 1963, 22687 1.18, 1,93, 2.58 0.88, 1.86, 1.77 0.78, 1.43, 1.65
60, 70, 30, 2, 16950, 2 OR-RandCB-1 141, 1611, 13449 1.18, 1.04, 0.81 0.88, 0.71, 0.63 0.78, 0.42, 0.54

OR-RandCB-2 141, 1624, 12656 1.18, 2.15, 1.77 0.88, 1.42, 1.23 0.78, 1.17, 1.07
OR-RandCB-3 141, 1684, 14579 1.18, 1.34, 0.84 0.88, 1.05, 0.77 0.78, 0.78, 0.61

WMB-IS 9.40 5.69 3.27
IJGP-SS 1.22

Grids-small OR-RelCB 180, 2774, 42184 6.68, 5.19, 5.07 6.06, 4.71, 4.25 4.94, 4.31, 3.39
7, 271, 24, 2, 791, 2 OR-RandCB-1 180, 2755, 34101 6.68, 5.05, 1.97 6.06, 4.10, 1.55 4.94, 3.83, 1.41

OR-RandCB-2 180, 2746, 33650 6.68, 4.29, 2.77 6.06, 3.98, 1.93 4.94, 3.27, 2.02
OR-RandCB-3 180, 2748, 33898 6.68, 4.23, 3.27 6.06, 4.04, 3.38 4.94, 3.34, 2.24

AO-RelCB 224, 13388, 91154 5.46, 3.84, 4.70 5.43, 3.68, 3.74 4.83, 2.97, 3.83
AO-RandCB-1 224, 9418, 65423 5.46, 1.97, 4.27 5.43, 1.72, 3.36 4.83, 0.84, 2.77
AO-RandCB-2 224, 8938, 84428 5.46, 3.16, 3.87 5.43, 3.10, 3.81 4.83, 2.82, 3.48
AO-RandCB-3 224, 11291, 82649 5.46, 4.28, 3.77 5.43, 3.43, 3.41 4.83, 3.23, 3.50

WMB-IS 2.94 1.94 1.21
IJGP-SS 38.81

Pedigree-small OR-RelCB 270, 6115, 271925 0.17, 0.19, 0.26 0.17, 0.17, 0.19 0.17, 0.17, 0.16
22, 917, 26, 5, 917, 4 OR-RandCB-1 270, 4967, 75980 0.17, 0.20, 0.25 0.17, 0.17, 0.19 0.17, 0.17, 0.19

OR-RandCB-2 270, 4967, 75841 0.17, 0.20, 0.25 0.17, 0.18, 0.18 0.17, 0.16, 0.16
OR-RandCB-3 270, 4975, 76055 0.17, 0.19, 0.20 0.17, 0.17, 0.18 0.17, 0.17, 0.16

AO-RelCB 294, 10286025, 337777 0.18, 0.47, 0.21 0.15, 0.36, 0.17 0.16, 0.20, 0.16
AO-RandCB-1 294, 1171192, 92627 0.18, 0.24, 0.18 0.15, 0.19, 0.16 0.16, 0.18, 0.16
AO-RandCB-2 294, 725005, 93194 0.18, 0.20, 0.18 0.15, 0.20, 0.17 0.16, 0.17, 0.16
AO-RandCB-3 294, 2292328, 82475 0.18, 0.21, 0.18 0.15, 0.18, 0.16 0.16, 0.18, 0.16

WMB-IS - - 1.06
IJGP-SS 11.10

Promedas-small OR-RelCB 115, 1091, 12801 0.68, 0.77, 1.59 0.33, 0.44, 0.70 0.16, 0.34, 0.47
41, 666, 26, 2, 674, 3 OR-RandCB-1 115, 2174, 28712 0.69, 0.69, 0.62 0.33, 0.28, 0.38 0.16, 0.15, 0.21

OR-RandCB-2 115, 2172, 28850 0.68, 0. 64, 0.65 0.33, 0.28, 0.30 0.16, 0.13, 0.21
OR-RandCB-3 115, 2172, 29017 0.68, 0.59, 0.73 0.33, 0.28, 0.36 0.16, 0.15, 0.19

AO-RelCB 110, 825, 5818 0.56, 0.59, 0.66 0.30, 0.34, 0.40 0.15, 0.23, 0.23
AO-RandCB-1 110, 753, 6162 0.56, 0.32, 0.28 0.30, 0.19, 0.15 0.15, 0.10, 0.10
AO-RandCB-2 110, 769, 6453 0.56, 0.43, 0.39 0.30, 0.17, 0.20 0.15, 0.12, 0.15
AO-RandCB-3 110, 753, 6218 0.56, 0.36, 0.29 0.30, 0.19, 0.16 0.15, 0.11, 0.10

WMB-IS - 1.77 1.15
IJGP-SS 3.06

DBN-large OR-RelCB 434, 6586, 91881 366.77, 368.29, 369.59 365.32, 366.49, 367.44 363.93, 365.04, 366.20
48, 216, 78, 2, 66116, 2 OR-RandCB-1 434, 4858, 71545 366.77, 365.56, 365.14 365.32, 364.04, 363.53 363.93, 363.14, 362.88

OR-RandCB-2 434, 4804, 71036 366.77, 365.58, 364.49 365.32, 364.19, 363.02 363.93, 363.17, 362.53
OR-RandCB-3 434, 4774, 70421 366.77, 365.70, 364.04 365.32, 363.84, 362.97 363.93, 363.20, 362.36

WMB-IS - - -
IJGP-SS 356.91

Grids-large OR-RelCB 2827, 45112, 719763 966.46, 925.86, 927.60 933.64, 900.71, 909.37 928.35, 889.53, 894.59
19, 3432, 117, 2, 10244, 2 OR-RandCB-1 2827, 45104, 710675 966.46, 945.98, 918.19 933.64, 912.19, 907.30 928.35, 900.01, 894.15

OR-RandCB-2 2827, 45097, 711566 966.46, 938.20, 917.92 933.64, 904.34, 910.19 928.35, 897.03, 895.12
OR-RandCB-3 2827, 45100, 709978 966.46, 937.50, 923.23 933.64, 909.52, 915.99 928.35, 898.47, 890.60

AO-RelCB 3326, 5485338, 2849697 949.25, 875.81, 910.60 925.85, 863.23, 892.96 918.74, 854.53, 885.18
AO-RandCB-1 3326, 3896561, 2826722 949.25, 860.66, 885.97 925.85, 845.20, 876.74 918.74, 841.84, 871.05
AO-RandCB-2 3326, 3846042, 2820388 949.25, 853.83, 880.27 925.85, 843.66, 874.03 918.74, 840.39, 868.61
AO-RandCB-3 3326, 4276589, 2818713 949.25, 865.29, 882.50 925.85, 846.33, 871.89 918.74, 842.33, 865.49

WMB-IS - - -
IJGP-SS -

Promedas-large OR-RelCB 194, 2092, 25156 -, -, - 30.29, -, - 29.54, 30.28, 31.89
88, 962, 48, 2, 974, 3 OR-RandCB-1 194, 3586, 54901 -, -, 30.24 30.29, -, 29.27 29.54, 29.26, 28.59

OR-RandCB-2 194, 3587, 54904 -, -, - 30.29, -, 29.36 29.54, 29.47, 28.47
OR-RandCB-3 194, 3585, 54859 -, -, 30.21 30.29, 30.50, 29.20 29.54, 29.35, 28.55

AO-RelCB 158, 1561, 10840 -, 30.45, 30.55 30.00, 29.31, 29.32 29.06, 28.67, 28.44
AO-RandCB-1 158, 1319, 12082 -, 29.23, 28.97 30.00, 28.47, 28.06 29.06, 27.89, 27.66
AO-RandCB-2 158, 1259, 11381 -, 29.24, 28.81 30.00, 28.56, 28.11 29.06, 27.96, 27.66
AO-RandCB-3 158, 1377, 11704 -, 29.50, 28.82 30.00, 28.45, 28.07 29.06, 27.83, 27.68

WMB-IS - - -
IJGP-SS 35.50


