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Abstract

Marginal MAP is a key task in Bayesian in-
ference and decision-making, and known to
be very challenging in general. In this paper,
we present an algorithm that blends heuristic
search and importance sampling to provide any-
time finite-sample bounds for marginal MAP
along with predicted MAP solutions. We con-
vert bounding marginal MAP to a surrogate
task of bounding a series of summation prob-
lems of an augmented graphical model, and
then adapt dynamic importance sampling [Lou
et al., 2017b], a recent advance in bounding
the partition function, to provide finite-sample
bounds for the surrogate task. Those bounds are
guaranteed to be tight given enough time, and
the values of the predicted MAP solutions will
converge to the optimum. Our algorithm runs
in an anytime/anyspace manner, which gives
flexible trade-offs between memory, time, and
solution quality. We demonstrate the effective-
ness of our approach empirically on multiple
challenging benchmarks in comparison with
some state-of-the-art search algorithms.

1 INTRODUCTION

Probabilistic graphical models, including Bayesian net-
works and Markov random fields, provide a framework for
representing and reasoning with probabilistic and deter-
ministic information [Dechter, 2013; Dechter et al., 2010;
Darwiche, 2009]. Typical inference queries in graphi-
cal models include maximum a posteriori (MAP) that
aims to find an assignment of MAP (or MAX) variables
with the highest value, the partition function that is the
normalizing constant ensuring a proper probability mea-
sure over all variables, and marginal MAP (MMAP) that

generalizes the aforementioned two tasks by maximizing
over a subset of variables with the remaining variables
marginalized, which arises in many scenarios such as
latent variable models [Ping et al., 2014] and decision-
making tasks [Kiselev and Poupart, 2014].

MMAP has complexity NPPP [Park, 2002], commonly
believed to be more challenging than either max infer-
ence (NP-complete [Darwiche, 2009]) or sum inference
(#P-hard [Valiant, 1979]), and can be intractable even for
tree-structured models [Park, 2002]. Because of the inher-
ent difficulty of MMAP, recent works on MMAP often
focus on approximate schemes. Among these, approxi-
mations with deterministic or probabilistic guarantees are
of particular interest because they quantify bounds on the
approximation errors. We also prefer approaches with an
anytime behavior because they allow users to trade off
computational resources with solution quality.

Approaches that offer deterministic bounds are typically
based on search or variational methods. Some early work-
s [Park and Darwiche, 2003; Yuan and Hansen, 2009] in
search solve MMAP exactly based on depth-first branch
and bound. Marinescu et al. [2014] outperformed its
predecessors by introducing AND/OR search spaces and
high-quality variational heuristics; this was further im-
proved using best-first search variants, including weighted
heuristic search [Lee et al., 2016b], and alternating depth-
first and best-first AND/OR search (AAOBF [Marinescu
et al., 2017]). However, these methods typically require
regular evaluation of internal summation problems when
traversing the MAP space; when these internal sums are
difficult, the search process may stall completely. One
way to avoid this issue is to unify the summation with
the MAP search in a single, best-first search framework
(UBFS [Lou et al., 2018]), which allows the bounds to
improve as the summation is performed, and switch to
other MAP configurations when appropriate. However,
another promising approach is to make use of probabilis-
tic bounds (e.g., Lou et al. [2017b]), which hold with a
user-selected probability, and can be significantly faster



and tighter than deterministic bounds. However, since
each MAP configuration is associated with an indepen-
dent summation problem, comparing MAP configurations
using probabilistic bounds must compensate for the pres-
ence of many uncertain tests (in effect, a multiple hypoth-
esis testing problem), and is thus non-trivial to adapt to
the MAP search, which may contain exponentially many
such configurations.

Variational methods [Wainwright and Jordan, 2008] offer
another class of deterministic bounds for MMAP. How-
ever, these bounds are often not anytime (e.g., [Liu and
Ihler, 2013]), and those, such as [Ping et al., 2015], are
often not “any-space”, meaning that their quality depends
heavily on the available memory and may not continue
to improve without more. Other types of algorithms can
provide anytime deterministic bounds for MMAP as well,
for example, one based on factor set elimination [Mauá
and de Campos, 2012]; however, the factor sets that it
maintains tend to grow very large, which limits its practi-
cal use to problems with relatively small induced widths
(see Marinescu et al. [2017] or Lou et al. [2018]).

Some Monte Carlo approaches are able to provide proba-
bilistic bounds; for example, Xue et al. [2016] proposes
a random hashing based algorithm that provides a con-
stant factor approximation. However, this approach can
have difficulty on large scale problem instances (see [Lou
et al., 2018]). Other Monte Carlo methods may have no
bound guarantees at all, e.g., those based on Markov chain
Monte Carlo [Yuan et al., 2004; Doucet et al., 2002].

To some extent, the intrinsic hardness of MMAP arises
from the non-commutativity of the sum and max opera-
tions. One natural idea to alleviate this issue is to convert
the mixed inference task to a pure sum or a pure max
one first. For example, Cheng et al. [2012] constructs
an explicit factorized approximation of the marginalized
distribution using a form of approximate variable elimi-
nation, which results in a structured MAP problem.

Our Contributions. In this paper, we present an ap-
proach that provides anytime finite-sample bounds (i.e.,
they hold with probability 1− δ for some confidence pa-
rameter δ) for MMAP, that enjoys the benefits of both
heuristic search and importance sampling. Briefly speak-
ing, we follow Doucet et al. [2002] to construct an aug-
mented graphical model from the original model by repli-
cating the marginalized variables and potential functions.
From this augmented model, we derive a sequence of
decreasing summation objectives that bound the MMAP
optimum raised to some fixed power. Then, we adapt dy-
namic importance sampling [Lou et al., 2017b] to bound
these summation objectives and provide finite-sample
bounds of the MMAP optimum.

Our framework has several key advantages: 1) it pro-
vides anytime probabilistic upper and lower bounds that
are guaranteed to be tight given enough time. 2) it is
able to predict high-quality MAP solutions whose values
converge to the optimum; the exploration-exploitation
trade-off of searching MAP solutions is controlled by the
number of replicates of the marginalized variables. 3) it
runs in an anytime/anyspace manner, which gives flexible
trade-offs between memory, time, and solution quality.

2 BACKGROUND

Let X = (X1, . . . , XN ) be a vector of random variables,
where each Xi takes values in a discrete domain Xi; we
use lower case letters, e.g. xi ∈ Xi, to indicate a value of
Xi, and x to indicate an assignment of X . A graphical
model over X consists of a set of factors F = {fα(Xα) |
α ∈ I}, where each factor (a.k.a. potential function) fα
is defined on a subset Xα = {Xi | i ∈ α} of X , called
its scope.

We associate an undirected graph G = (V,E), or primal
graph, with F , where each node i ∈ V corresponds to
a variable Xi and we connect two nodes, (i, j) ∈ E, iff
{i, j} ⊆ α for some α. Then,

f(x) =
∏
α∈I

fα(xα)

defines an unnormalized probability measure over X .

Let XM be a subset of X called MAX variables, and
XS = X\XM SUM variables. The MMAP task seeks an
assignment x?M of XM with the largest marginal probabil-
ity:

x?M = argmax
xM

π(xM) (1)

where

π(xM) =
∑
xS

f(x).

IfXM is an empty set, the MMAP task reduces to comput-
ing the normalizing constant (a.k.a. partition function); if
XS is empty, it becomes the standard MAP inference task.
We use XM to denote the MAP space, i.e., the Cartesian
product of all Xi’s where Xi is a MAX variable. We will
assume in the sequel that x?M is unique for convenience,
though our algorithm and analysis still hold without this
assumption.

2.1 AND/OR Search Spaces

An AND/OR search space is a generalization of the stan-
dard (“OR”) search space, that enables us to exploit condi-
tional independence structure during search [Dechter and
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Figure 1: (a) A primal graph of a graphical model over
7 variables (A, B, C are MAX variables and D, E, F, G
are SUM variables) with unary and pairwise potential
functions. (b) A valid pseudo tree for the primal graph.
(c) An AND/OR search tree guided by the pseudo tree.
(d) An augmented model created by replicating SUM
variables and factors of the model in (a). Plate notations
used here. (e) A valid pseudo tree for the augmented
model.

Mateescu, 2007]. The AND/OR search space for a graphi-
cal model is defined relative to a pseudo tree that captures
problem decomposition along a fixed search order.

Definition 1 (pseudo tree). A pseudo tree of a primal
graph G = (V,E) is a directed tree T = (V,E′) sharing
the same set of nodes as G. The tree edges E′ form a
subset of E, and each edge (i, j) ∈ E \ E′ are required
to be a “back edge”, i.e., the path from the root of T to j
passes through i (denoted i ≤ j).

If a tree node of a pseudo tree corresponds to a MAX
variable in the associated graphical model of the pseudo
tree, we call it MAX node, otherwise we call it SUM node.
A pseudo tree is called valid for an MMAP task if there
is no MAX variable descended from any SUM variable.
Thus, all MAX variables of a valid pseudo tree form a
subtree (assuming a dummy MAX root) that contains the

root. We assume valid pseudo trees in the sequel.

Guided by a pseudo tree, we can construct an AND/OR
search tree consisting of alternating levels of OR and
AND nodes for a graphical model. Each OR node s is
associated with a variable, which we lightly abuse no-
tation to denote Xs; the children of s, ch(s), are AND
nodes corresponding to the possible values of Xs. If
an OR node is associated with some MAX variable, it
is called OR-MAX node. Notions of OR-SUM, AND-
MAX, AND-SUM nodes are defined analogously. The
root ∅ of the AND/OR search tree corresponds to the root
of the pseudo tree. Let pa(c) = s indicate the parent of c
in the AND/OR tree, and an(c) = {n | n ≤ c} indicate
the ancestors of c (including itself) in the tree.

In an AND/OR tree, any AND node c corresponds to a
partial configuration x≤c of X , defined by its assignment
and that of its ancestors: x≤c = x≤p∪{Xs = xc}, where
s = pa(c), p = pa(s). For completeness, we also define
x≤s for any OR node s, which is the same as that of its
AND parent, i.e., x≤s = x≤pa(s). For any node n, the
corresponding variables of x≤n are denoted as X≤n. Let
de(Xn) be the set of variables below Xn in the pseudo
tree; we define X>n = de(Xn) if n is an AND node;
X>n = de(Xn) ∪ {Xn} if n is an OR node.

We also associate a weight wc with each AND node, de-
fined to be the product of all factors fα that are instantiat-
ed at c but not before:

wc=
∏
α∈Ic

fα(xα), Ic={α | Xpa(c) ∈ Xα ⊆ Xan(c)}.

Example. Fig. 1(a) shows the primal graph of a pairwise
model. Variables A, B, C are MAX variables, and the rest
SUM. Fig. 1(b) shows one valid pseudo tree of the model.
Fig. 1(c) shows the AND/OR search tree that respects the
pseudo tree.

2.2 SEARCH IN AND/OR SEARCH TREES

Finally, the purpose of the search tree is to compute some
inference quantity for the model, such as the MAP opti-
mum maxx f(x), the partition function Z =

∑
x f(x)

and the MMAP optimum maxxM

∑
xS
f(x). To this

end, we associate a “value” vn with each node n in
the AND/OR search tree, which represents the inference
task’s value on the unexpanded portion of the search space
below node n. The value vn can be defined recursively
in terms of its children and grandchildren as follows. We
first define vl = 1 for any leaf (since no part of the model
remains uninstantiated). Let n be a non-leaf node; for
maximization tasks, we have

Max: vn =

{∏
c∈ch(n) vc, if AND node n.

maxc∈ch(n) wcvc, if OR node n.



while for summation, the recursion defining vn for n is

Sum: vn =

{∏
c∈ch(n) vc, if AND node n.∑
c∈ch(n) wcvc, if OR node n.

For MMAP tasks, the recursion for AND nodes is the
same as the aforementioned tasks, while the recursion for
OR nodes is more involved:

MMAP : vn =


max
c∈ch(n)

wcvc, if OR-MAX node n.∑
c∈ch(n)

wcvc, if OR-SUM node n.

Any search algorithm for reasoning about the model can
be thought of as maintaining upper (and/or lower) bounds
on these quantities at each node. In particular, for heuristic
search, we assume that we have a heuristic function hn
that gives upper (or lower) bound on vn. These heuristics
typically are more accurate deeper in the search tree, and
therefore their updates can be propagated upwards to
the root to yield tighter bounds to the overall inference
value. Any search algorithm is then defined by the order
of expansion of the search tree.

A typical example of this kind of search algorithms is
AOBFS [Lou et al., 2017a], a best-first search algorithm
that can provide anytime upper (and/or lower) bounds for
the summation task. Since AOBFS will be a component
of our proposed algorithm, we briefly present some of
its essence here. AOBFS maintains an explicit AND/OR
search tree of visited nodes, denoted S. For each node
n in the AND/OR search tree, AOBFS maintains un,
an upper bound on vn, initialized via a pre-compiled
heuristic vn ≤ h+

n , and subsequently updated during
search using information propagated from the frontier:

un =

{∏
c∈ch(n) uc, if AND node n.∑
c∈ch(n) wcuc, if OR node n.

Thus, the upper bound at the root, u∅, is an anytime deter-
ministic upper bound of the partition function. Note that
this upper bound depends on the current search tree S , so
we write US = u∅.

If all nodes below n have been visited, then un = vn;
we call n solved and can remove the subtree below n
from memory. Hence we can partition the frontier nodes
into two sets: solved frontier nodes, SOLVED(S), and
unsolved ones, OPEN(S).

2.3 DYNAMIC IMPORTANCE SAMPLING

Our work can be viewed as a generalization of dynamic
importance sampling (DIS) [Lou et al., 2017b], a recent

advance in bounding the partition function with finite-
sample bounds (see also [Liu et al., 2015]), which we
briefly introduce here to make our paper self-contained.

DIS interleaves search with sampling: search, as it im-
proves the deterministic upper bound of the partition func-
tion by expanding nodes in the AND/OR search tree,
also induces a sequence of importance sampling proposal
distributions with bounded importance weights that are
unbiased estimators of the partition function. Meanwhile,
samples are drawn independently from those improving
proposal distributions. By averaging those importance
weights based on their corresponding upper bounds, DIS
constructs an unbiased estimator of the partition function
Z with strong probabilistic guarantees.

To be more specific, DIS applies AOBFS with its “upper
priority” to quickly drive down the deterministic upper
bound. The current search tree S induces a proposal distri-
bution qS ; importance weights f(x)/qS(x) are bounded
by US and give an unbiased estimator of Z:

f(x)/qS(x) ≤ US , E
[
f(x)/qS(x)

]
= Z.

Drawing a sample from qS can be described as a “two-
step” top-down sampling process from the root:

Step 1 For an internal node n ∈ S: if it is an AND
node, all its children are selected; if n is an OR
node, one child c ∈ ch(n) is randomly selected with
probability wcuc/un.

Step 2 When an unsolved frontier node n ∈ OPEN(S)
is reached, draw a sample of its descendant variables
X>n in the pseudo tree according to the mixture
proposal q(x>n|x≤n) derived from weighted mini-
bucket (WMB, [Liu and Ihler, 2011]).

DIS introduces an unbiased estimator Ẑ of Z:

Ẑ =
HM(U)

N

N∑
i=1

Ẑi
Ui
, HM(U) =

[ 1

N

N∑
i=1

1

Ui

]−1

.

where {Ẑi = f(xi)/qSi(xi)}Ni=1 are importance weights
from samples {xi|xi ∼ qSi(x)} with {Si} the corre-
sponding search trees, and {Ui = USi}Ni=1 the corre-
sponding upper bounds on the importance weights respec-
tively. By defining

∆=HM(U)
[√2V̂ar({Ẑi/Ui}Ni=1) ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

]
where V̂ar({Ẑi/Ui}Ni=1) is the unbiased empirical vari-
ance of {Ẑi/Ui}Ni=1, Ẑ enjoys the finite-sample guar-
antees: with probability at least 1 − δ, Ẑ + ∆ and
Ẑ−∆ are upper and lower bounds of Z, respectively, i.e.,
Pr[Z ≤ Ẑ + ∆] ≥ 1− δ and Pr[Z ≥ Ẑ −∆] ≥ 1− δ.



3 OUR ALGORITHM

In this section, we introduce our algorithm, the general
idea of which is to first bound the mixed inference ob-
jective with a series of sum inference objectives whose
finite-sample bounds can be established by generalizing
DIS, and then translate the bounds back to those of the
original objective in which we are interested.

3.1 AN AUGMENTED GRAPHICAL MODEL

We first introduce an augmented graphical model which
connects the MMAP optimum to a series of summation
tasks. The augmented graphical model is built from the
original model by replicating the SUM variables and the
factors. Note that the idea of introducing an augmented
space on which we perform inference is adopted from
Doucet et al. [2002].

LetXaug = (XM, X
1
S , . . . , X

K
S ) be all the variables of the

augmented model where X1
S , . . . , X

K
S are K replicates

of the SUM variables XS. The overall function faug of the
augmented model is defined as

faug(xaug) =

K∏
k=1

f(xM, x
k
S).

Thus, the partition function of the augmented model is

Zaug =
∑

xM,x1
S ,...,x

K
S

K∏
k=1

f(xM, x
k
S)=

∑
xM

πK(xM).

Considering that πK(x?M) (see (1)) is the largest term in
the sum on the r.h.s., we have

Zaug/|XM| ≤ πK(x?M) ≤ Zaug, (2)

that is to say,

(Zaug/|XM|)1/K ≤ π(x?M) ≤ Z1/K
aug ,

where |XM| is the size of the MAP space. The above
inequalities are actually well-known boundedness rela-
tions between the∞-norm and p-norms of the Euclidean
space R|XM|. These bounds are monotonic in K, i.e., they
improve as K increases, and become tight as K goes to
infinity. In other words, K acts as a “reverse temperature”
parameter. The lower bound is negatively impacted by the
domain sizes of the MAX variables, which can be quite
loose if |XM| is large compared to the scale of K.

The significance of (2) is that it connects the MMAP op-
timum to a summation quantity Zaug that can be easily
approximated using Monte Carlo methods such as impor-
tance sampling.
Example. Fig. 1(d) shows an augmented graphical model
created from the model of Fig. 1(a). Fig. 1(e) shows one
valid pseudo tree for the augmented model.

3.2 MIXED DYNAMIC IMPORTANCE
SAMPLING

A straightforward idea is to apply DIS to bound Zaug
whose finite-sample bounds can then be translated to
those of π(x?M). However, several key issues remain to be
addressed for this idea to work well.

The first issue is about how to adapt DIS to the augment-
ed model in an efficient manner. Since the augmented
model might have many more variables compared to the
original model, a naı̈ve construction of AND/OR trees
leads to an excessively large search space. Note that any
Xk

S in the augmented model is an identical copy of XS;
we thus do not necessarily distinguish those XS copies
during search. That is to say, when search instantiates
those factors involving SUM variables, it behaves as usu-
al but takes into account the effect of replication when
using information propagated from SUM nodes. We can
also apply an analogous idea to construct weighted mini-
bucket (WMB) [Liu and Ihler, 2011] heuristics to ensure
that they are still compatible with the new search process.
In a nutshell, search for the augmented model can enjoy
the same complexity as that for the original model.

Meanwhile, the proposal distribution qSaug(xaug) associat-
ed with a search tree S has a decomposition property:

qSaug(xaug) = qSaug(xM)

K∏
k=1

qSaug(xkS |xM), (3)

with qSaug(xkS |xM) are identical conditional distribution-
s. Its importance weights also share the boundedness
property:

faug(xaug)/qSaug(xaug) ≤ USaug,

where USaug is the upper bound associated with S. Note
that sampling from qSaug can also be done via a two-step
sampling procedure analogous to that in DIS.

One point worth mentioning is that

π(xM) = E[f(xM, x
k
S)/qSaug(xkS |xM)]

implies that we can estimate the value of each sampled
MAP configuration xM along the way.

Another issue is that if Zaug is much larger than πK(x?M),
even high-quality bounds of Zaug might not result in rea-
sonably good bounds of π(x?M), let alone those bounds
will never be tight in general for π(x?M) with a finite K.
One way to alleviate this issue is based on the following
key observation: for any subset A of XM that contains
x?M, we have

ZAaug/|A| ≤ πK(x?M) ≤ ZAaug, (4)



Algorithm 1 Mixed Dynamic Importance Sampling
Require: Control parameters K, Nd, Nl; confidence pa-

rameter δ; memory budget, time budget.
Ensure: Ẑaug, ∆, HM(U), HM(U/|A|).

1: Construct WMB heuristics for the augmented model.
2: Initialize S ← {∅} with the root ∅.
3: while within the time budget
4: // update S, US , AS during search.
5: if within the memory budget
6: Expand Nd nodes via AOBFS (Alg. 1 of Lou

et al. [2017a]) with its “upper priority”.
7: else
8: Expand Nd nodes via depth-first search.
9: end if

10: Draw Nl samples from qSaug (see (3)).
11: After drawing each sample:
12: Update N , Ẑaug, HM(U), HM(U/|A|),

V̂ar, ∆ via (5), (6), (11), (12).
13: end while

where

ZAaug =
∑
xM∈A

πK(xM).

The above inequalities tell us that if we know an instanti-
ation of XM is not optimal, we can mute its contribution
to Zaug and use the resulting smaller summation quantity
to bound πK(x?M).

This observation enables pruning during search: any node
ruled out from being associated with the optimal configu-
ration can be removed from memory. Such pruning is par-
ticularly useful to prune MAX nodes: for any AND-MAX
node with its sub-problem beneath solved, if it holds the
highest value among its siblings, all its siblings (solved
or not) and their descendants can be pruned immediately.
Thus, as pruning proceeds along with search, A shrinks
towards {x?M}. We use AS to denote the remaining MAP
space associated with the search tree S.

Note that when we approach the memory limit, we switch
the default best-first search to a depth-first search (DFS)
that is also compatible with the sampling procedure, and
leads to a complete search algorithm with the capability
to identify x?M and its value given enough time. By in-
terleaving search and sampling, we derive our algorithm
named mixed dynamic importance sampling (MDIS) and
present it in Alg. 1.

Remarks on Alg. 1.

1) K as the number of replicates of the SUM variables
controls the exploration-exploitation trade-off. When K
is small, we draw a small number of samples for the

SUM variables in each iteration, which allows us to e-
valuate each sampled MAP configuration fast, however
introduces more randomness when assessing the MAP
configuration; when K is large, we have more accurate
estimate of a MAP configuration being sampled, but also
slow down exploration of the MAP space.

2) To predict MAP solutions in an anytime manner, one
can simply choose the one with the highest estimated
value among those configurations that have been sampled.

3.2.1 Finite-sample Bounds for Marginal MAP

In MDIS, each sample not only comes from a different
proposal distribution but also gives importance weights
corresponding to a different expectation, which is more
complicated than in DIS.

Let {xiaug}Ni=1 be a series of samples drawn via Al-
g. 1, with {Si} the corresponding search trees, {Ẑiaug =

faug(xiaug)/qSiaug(xiaug)}Ni=1 the corresponding importance
weights, and {Ui = USiaug}Ni=1 the corresponding upper
bounds associated with those search trees respectively.
We denote Ai as the MAP space preserved in Si. Thus,

E
[
Ẑiaug

]
= ZAi

aug.

That is to say, the importance weights have different (in
fact, decreasing) expectations; this differs from the case of
DIS where any importance weight has the same expecta-
tion (the partition function). We propose an estimate Ẑaug
whose expectation is again an upper bound of πK(x?M) in
the following way:

Ẑaug =
HM(U)

N

N∑
i=1

Ẑiaug

Ui
, (5)

where

HM(U) =
[ 1

N

N∑
i=1

1

Ui

]−1

(6)

is the harmonic mean of the upper bounds {Ui}Ni=1. Thus,
Ẑaug upweights the terms Ẑiaug whose expectations are
closer to πK(x?M). The expectation of Ẑaug is

E
[
Ẑaug

]
=

HM(U)

N

N∑
i=1

ZAi
aug

Ui
.

E
[
Ẑaug

]
is a convex combination of {ZAi

aug}Ni=1 with co-

efficients {HM(U)
NUi

}Ni=1, shrinking towards πK(x?M) as
search proceeds.

According to (4), since πK(x?M) ≤ ZAi
aug, we know

πK(x?M) ≤ E
[
Ẑaug

]
, (7)



and from ZAi
aug ≤ |Ai|πK(x?M), we know

E
[
Ẑaug

]
≤ πK(x?M)

HM(U)

N

N∑
i=1

|Ai|
Ui

. (8)

By combining (6), (7), and (8), we derive two-sided
bounds for πK(x?M) involving E

[
Ẑaug

]
:∑N

i=1 1/Ui∑N
i=1 |Ai|/Ui

E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
. (9)

From the above, we can see that the bounds get tight only
when Ai approaches {x?M}. To be concise, we re-arrange
the L.H.S. of (9) to derive:

HM(U/|A|)
HM(U)

E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
, (10)

where

HM(U/|A|) =
[ 1

N

N∑
i=1

|Ai|
Ui

]−1

(11)

is the harmonic mean of {Ui/|Ai|}Ni=1.

Considering Ẑiaug are independent, and E Ẑaug/HM(U),
Ẑaug/HM(U), Ẑiaug/Ui are all within the interval [0, 1],
we can apply an empirical Bernstein bound [Maurer and
Pontil, 2009] to derive finite-sample bounds on E Ẑaug
and translate those bounds to π(x?M) based on (10).

Theorem 1. For any δ ∈ (0, 1), we define

∆ = HM(U)
(√2V̂ar ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

)
, (12)

where V̂ar is the unbiased empirical variance of
{Ẑiaug/Ui}Ni=1. Then, the following probabilistic bounds
hold for π(x?M):

Pr
[
π(x?M)≤(Ẑaug+∆)

1
K

]
≥1−δ,

Pr
[
π(x?M)≥

( (Ẑaug−∆) HM(U/|A|)
HM(U)

) 1
K
]
≥1−δ,

i.e., (Ẑaug + ∆)
1
K and (

(Ẑaug−∆) HM(U/|A|)
HM(U)

) 1
K are upper

and lower bounds of π(x?M) with probability at least 1−δ,
respectively.

Note that it is possible that Ẑaug − ∆ < 0 early on; if
so, we may replace Ẑaug −∆ with any non-trivial lower
bound of Zaug. In the experiments, we use δẐaug, a (1−δ)
probabilistic bound by the Markov inequality [Gogate and
Dechter, 2011]. We can replace Ẑaug +∆ with the current
deterministic upper bound if the latter is tighter.

4 EXPERIMENTS

We evaluate our proposed approach (MDIS) against t-
wo baseline methods on five benchmarks. The base-
lines include UBFS [Lou et al., 2018], a unified best-first
search algorithm that emphasizes rapidly tightening the
upper bound, and AAOBF [Marinescu et al., 2017], a
best-first/depth-first hybrid search algorithm that balances
upper bound quality with generating and evaluating poten-
tial solutions. These two are state-of-the-art algorithms
for anytime upper and lower bounds respectively. We
do not compare to XOR MMAP [Xue et al., 2016] and
AFSE [Mauá and de Campos, 2012] due to their limita-
tions to relatively easy problem instances as shown in Lou
et al. [2018].

Three benchmarks are formed by problem instances from
recent UAI competitions: grid- 50 grid networks with
size no smaller than 25 by 25, promedas- 50 medical
diagnosis expert systems, protein- 44 instances made
from the “small” protein side-chains of [Yanover and
Weiss, 2002]. Since the original UAI instances are pure
MAP tasks, we generate MMAP instances by randomly
selecting 10% of the variables as MAP variables. The
fourth benchmark is planning, formed by 15 instances
from probabilistic conformant planning with a finite-time
horizon [Lee et al., 2016a]. On these four benchmarks,
we compare anytime bounds. Some statistics of the four
benchmarks are shown in Table 1. These benchmarks
are selected to illustrate different problem characteristics;
for example, protein instances are relatively small but
high cardinality, while planning instances have more
variables and higher induced width, but lower cardinality.
The fifth benchmark, which we will describe in detail
later, is created from an image denoising model in order
to evaluate quality of the predicted MAP solutions.

The time budget is set to 1 hour for the experiments on
the first four benchmarks. We allot 4GB memory to al-
l algorithms, with 1GB extra memory to AAOBF for
caching. For our experiments, we use the weighted mini-
bucket [Liu and Ihler, 2011] heuristics, whose memory
usage is roughly controlled by an ibound parameter. For a
given memory budget, we first compute the largest ibound
that fits in memory, then use the remaining memory for
search. Since all the competing algorithms use weighted
mini-bucket heuristics, the same ibound is shared during
heuristic construction. We set Nd = 100 and Nl = 1 (see
Alg. 1) as suggested by the experimental results in Lou et
al. [2017b]. We set δ = 0.025. All implementations are
in C/C++ courtesy of the original authors.

Anytime bounds for individual instances. Fig. 2
shows the anytime behavior of all the methods on in-
stances from four benchmarks. In terms of lower bounds,



Table 1: Statistics of the four evaluated benchmarks. The
first three benchmarks are formed by problem instances
from recent UAI competitions, where 10% of variables are
randomly selected as MAX variables. “avg. ind. width of
sum” in the last row stands for the average induced width
of the internal summation problems.

grid promedas protein planning

# instances 50 50 44 15
avg. # variables 1248.20 982.10 109.55 1122.33

avg. % of MAX vars 10% 10% 10% 12%
avg. # of factors 1248.20 994.76 394.64 1127.67

avg. max domain size 2.00 2.00 81.00 3.00
avg. max scope 3.00 3.00 2.00 5.00

avg. induced width 124.82 108.14 15.84 165.00
avg. pseudo tree depth 228.92 158.78 33.52 799.33
avg. ind. width of sum 43.44 40.32 10.20 49.67

our approach can always provide decent lower bounds
even when the internal summation problems are quite
challenging, while AAOBF may not work well since it
relies on exact evaluation of those internal summation
problems, e.g., on those shown in Fig. 2(b)-2(d). When
the internal summation problems are relatively easy, their
exact evaluation is cheap; thus AAOBF might perform bet-
ter than ours. Fig. 2(a) gives a typical example. In terms
of upper bounds, our bound quality is often eventually
comparable to UBFS, e.g., Fig. 2(b)-2(d). UBFS typically
performs better than MDIS early on, while MDIS quickly
catches up and becomes comparable. Improvement in
AAOBF on upper bounds also requires fast exact evalua-
tion of the internal summation problems, which might not
be possible in many cases. So, AAOBF is usually not as
competitive as the other two methods on upper bounds.

Anytime bounds across benchmarks. We present the
anytime performance across the four benchmarks in Ta-
ble 2 and 3 where we compare anytime bounds at three
different timestamps: 1 minute, 10 minutes and 1 hour.
From Table 2, we can observe that MDIS with K=5 is
dominant at any of these timestamp/benchmark combi-
nations for lower bounds. MDIS with K=10 performs
less well, perhaps because it requires more time to draw
one full sample compared to when K=5, leading the em-
pirical Bernstein lower bounds to kick in relatively late;
this phenomenon can be also observed in all the plots in
Fig. 2. UBFS provides the best upper bounds as shown
in Table 3. However, our algorithm generally performs
better than AAOBF in terms of upper bounds.

Empirical evaluation of solution quality. To evaluate
the MAP solution quality predicted by our algorithm, we
create an image denoising task from the MNIST database1

1http://yann.lecun.com/exdb/mnist/

Table 2: Number of instances that an algorithm achieves
the best lower bounds at each timestamp (1 min, 10 min,
and 1 hour) for each benchmark. The best for each setting
is bolded. Entries for UBFS are blank because UBFS
does not provide lower bounds.

grid promedas protein planning

# instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 47/44/45 32/34/31 31/27/28 14/13/13
MDIS (K=10) 3/2/1 4/5/6 11/13/14 1/2/2

UBFS -/-/- -/-/- -/-/- -/-/-
AAOBF 0/4/4 16/21/24 2/4/4 0/0/0

Table 3: Number of instances that an algorithm achieves
the best upper bounds at each timestamp (1 min, 10 min,
and 1 hour) for each benchmark. The best for each setting
is bolded.

grid promedas protein planning

# instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 0/0/0 9/12/13 5/9/15 1/1/1
MDIS (K=10) 0/0/0 10/13/14 9/10/13 1/2/3

UBFS 50/50/50 50/50/50 36/32/26 14/14/13
AAOBF 0/0/1 2/4/6 2/2/2 1/1/1

of handwritten digits [LeCun et al., 1998]. We binarize
each image, resize it to 14 by 14, and then randomly flip
5% of the pixels to generate a corrupt one. We train a con-
ditional restricted Boltzmann machine (CRBM) [Mnih
et al., 2011] model with 64 hidden units and 196 visible
units using mixed-product BP [Ping and Ihler, 2017; Li-
u and Ihler, 2013] for the denoising task. The resulting
graphical model thus has 64 SUM variables and 196 MAX
variables. Fig. 3(c) gives an illustration of this model. The
advantage of this model is that we can easily evaluate any
MAP configuration since the internal summation problem
only contains singleton potentials; thus this model favors
AAOBF since AAOBF is able to evaluate MAP configu-
rations at a very low cost. We set K to 5 and runtime to
10 minutes for convenience. We test on 100 images with
10 images per digit. Fig. 3(a) compares the denoising
results among all the algorithms for one instance per digit.
Fig. 3(b) gives an example of the quality of the predicted
MAP solutions of our algorithm. In general, the quality of
predicted MAP solutions for our algorithm are better than
the other two baselines in 51 of 100 instances, which is
generally as good as AAOBF (47/100) despite the model
being well-suited to AAOBF. A possible reason is that our
algorithm is able to traverse the MAP space very quickly
and get cheap stochastic estimates of the most promising
MAP solutions.
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Figure 2: Anytime bounds for MMAP on instances from four benchmarks. The max domain sizes of those instances
from (a)-(d) are 2, 2, 81, 3 respectively, and the induced widths of the internal summation problems are 25, 28, 8, 24
respectively. Curves for some bounds may be (partially) missing because they are not in a reasonable scope. UBFS only
provides upper bounds. The time limit is 1 hour.
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Figure 3: (a) Image denoising results for one instance per digit. The first row is for the ground truth images. The second
row is for the noisy inputs created from the ground truth by randomly flipping 5% pixels. Below the first two rows are
denoised images from UBFS, AAOBF, MDIS (K=5) respectively. (b) An example on MAP solution quality comparison.
(c) Illustration of the conditional restricted Boltzmann machine (CRBM) model used for the image denoising task.
When conditioned on an input “X”, this model has a bipartite graph structure between hidden units “h” (SUM variables)
and visible units “v” (MAX variables).

5 CONCLUSION

In this paper, we propose an approach that provides any-
time finite-sample upper and lower bounds for MMAP,
which enjoys the merits of both heuristic search and im-
portance sampling. Our approach is particularly useful
for problem instances whose internal summation prob-
lems are challenging. It predicts high-quality MAP so-
lutions along with their estimated values. It runs in an
anytime/anyspace manner, which gives flexible trade-offs
between memory, time, and solution quality.
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