

Summary

A new decomposition method for bounding the MEU

- Join graph decomposition bounds for IDs (JGDID)
- Approximate inference algorithm for influence diagram
- Proposed method is based on the valuation algebra
- Exploits local structure of influence diagrams
- Extends dual decomposition for MMAP

Significant improvement in upper bounds compared with earlier works

- Translation based methods
- Pure/interleaved MMAP translation + MMAP inference
- Direct relaxation methods
- mini-bucket scheme with valuation algebra
- relaxing non-anticipativity constraint

Background – Influence Diagram

✤ A graphical model for sequential decision-making under uncertainty with perfect recall

Chance variables $\mathbf{C} = \{S_0, S_1, S_2, S_3\}$ **Decision variables** $\mathbf{D} = \{D_0, D_1\}$ **Probability functions** $\mathbf{P} = \{P(S_0), \cdots, P(S_3 | pa(S_3))\}$ $\mathbf{U} = \{U_0(pa(U_0), \cdots, U_3(pa(U_3))\}\$ **Utility functions Partial ordering constraint** $\mathcal{O} = \{S_0, S_1\} \prec \{D_0\} \prec \{S_2, S_3\} \prec \{D_1\}$ **Policy functions** $\Delta_0 := R(D_0) \mapsto D_0 \quad \Delta_1 := R(D_1) \mapsto D_1$ Task – compute MEU and optimal policy

 $\sum_{S_0,S_1} \max_{D_0} \sum_{S_2,S_3} \max_{D_1} [\prod_{P_i \in \mathbf{P}} P_i] [\sum_{U_i \in \mathbf{U}U_i}] [\prod_{\Delta_i \in \mathbf{\Delta}} \Delta_i]$

Background – Valuation Algebra

✤ Algebraic framework for computing expected utility value (a.k.a. potential)

Variable elimination with VA

Bucket D_1 : variables $[D_1, S_2, S_3]$
$(\lambda^{D_1}, \eta^{D_1}) = \max_{D_1}[(1, U_2(D_1, S_3) \otimes (1, U_3(D_1, S_2)))]$
Bucket S_2 : variables $[S_0, S_1, S_2, S_3]$
$(\lambda^{S_2}, \eta^{S_2}) = \sum_{S_2} [(\lambda^{D_1}, \eta^{D_1}) \otimes (P(S_2 S_0, S_1), 0)]$
Bucket S_3 : variables $[S_0, S_1, D_0, S_3]$
$(1, \text{MEU}) = \sum_{S_1} \sum_{S_0} \max_{D_0} \sum_{S_3} [(\lambda^{S_2}, \eta^{S_2}) \otimes$
$(P(S_0),0) \otimes (P(S_1),0) \otimes (P(S_3 D_0,S_0),0) \otimes$
$(1, U_0(D_0, S_1) {\otimes} (1, U_1(D_0, S_0))]$

Valuation: $\Psi(\mathbf{X}) := (P(\mathbf{X}), V(\mathbf{X}))$ $P(\mathbf{X})$ probability $V(\mathbf{X})$ expected utility

Combination

 $\Psi_1 := (P_1, V_1) \quad \Psi_2 := (P_2, V_2)$ $\Psi_1 \otimes \Psi_2 := (P_1 P_2, P_1 V_2 + P_2 V_1) \quad \sum_{\mathbf{Y}} \Psi := (\sum_{\mathbf{Y}} P, \sum_{\mathbf{Y}} V)$

MEU Query in VA

 $\Psi := \{ (P_i, 0) | P_i \in \mathbf{P} \} \cup \{ (1, U_i) | U_i \in \mathbf{U} \}$ $\sum_{S_0,S_1} \max_{D_0} \sum_{S_2,S_3} \max_{D_1} \otimes_{i \in \mathcal{I}_{\Psi}} \Psi_i$

Background – Join Graph Decomposition

Approximation scheme that decomposes a Join tree by limiting the maximum cluster size

Join Graph Decomposition of Influence Diagrams

Join Graph $\mathcal{G}_{\mathcal{I}} := (\mathcal{C}, \mathcal{S})$ with set of nodes \mathcal{C} and edges \mathcal{S}

Node labeling function $\chi(C)$ maps each node to a subset of variables \mathbf{X}_{C} and assign valuations exclusively to a node

Separator S_{C_i,C_i} intersection of the variables between C_i and C_j

Join graph decomposition satisfies running intersection property

Join Graph Decomposition Bounds for Influence Diagrams

Junkyu Lee, Alexander Ihler, Rina Dechter University of California, Irvine {junkyul, ihler, dechter}@ics.uci.edu

- AIPS-2000. [Dechter and Rish 2003] Mini-buckets: Ageneral scheme for bounded inference. Journal of the ACM.
- [Howard and Matheson 2005] Influence diagrams. Decision Analysis. [Jensen, Jensen, and Dittmer 1994] From influence diagrams to junction trees. UAI-

[Dechter 1999] Bucket elimination: A unifying framework for reasoning. Artificial

[Dechter 2000] An anytime approximation for optimizing policies under uncertainty.

expected utility \mathbf{w}^{C_i}

Intelligence

- [Kivinen and Warmuth 1997] Exponentiated gradient versus gradient descent for linear [Wright and Nocedal 1999] Numerical optimization. Springer Science. predictors. Information and Computation.
- [Liu and Ihler 2011] Bounding the partition function using Hölder's inequality. ICML
- [Liu and Ihler 2012] Belief propagation for structured decision making. UAI-2012.
- [Marinescu, Dechter, and Ihler 2014] AND/OR search for marginal MAP. UAI-2014. [Mateescu, Kask, Gogate, and Dechter 2010] Join-graph propagation algorithms. JAIR.

- Artificial Intelligence Research.

- bound search. UAI-2010.

This work was supported in part by NSF grants IIS-1526842 and IIS-1254071, the US Air Force (Contract FA9453-16-C-0508) and DARPA (Contract W911NF-18-C-0015).

over edges $\delta_{C_i,C_j} = (\lambda_{C_i,C_j}, \eta_{C_i,C_j})$

Weights from L^p norm over the variables $w_X = \sum_{C_i \in \mathcal{C}} w_X^{C_i}$

with re-parameterized functions ected utility $L_{\text{MEU}} = \sum_{C_i \in \mathcal{C}} \sum_{i=1}^{\mathbf{w}^{C_i}} h_{C_i} (P'_{C_i}, V'_{C_i}) \left[\prod_{c_i \in \mathcal{C}} \sum_{i=1}^{\mathbf{w}^{C_j}} P'_{C_j} \right] - A_{C_i} \quad V'_{C_i} = P'_{C_i} \left[\frac{V_{C_i}}{P_{C_i}} + \sum_{(C_i, C_j) \in \mathcal{S}} \frac{\eta_{C_i, C_j}}{\lambda_{C_i, C_j}} \right]$

References & Acknowledgement

[Mauá 2016] Equivalences between maximum a posteriori inference in Bayesian networks and maximum expected utility [Mauá and Zaffalon 2012] Solving limited memory influence diagrams. Journal of

[Nilsson and Hohle 2001] Computing bounds on expected utilities for optimal policies based on limited information. Technical Report.

 [Ping, Liu, and Ihler 2015] Decomposition bounds for marginal MAP. NIPS-2015 [Sontag Globerson, and Jaakkola 2011] Introduction to dual decomposition for inference. Optimization for Machine Learning.

[Yuan, and Hansen 2010] Solving multistage influence diagrams using branch-and-

Acknowledgement

Algorithm 1 Join Graph Decomposition for IDs (JGDID)

- **Require:** Influence diagram $\mathcal{M}' = \langle \mathbf{X}, \Psi, \mathcal{O} \rangle$, initial weights w_i associated with a variable $X_i \in \mathbf{X}$, *i*-bound, total iteration limit M_1 , iteration limit M_2 for updating weights and costs before updating utility constants.
- **Ensure:** an upper bound of the MEU, L_{MEU} ,
- : generate a join graph decomposition $\mathcal{D} = \langle \mathcal{G}_J(\mathcal{C}, \mathcal{S}), \chi, \psi \rangle$ by MBE with *i*-bound and assign valuations to nodes by labeling function ψ .
- 2: execute single pass cost-shifting by messages generated by MBE algorithm based on the valuation algebra (MBE-VA)
- 3: initialize weights $\mathbf{w}^{C_i}, \forall C_i \in \mathcal{C}$ by uniform weights.
- 4: *iter*=0, $L_{\text{MEU}} = \inf$
- while $iter < M_1$ or L_{MEU} is not converged do
- for each variable $X_i \in \mathbf{X}$ do $L_{\text{MEU}} \leftarrow \min(L_{\text{MEU}}, \text{UPDATE-WEIGHTS}(\mathcal{G}_J, X_i))$
- end for
- for each edge $(C_i, C_j) \in \mathcal{S}$ do $L_{\text{MEU}} \leftarrow \min(L_{\text{MEU}}, \text{UPDATE-COSTS}(\mathcal{G}_J, \{C_i, C_j\}))$
- end for
- if $iter > M_2$ then for each node $C_i \in \mathcal{C}$ do
- $L_{\text{MEU}} \leftarrow \min(L_{\text{MEU}}, \text{UPDATE-UTIL-CONST}(\mathcal{G}_J, C_i))$ end for
- iter = iter + 1
- 18: end while

MMAP translation + approximate MMAP inference

[Maua 2016] **Reduction of ID to MMAP**

Reduction of ID to interleaved MMAP

Direct methods for bounding IDs Mini-bucket elimination with valuation algebra (MBE-VA) [Dechter 2000, Maua 2012] Information relaxation by minimum sufficient information set (IR-SIS) [Nilsson 2001, Yuan 2010]

Earlier Works

Experiments

Proposed algorithm	JGDID JGDID+ IR-SIS	Iterative i-bound=1, 15
Translation based methods	WMBMM with MMAP translation	Non-iterative i-bound=1,15
	GDD with interleaved MMAP translation	iterative i-bound=1, 15
Direct methods	MBE-VA MBE-VA+IR-SIS	Non-iterative i-bound=1, 15

Average Quality $\alpha_{1} = \alpha_{2} + \alpha_{1} + \alpha_{2} + \alpha_{2$

Algorithm	FH-MDP	FH-POMDP	RAND	BN
JGDID+IR-SIS(i=1)	NA	0.88	0.87	0.99
JGDID+IR-SIS(i=15)	NA	0.76	0.85	0.64
JGDID(i=1)	0.88	0.38	0.86	0.89
JGDID(i=15)	0.49	0.38	0.85	0.64
MBE-VA+IR-SIS(i=1)	NA	0.03	0.01	0.00
MBE-VA+IR-SIS(i=15)	NA	0.54	0.46	0.15
MBE-VA(i=1)	0.00	0.00	0.00	0.00
MBE-VA(i=15)	0.40	0.29	0.46	0.17
GDD(i=1)	0.87	0.03	0.11	0.24
GDD(i=15)	0.22	0.11	0.15	0.05
WMBMM(i=1)	0.00	0.00	0.01	0.01
WMBMM(i=15)	0.01	0.23	0.35	0.24