Anytime Approximate Inference in Graphical Models

Qi Lou
Final Defense

Dec. 5, 2018

Core of This Thesis

Qi Lou, Rina Dechter, Alexander Ihler. Interleave variational optimization with Monte Carlo sampling: A tale of two approximate inference paradigms. AAAI Conference on Artificial Intelligence (AAAI), 2019. To appear.

Qi Lou, Rina Dechter, Alexander Ihler. Finite-sample bounds for marginal MAP. Uncertainty in Artificial Intelligence (UAI), 2018.

Qi Lou, Rina Dechter, Alexander Ihler. Anytime anyspace AND/OR search for bounding marginal MAP. AAAI Conference on Artificial Intelligence (AAAI), 2018.

Qi Lou, Rina Dechter, Alexander Ihler. Dynamic importance sampling for anytime bounds of the partition function. Neural Information Processing Systems (NIPS), 2017.

Qi Lou, Rina Dechter, Alexander Ihler. Anytime anyspace AND/OR search for bounding the partition function. AAAI Conference on Artificial Intelligence (AAAI), 2017.

Graphical Models

- Describe structure in large problems
- Large complex system $f(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(X_{\alpha}\right)$
- Complexity emerges through interdependence
- More formally:

A graphical model consists of:
$X=\left\{X_{1}, \ldots, X_{n}\right\}$-- variables (we'll assume discrete)
$D=\left\{D_{1}, \ldots, D_{n}\right\}$-- domains
$F=\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}$-- (non-negative) functions or "factors"

- Example:

$$
f(A, B, C)=f(A, B) f(A, C) f(B, C)
$$

\mathbf{A}	\mathbf{B}	$\mathbf{f}(\mathbf{A}, \mathbf{B})$
0	0	$\mathbf{0 . 2 4}$
0	1	$\mathbf{0 . 5 6}$
1	0	$\mathbf{1 . 1}$
1	1	$\mathbf{1 . 2}$

\mathbf{B}	\mathbf{C}	$\mathbf{f}(\mathbf{B}, \mathbf{C})$
0	0	$\mathbf{0 . 1 2}$
0	1	$\mathbf{0 . 3 6}$
1	0	$\mathbf{0 . 3}$
1	1	$\mathbf{1 . 8}$

Graphical Models

- Describe structure in large problems
- Large complex system $f(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(X_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Maximization (MAP): compute the most probable configuration

$$
\mathbf{x}^{*}=\arg \max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

[Yanover \& Weiss 2002]

Graphical Models

- Describe structure in large problems
- Large complex system $f(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(X_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Summation \& marginalization
$p\left(x_{i}\right)=\frac{1}{Z} \sum_{\mathbf{x} \backslash x_{i}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad$ and
"partition function"

$$
Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

Observation $y \quad$ Marginals $p\left(x_{i} \mid y\right)$

COW
grass
e.g., [Plath et al. 2009]

Graphical Models

- Describe structure in large problems
- Large complex system $f(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(X_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Mixed inference (marginal MAP, MEU, ...)

$$
f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{M}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

Influence diagrams \& optimal decision-making
(the "oil wildcatter" problem)
e.g., [Raiffa 1968; Shachter 1986]

Inference Queries/Tasks

- Maximum A Posteriori (MAP)
$\max _{X} \prod_{\alpha \in F} f_{\alpha}\left(X_{\alpha}\right)$

NP-hard in general

- The Partition Function

$$
Z=\sum_{X} \prod_{\alpha \in F} f_{\alpha}\left(X_{\alpha}\right)
$$

\#P-complete [Valiant 1979])

- Marginal MAP (MMAP)
$\max _{X \backslash X_{S}} \sum_{X_{S}} \prod_{\alpha \in F} f_{\alpha}\left(X_{\alpha}\right) \quad \begin{aligned} & \text { 2002] }{ }^{\mathrm{NP}} \text { (decision version) [Park }\end{aligned}$

Desired Properties: Guarantee, Anytime, Anyspace

- Anytime
- valid solution at any point
- solution quality improves with additional computation
- Anyspace
- run with limited memory resources

Approximate inference

- Three major paradigms

Variational methods

Reason over small subsets of variables at a time

Sampling

Use randomization to estimate averages over the state space

Search

Structured enumeration over all possible states

Approximate inference

- Three major paradigms
- Variational methods (e.g., treereweighted belief propagation [Wainwright et al. 2003]), minibucket elimination [Dechter \& Rish] 2001).

Sampling

Use randomization to estimate averages over the state space

Variational methods

Reason over small subsets of variables at a time

Search

Structured enumeration over all possible states

Approximate inference

- Three major paradigms
- (Monte Carlo) Sampling (e.g., importance sampling based (e.g., [Bidyuk \& Dechter 2007]), approximate hash-based counting (e.g., [Chakraborty et al. 2016])).

Variational methods

Reason over smal! subsets of variables at a time

Search

Structured enumeration over all possible states

Approximate inference

- Three major paradigms
- (Heuristic) Search (e.g., [Lou et al. 2017], [Viricel et al. 2016], [Henrion 1991]).

Variational methods

Reason over small subsets of variables at a time

Search

Structured enumeration over all possible states

Main Contributions of This Thesis

Variational methods

Chapter 3

Chapter 5

Chapter 4

Chapter 3: Best-first Search Aided by Variational Heuristics

Variational methods

provide pre-compiled heuristics

Search

AND/OR best-first search (AOBFS)
unified best-first search (UBFS)

Search Trees and Summation

- Organize / structure the state space
- Leaf nodes = model configurations
- "Value" of a node = sum of configurations below

Search Trees and Summation

- Heuristic search for summation
- Heuristic function upper bounds value (sum below) at any node
- Expand tree and compute updated bounds

AND/OR Best-first Search (AOBFS)

AND/OR search tree

AND/OR Search Trees

search space size $O\left(d^{h}\right)$
OR (full) solution tree: corresponds to a complete configuration of all AND OR variables

OR
AND
OR
AND

weighted mini-bucket (WMB) Heuristics

[Liu and Ihler, ICML'11]

$h(A)=\lambda^{D}(A) \lambda^{B}(A)$
$h(A, B)=\lambda^{D}(A) \lambda^{C}(B) \lambda^{F}(A, B)$
$h(A, B, C)=\lambda^{D}(A) \lambda^{D}(B, C) \lambda^{E}(B, C) \lambda^{F}(A, B)$
!
$h(\mathbf{X})=1$
\square Formed by intermediately generated factors (called messages, e.g., $\lambda^{\mathrm{D}}(\mathrm{A})$)
\square Upper (or lower) bound of the node value.

- Monotonic: Resolving relaxations using search makes heuristics more (no less) accurate.
\square Quality can be roughly controlled by the ibound.

ibound $=2$

Priority

Intuition: expand the frontier node that potentially reduces the bound gap $U-L(L<=Z<=U)$ most

```
gap(n):=U(n)-L(n), 巳 gap priority
where
U(n):=g(n)\mp@subsup{h}{}{+}(n) \prod \mp@subsup{h}{}{+}(s)}\mathrm{ <upper priority
L_ _ _ _ _ _ _ _ - s\inbr\underline{C}(n) _ _ -'
L(n):=g(n)\mp@subsup{h}{}{-}(n)}\mp@subsup{\prod}{s\inbr(n)}{}\mp@subsup{h}{}{-}(s
```


$\operatorname{br}(n)$: set of OR nodes adjacent to some
node on the path from the root to n

Overcome The Memory Limit

- Main strategy (SMA*-like [Russell 1992])
- Keep track of the lowest-priority node as well
- When reach the memory limit, delete the lowest-priority nodes, and keep expanding the toppriority ones

Anytime Behavior of AOBFS

Aggregated Results

- Number of instances solved to "tight" tolerance interval. The best (most solved) for each setting is bolded.
"Tight": $\log U-\log L<10^{-3}$

	PIC'11 (23)	Protein (50)	BN (50)	CPD (100)
Memory: 1GB/4GB/16GB				
A-G	$\mathbf{1 8} / \mathbf{1 8} / \mathbf{1 9}$	$\mathbf{1 6} / \mathbf{1 7} / \mathbf{1 9}$	$32 / \mathbf{4 0} / \mathbf{4 2}$	$95 / 98 / \mathbf{1 0 0}$
A-U	$\mathbf{1 8 / 1 8 / 1 9}$	$15 / \mathbf{1 7} / \mathbf{1 9}$	$32 / \mathbf{4 0} / 41$	$93 / 95 / \mathbf{1 0 0}$
O-G	$16 / \mathbf{1 8} / \mathbf{1 9}$	$9 / 12 / 13$	$28 / 36 / 38$	$95 / 98 / \mathbf{1 0 0}$
Z_{ε}^{*}	$13 / 13 / 15$	$12 / 12 / 12$	$30 / 31 / 31$	$\mathbf{1 0 0} / \mathbf{1 0 0} / \mathbf{1 0 0}$
VEC	$12 / 14 / \mathbf{1 9}$	$14 / 15 / 15$	$\mathbf{3 6} / 38 / 39$	$36 / 52 / 56$
M-D	$14 / 14 / 14$	$9 / 9 / 11$	$23 / 23 / 24$	$7 / 7 / 8$

Best-first Search Aided by Variational Heuristics

Variational methods

 weighted mini-bucket (WMB)
[Liu and Ihler, ICML’11]
provide optimized heuristics

Search

AND/OR best-first search (AOBFS) for Z
unified best-first search (UBFS) for marginal MAP

Unified Best-first Search (UBFS)

Idea: unify max- and sum- inference in one search framework

- avoids some unnecessary exact evaluation of conditional summation problems
- Principle: focus on reducing the upper bound of MMAP as quickly as possible
- How it works:
- Track the current most promising (partial) MAP configuration, i.e., one with the highest upper bound
- Expand the most "influential" frontier node of that (partial) MAP configuration
- Frontier node that contributes most to its upper bound
- Identified by a specially designed "double-priority" system

Figure 2: Anytime bounds for two instances per benchmark, with 50% MAX variables. AFSE is missing if it ran out of memory before producing bounds; XOR_MMAP failed to produce bounds on these instances. UBFS lower bounds are computed offline and shown only for reference. Black dotted lines mark UBFS reaching the 4 GB memory limit; time budget 1 hour.

Table 3: Number of instances that an algorithm achieves the best upper bounds at each timestamp ($1 \mathrm{~min}, 10 \mathrm{~min}$, and 1 hour) for each benchmark. $50 \% \mathrm{MAX}$ variables. The best for each setting is bolded.

	grid	promedas	protein
\# instances	100	100	50
Timestamp: $1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{hr}$			
UBFS	85/84/89	83/86/87	46/50/50
AAOBF	33/46/44	$47 / 47 / 47$	17716/18
AFSE	0/0/0	0/0/0	5/5/5

Table 4: Number of instances that an algorithm achieves best upper bounds at each given timestamp ($1 \mathrm{~min}, 10 \mathrm{~min}$, and 1 hour) for each benchmark. $10 \% \mathrm{MAX}$ variables. The best for each setting is bolded.

	grid	promedas	protein
\# instances	100	100	50
Timestamp: $1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{hr}$			
UBFS	$\mathbf{9 9 / 1 0 0} / \mathbf{1 0 0}$	$\mathbf{8 8 / 9 9 / 9 9}$	$\mathbf{4 3 / 5 0 / 5 0}$
AAOBF	$1 / 1 / 3$	$17 / 12 / 17$	$15 / 9 / 9$
AFSE	$0 / 0 / 0$	$10 / 8 / 10$	$7 / 7 / 7$

Chapter 4: Sampling Enhanced by Best-first Search

Variational methods

 weighted mini-bucket (WMB)
provide heuristic

provide WMB-IS proposal [Liu, Fisher, Ihler, NIPS'15]

AND/OR best-first search (AOBFS)
refine proposal

dynamic importance sampling (DIS) mixed dynamic importance sampling (MDIS)

Monte Carlo Estimators

- Most basic form: empirical estimate of probability

$$
\mathbb{E}[u(x)]=\int p(x) u(x) \approx \widehat{u}=\frac{1}{m} \sum_{i} u\left(\tilde{x}^{(i)}\right), \quad \tilde{x}^{(i)} \sim p(x)
$$

- Relevant considerations
- Able to sample from the target distribution $\mathrm{p}(\mathrm{x})$?
- Able to evaluate $p(x)$ explicitly, or only up to a constant?
- "Anytime" properties
- Unbiased estimator, $\mathbb{E}[\widehat{u}]=\mathbb{E}[u(x)]$ or asymptotically unbiased, $\mathbb{E}[\widehat{u}] \rightarrow \mathbb{E}[u(x)]$ as $m \rightarrow \infty$
- Variance of the estimator decreases with m

Monte Carlo Estimators

- Most basic form: empirical estimate of probability

$$
\mathbb{E}[u(x)]=\int p(x) u(x) \approx \widehat{u}=\frac{1}{m} \sum_{i} u\left(\tilde{x}^{(i)}\right), \quad \tilde{x}^{(i)} \sim p(x)
$$

- Central limit theorem
- \widehat{u} is asymptotically Gaussian:

$\mathrm{m}=15$:

- Finite-sample confidence intervals
- If $u(x)$ is bounded, e.g., $u\left(x^{(i)}\right) \in[0,1]$, probability concentrates rapidly around the expectation:

$$
\operatorname{Pr}[|\widehat{u}-\mathbb{E}[\widehat{u}]|>\epsilon] \leq O\left(e^{-m \epsilon^{2}}\right)
$$

Importance Sampling

- Basic empirical estimate of probability:

$$
\mathbb{E}[u(x)]=\int p(x) u(x) \approx \widehat{u}=\frac{1}{m} \sum_{i} u\left(\tilde{x}^{(i)}\right), \quad \tilde{x}^{(i)} \sim p(x)
$$

- Importance sampling:

$$
\int p(x) u(x)=\int q(x) \frac{p(x)}{q(x)} u(x) \approx \frac{1}{m} \sum_{i} \frac{p\left(\tilde{x}^{(i)}\right)}{q\left(\tilde{x}^{(i)}\right)} u\left(\tilde{x}^{(i)}\right) \quad \tilde{x}^{(i)} \sim q(x)
$$

Importance Sampling

- Basic empirical estimate of probability:

$$
\mathbb{E}[u(x)]=\int p(x) u(x) \approx \widehat{u}=\frac{1}{m} \sum_{i} u\left(\tilde{x}^{(i)}\right), \quad \tilde{x}^{(i)} \sim p(x)
$$

- Importance sampling:

$$
\int p(x) u(x)=\int q(x) \frac{p(x)}{q(x)} u(x) \approx \frac{1}{m} \sum_{i} \frac{p\left(\tilde{x}^{(i)}\right)}{q\left(\tilde{x}^{(i)}\right)} u\left(\tilde{x}^{(i)}\right) \quad \tilde{x}^{(i)} \sim q(x)
$$

"importance weights"

$$
w^{(i)}=\frac{p\left(\tilde{x}^{(i)}\right)}{q\left(\tilde{x}^{(i)}\right)}
$$

Choosing a proposal

- Can use WMB upper bound to define a proposal $q_{\mathrm{wmb}}(x)$
$\tilde{\mathbf{b}} \sim w_{1} q_{1}(b \mid \tilde{a}, \tilde{c})+w_{2} q_{2}(b \mid \tilde{d}, \tilde{e})$

Weighted mixture:

use mini-bucket 1 with probability w_{1}
or, mini-bucket 2 with probability $w_{2}=1-w_{1}$ where

$$
q_{1}(b \mid a, c)=\left[\frac{f(a, b) \cdot f(b, c)}{\lambda_{B \rightarrow C}(a, c)}\right]^{\frac{1}{w_{1}}}
$$

$\tilde{\mathbf{a}} \sim q(A)=f(a) \cdot \lambda_{E \rightarrow A}(a) / U$
Key insight: provides bounded importance weights!

$$
0 \leq f(x) / q_{\mathrm{wmb}}(x) \leq U \quad \forall x
$$

WMB-IS

$$
\begin{aligned}
& \operatorname{Pr}[|\hat{Z}-Z|>\epsilon] \leq 1-\delta \\
& \epsilon=\sqrt{\frac{2 \hat{V} \log (4 / \delta)}{m}}+\frac{7 U \log (4 / \delta)}{3(m-1)} \\
& \text { "Empirical Bernstein" bounds }
\end{aligned}
$$

Two-step Sampling

Boundedness of Two-step Sampling

Proposition:

$$
f(x) / q^{\mathcal{S}}(x) \leq U^{\mathcal{S}}, \quad \mathbb{E}\left[f(x) / q^{\mathcal{S}}(x)\right]=Z
$$

\mathcal{S} : current search tree
$U^{\mathcal{S}}$: refined upper bound by current search tree
$q^{\mathcal{S}}(x)$: proposal distribution defined by two-step sampling

Two Stage Sampling

Dynamic Importance Sampling (DIS)

Sample Aggregation Strategy for DIS

- Weighted average of importance weights: weight each sample with its corresponding upper bound.

$$
\widehat{Z}=\frac{\operatorname{HM}(\boldsymbol{U})}{N} \sum_{i=1}^{N} \frac{\widehat{Z}_{i}}{U_{i}}, \quad \operatorname{HM}(\boldsymbol{U})=\left[\frac{1}{N} \sum_{i=1}^{N} \frac{1}{U_{i}}\right]^{-1}
$$

\widehat{Z}_{i} : importance weight corresponding to the i-th sample
U_{i} : upper bound being refined in the search process
$\widehat{Z} \leq \operatorname{HM}(\boldsymbol{U}) \quad$ (bounded)
$\mathbb{E} \widehat{Z}=Z \quad$ (unbiased)

Finite-sample Bounds for DIS

Theorem: Define the deviation term

$$
\Delta=\operatorname{HM}(\boldsymbol{U})\left(\sqrt{\frac{2 \widehat{\operatorname{Var}}\left(\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}\right) \ln (2 / \delta)}{N}}+\frac{7 \ln (2 / \delta)}{3(N-1)}\right)
$$

then, $\operatorname{Pr}[Z \leq \widehat{Z}+\Delta] \geq 1-\delta$ and $\operatorname{Pr}[Z \geq \widehat{Z}-\Delta] \geq 1-\delta$.
$\widehat{\operatorname{Var}}\left(\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}\right)$: empirical variance of $\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}$.

Results on Individual Instances

(a) pedigree/pedigree 33

(d) pedigree/pedigree37

(b) protein/1co6

(e) protein/1bgc

(c) $\mathrm{BN} / \mathrm{BN} _30$

(f) $\mathrm{BN} / \mathrm{BN} _129$

Mixed Dynamic Importance Sampling (MDIS)

Generalize DIS to provide finite-sample bounds for a series of summation objectives

Empirical Evaluation for MDIS

Number of instances that an algorithm achieves the best lower (top) and upper (down) bounds. (Entries for UBFS are blank since UBFS does not provide lower bounds.)

	grid	promedas	protein	planning
\# instances	50	50	44	15
Timestamp: $1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{hr}$				
MDIS $(K=5)$	$\mathbf{4 7 / 4 4} / \mathbf{4 5}$	$\mathbf{3 2 / 3 4 / 3 1}$	$\mathbf{3 1 / 2 7 / 2 8}$	$\mathbf{1 4 / 1 3 / 1 3}$
MDIS $(K=10)$	$3 / 2 / 1$	$4 / 5 / 6$	$11 / 13 / 14$	$1 / 2 / 2$
UBFS	$-/-/-$	$-/-/-$	$-/-/-$	$-/-/-$
AAOBF	$0 / 4 / 4$	$16 / 21 / 24$	$2 / 4 / 4$	$0 / 0 / 0$
Timestamp: $1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{hr}$				
MDIS $(K=5)$	$0 / 0 / 0$	$9 / 12 / 13$	$5 / 9 / 15$	$1 / 1 / 1$
MDIS $(K=10)$	$0 / 0 / 0$	$10 / 13 / 14$	$9 / 10 / 13$	$1 / 2 / 3$
UBFS	$\mathbf{5 0 / 5 0 / 5 0}$	$\mathbf{5 0 / 5 0 / 5 0}$	$\mathbf{3 6 / 3 2 / 2 6}$	$\mathbf{1 4 / 1 4 / 1 3}$
AAOBF	$0 / 0 / 1$	$2 / 4 / 6$	$2 / 2 / 2$	$1 / 1 / 1$

Chapter 5: A General Interleaving Framework

Adaptive Policy

- Idea:
- Predict unit gains (bound reduction) of a message passing step and a sampling step, respectively.
- Execute the action with a larger predicted unit gain.

Interleaving v.s. Non-interleaving

Adaptive v.s. Static

Conclusions

Variational methods

Chapter 3 AOBFS, UBFS

Future Directions

Variational methods

Search

Sampling

