

Summary

- A bounding scheme that interleaves variable elimination and reparameterization on valuations for influence diagrams (IDs) over the weighted mini-bucket decompositions of influence diagram.
- \checkmark It improves the quality of the bound and computation time compared with state-of-the art decomposition bounds of IDs, and generate admissible heuristic evaluation functions suitable for AND/OR graph search.

Backgrounds

Influence Diagram

- Chance variables $\mathbf{C} = \{S_0, S_1, S_2, S_3\}$
- Decision variables $\mathbf{D} = \{D_0, D_1\}$
- Probability functions $\mathbf{P} = \{P(S_0), \dots, P(S_3 | pa(S_3))\}$
- Utility functions
- Partial ordering constraint
- **Policy functions**
- $\Delta_0 := S_0 \times S_1 \mapsto D_0 \quad \Delta_1 := S_2 \times S_3 \mapsto D_1$
- MEU and optimal policy

 $MEU := \sum_{S_0, S_1} \max_{D_0} \sum_{S_2, S_3} \max_{D_1} [\prod_{P_i \in \mathbf{P}} P_i] [\sum_{U_i \in \mathbf{U}U_i}] [\prod_{\Delta_i \in \mathbf{\Delta}} \Delta_i]$

Valuation Algebra for Influence Diagrams [Shenoy 1992, Jensen 1994, Lauritzen 1997, Maua, 2012, Moral 2018] Valuation for IDs: $\Psi(\mathbf{X}) := (P(\mathbf{X}), V(\mathbf{X}))$ (probability, expected utility value)

Combination

 $\Psi_1 := (P_1, V_1) \ \Psi_2 := (P_2, V_2)$ $\Psi_1 \otimes \Psi_2 := (P_1 P_2, P_1 V_2 + P_2 V_1)$

Marginalization	
$\Psi := (P(\mathbf{X}), V(\mathbf{X}))$	
$\sum_{\mathbf{Y}}^{\mathbf{w}} \Psi := (\sum_{\mathbf{Y}}^{\mathbf{w}} P, \sum_{\mathbf{Y}}^{\mathbf{w}} V)$	$\mathbf{Y} \subseteq \mathbf{X}$

- Valuations for IDs form a commutative semi-ring Axiomatization of valuation algebra ensures decomposition by re-arranging combinations and marginalizations (distributive law).
 - ✓ Local computation is implemented by Bucket Elimination. ^[Dechter, 1999]
- Re-writing MEU Query by Valuation Algebra for IDs
- $\Psi := \{ (P_i, 0) | P_i \in \mathbf{P} \} \cup \{ (1, U_i) | U_i \in \mathbf{U} \} \qquad \text{MEU} := \sum_{S_0, S_1} \max_{D_0} \sum_{S_2, S_3} \max_{D_1} \otimes_{i \in \mathcal{I}_{\Psi}} \Psi_i$

Graphical Model Decomposition

$\operatorname{Bucket} D_1$	
$\left(\lambda^{D_1}, \eta^{D_1} \right) =$	$\max_{D_1} \left[(1, U_2(D_1, S_3) \otimes (1, U_3(D_1, S_2))) \right]$
$\operatorname{Bucket}S_2$	$(\lambda^{D_1}(S_2,S_3),\eta^{D_1}(S_2,S_3))$
$(\lambda^{S_2}, \eta^{S_2}) = 1$	$\sum_{S_2} \left[(\lambda^{D_1}, \eta^{D_1}) \otimes (P(S_2 S_0, S_1), 0) \right]$
$\operatorname{Bucket}S_3$	$(\lambda^{S_2}(S_0, S_1, S_3), \eta^{S_2}(S_0, S_1, S_3))$
$(\lambda^{S_3},\eta^{S_3})=1$	$\sum_{S_3} [(\lambda^{S_2}, \eta^{S_2}) \otimes (P(S_3 D_0, S_0), 0)]$
$\operatorname{Bucket} D_0$	$(\lambda^{S_3}(S_0, S_1, D_0), \eta^{S_3}(S_0, S_1, D_0))$
$(\lambda^{D_1},\eta^{D_1}) =$	$\max_{D_0}[(\lambda^{S_3}, \eta^{S_3}) \otimes (1, U_0(D_0, S_1) + U_1(D_0, S_0)]$
$\operatorname{Bucket} S_0$	$(\lambda^{D_1}(S_0,S_1),\eta^{D_1}(S_0,S_1))$
$(\lambda^{S_0}, \eta^{S_0}) = 1$	$\sum_{S_0} [(\lambda^{D_1}, \eta^{D_1}) \otimes (P(S_0), 0)]$
$\operatorname{Bucket}S_1$	$(\lambda^{S_0}(S_1),\eta^{D_1}(S_1))$
(1, MEU) = 1	$\sum_{S_1} [(\lambda^{S_0}, \eta^{S_0}) \otimes (P(S_1), 0)]$

Bucket Tree Decomposition

- [Dechter, 1999] ✓ exact \checkmark local computation
- $(\lambda^{D_1}, \eta^{D_1}) = \max_{D_1}[(1, U_2(D_1, S_3) \otimes (1, U_3(D_1, S_2)))]$ $(C_2) = \{D_0, S_0, S_0\}$ Bucket S_2 $(\lambda^{D_1}(S_2, S_3), \eta^{D_1}(S_2, S_3))$ $\mathcal{S}_{C_1,C_2} = \{S_3\}$ $(C_2) = \{ P(S_3 | D_0, S_0) \}$ $(\lambda^{S_2}, \eta^{S_2}) = \sum_{S_2}^{w_{S_2}} (\lambda^{D_1}, \eta^{D_1}) \bullet (\lambda^{S_2'}, \eta^{S_2'}) = \sum_{S_2'}^{w_{S_2'}} (P(S_2'|S_0, S_1), 0)$ $(\lambda^{S_2}(S_3), \eta^{S_2}(S_3)) \qquad (\lambda^{S_2'}(S_0, S_1), \eta^{S_2'}(S_0, S_1))$ $\chi(C_1) = \{D_1, S_2, S_3\}$ $(\lambda^{S_3}, \eta^{S_3}) = \sum_{S_2} [(\lambda^{S_2}, \eta^{S_2}) \otimes (P(S_3 | D_0, S_0), 0)]$ $\psi(C_1) = \{(1, U_2(D_1, S_2))\}$ Bucket D_0 $(\lambda^{S_3}(S_0, D_0), \eta^{S_3}(S_0, D_0))$ $(1, U_3(D_1, S_2))$ $(D_0, \eta^{D_0}) = \max_{D_0} [(\lambda^{S_3}, \eta^{S_3}) \otimes (1, U_0(D_0, S_1) + U_1(D_0, S_0))]$ $(\lambda^{D_0}(S_0,S_1),\eta^{D_0}(S_0,S_1))$ $C(C_3) = \{S_0, S_1, S_2\}$ $\lambda^{S_0}, \eta^{S_0} = \sum_{S_0} [(\lambda^{D_0}, \eta^{D_0}) \otimes (P(S_0), 0) \otimes (\lambda^{S'_2}, \eta^{S_0})]$ $S_{C_1,C_3} = \{S_2\}$ $\forall (C_3) = \{ (P(S_2|S_0, S_1), 0) \}$ Bucket S_1 \checkmark $(\lambda^{S_0}(S_1), \eta^{D_1}(S_1))$ $(1, MEU) = \sum_{S_1} [(\lambda^{S_0}, \eta^{S_0}) \otimes (P(S_1), 0)]$ Join-Graph Decomposition Mini-Bucket Tree Decomposition [Dechter, 2003] Approximation \checkmark bounded complexity
- The exact decomposition captures dynamic programming structure.
- The approximate decomposition introduces auxiliary variables and bounds the complexity.
- Messages can be passed over a decomposed join-graph to generate upper bounds.

A Weighted Mini-Bucket Bound for Solving Influence Diagrams

Junkyu Lee¹, Radu Marinescu², Alexander Ihler¹, Rina Dechter¹ ¹University of California, Irvine {junkyul, ihler, dechter}@ics.uci.edu ²IBM Research, Ireland {radu.marinescu}@ie.ibm.com

Optimization Setup for Computing Weights and Costs

Objective: value component of $\Psi_{MEU_{JGDID}}$

Parameters: $w_{S_2}^{S_2,1} w_{S_2}^{S_2,2}$

 $\delta_{1,2}^{S_2}(S_2) := (\lambda_{1,2}^{S_2}(S_2), \eta_{1,2}^{S_2}(S_2))$

nstra	ain	ts:

Algorithm

- Initialization
- Ln1: Create a mini-bucket tree and join-graph, allocate functions to mini-buckets and initialize weights uniformly.
- Ln2: WMBE-WC2: optimize weights w.r.t. the initial function allocations (optional).
- Interleaving VE and optimization
- Ln5: Process one layer of mini-buckets at a time. Ln7-Ln10: Jointly optimize cost functions, and weights over the mini-buckets for iteration limits.
- Ln12-Ln16: Generate messages by marginalization and pass messages downward.
- Ln17-18: Combine messages and weights before eliminating the next layer.

Algorithm configurations

- MBE: no optimization, no weights.
- WMBE-U : no optimization, use uniform weights.
- WMBE-UC: optimize cost functions only. WMBE-WC1: optimize both but skip initial weight
- optimization step over the join graph. • WMBE-WC2: optimize both and perform optional weight optimization step over the join graph.

Experiments

Comparing Decomposition Bounds for IDs

	i=5 (time (sec), bound)				
20	iter=1	5	10	20	
-	(2, 3.4E+14)			-	
(574, 9.3E+14)	(980, 2.4E+13)	(1478, 2.4E+13)	(1229, 2.4E+13)	(894, 2.4E+13)	
(3772, 1.62E+13)	(499, 1.67E+12)	(1534, 1.08E+12)	(1378, 1.08E+12)	(1892, 1.08E+12)	
(4283, 2.24E+12)	(1531, 3.12E+11)	(2567, 3.14E+11)	(3451, 2.96E+11)	(2967, 2.97E+11)	
(7111, 6.12E+8)	(3, 2.75E+19)		=		
	(3, 2.57E+18)	-	-	-	
-	(2, 3.4E+14)	-	-	-	
	i=15 (time (sec), bound)				
20	iter=1	5	10	20	
-	(1861, 9.49E+8)	-	-	-	
(607, 1.90E+10)	(2022, 9.49E+8)	(3186, 9.49E+8)	(1606, 9.49E+8)	(2363, 9.49E+8)	
(1867, 4.33E+9)	(792, 4.42E+8)	(2409, 1.19E+10)	(3588, 4.71E+8)	(9236, 4.70E+8)	
(4970, 2.23E+9)	(5923, 6.82E+7)	(12317, 6.72E+7)	(11869, 6.72E+7)	(7892, 6.72E+7)	
(14635, 4.42E+9)	(12, 1.4E+18)	(12196, 4.39E+11)	(28338, 1.29E+11)	(49188, 6.81E+9)	
-	(3, 7.3E+12)	-	-	-	
-	(1, 2.84E+5)	-	-	-	
		i=5 (time (s	ec), bound)		
20	iter=1	5	10	20	
-	(109, 9227)	-	-	-	
(266, 1.05+6)	(481, 7588)	(341, 8196)	(687, 8196)	(344, 7625)	
(314, 4.89E+5)	(417, 6081.49)	(415, 7247.53)	(324, 6235.09)	(249, 8662.08)	
(687, 1.60E+5)	(251, 4201.44)	(633, 2567.81)	(868, 2877.79)	(678, 3639.72)	
(1453, 686)	(1, 1.84E+7)	(1248, 11213)	(3195, 762)	(4397, 736)	
-	(1, 4.46E+5)	-	-	-	
-	(2, 7.39E+5)	-	-	-	
		i=15 (time (sec), bound)		
20	iter=1	5	10	20	
-	(193, 1542)	-	-	-	
(911, 1820)	(833, 1521)	(1560, 1518)	(1056, 1516)	(930, 1512)	
(524, 1866.48)	(702, 2.08E+6)	(1005, 1956.82)	(1111, 1846.16)	(1231, 1828.79)	
(819, 1098.92)	(2625, 1086.30)	(2081, 1061.17)	(2006, 1077.61)	(2583, 1077.98)	
(15787, 795)	(2, 2.37E+7)	(7837, 2006)	(15134, 1357)	-	
-	(1, 7027)	-	-	-	
-	(1, 16139)	-	-	-	

er=1	i=15, iter=5 i=20, iter=1 i=20, iter=5		i=15, iter=5		er=5	i=10, m	ax iter 100		
1.40	40%	2.13	193%	1.33	248%	1.37	410%	1.30	
0.96	30%	0.94	132%	1.01	210%	1.02	255%	1.58	
0.92	56%	0.95	244%	0.64	299%	0.64	1582%	1.70	
1.24	8%	1.16	31%	0.87	38%	0.84	127%	1.79	
1.15	31%	1.08	54%	0.72	90%	0.70	167%	1.83	
0.76	91%	0.76	-	-	-	-	114%	4.68E+11	
0.85	34%	0.86	771%	0.80	659%	0.80	339%	2.69E+04	
0.93	26%	0.93	-	-	333%	0.87	128%	1.56E+07	
0.91	42%	0.90	287%	0.87	365%	0.87	228%	8.69E+03	
0.90	81%	0.88	503%	0.84	520%	0.83	142%	2.65E+03	
17.11	1008%	4.06E-03	-	-	-	-	264%	0.32	
0.17	98%	0.16	607%	0.01	489%	0.01	109%	7.36	
0.89	59%	34.93	827%	1.78	1247%	0.03	174%	72.80	
0.11	114%	0.11	1504%	0.03	2022%	0.01	199%	7.22	
0.02	1775%	0.02	-	-	-	-	395%	17.00	
1.07	82%	1.04	379%	0.87	576%	0.87	1515%	1.35	
0.69	78%	0.66	61%	0.61	73%	0.61	1687%	1.02	
11.55	252%	13.53	2073%	1.65	2284%	1.78	1872%	1.23	
1.36	122%	1.24	604%	1.17	788%	1.22	885%	1.16	
1.58	143%	1.55	338%	0.73	422%	0.73	1475%	1.15	
0.89	81%	0.71	313%	0.56	384%	0.41	361%	66.03	

 Compared 4 different configurations of the WMBE-ID, state-of-the-art JGDID, and MBE, MBE with relaxed ordering.

• i-bounds 1, 5, 10, 15, maximum iterations 1, 5, 10, 20

- Non-iterative algorithms (WMBE-U, MBE, MBE-Re) produced very loose bounds.
- At lower i-bounds, JGIDID performs the best
- At higher i-bounds, WMBE-WC1,2 improved the bound and produced tighter bounds in shorter time.

JGDID (i=10)

 Compared the ratio of the time and bound from WMBE-WC2 against JGDID(i=1).

• At high i-bounds, WMBE-WC2 produced tighter bounds (ratio less than 1.0) than JGDID(i=1) in most of the instances.