
Counting the Optimal Solutions in Graphical Models

Radu Marinescu
IBM Research
Dublin, Ireland

radu.marinescu@ie.ibm.com

Rina Dechter
University of California, Irvine

Irvine, CA 92697, USA
dechter@ics.uci.edu

Abstract

We introduce #opt, a new inference task for graphical models which calls for
counting the number of optimal solutions of the model. We describe a novel
variable elimination based approach for solving this task, as well as a depth-first
branch and bound algorithm that traverses the AND/OR search space of the model.
The key feature of the proposed algorithms is that their complexity is exponential
in the induced width of the model only. It does not depend on the actual number of
optimal solutions. Our empirical evaluation on various benchmarks demonstrates
the effectiveness of the proposed algorithms compared with existing depth-first and
best-first search based approaches that enumerate explicitly the optimal solutions.

1 Introduction

Graphical models such as belief networks, Markov networks, constraint networks or influence
diagrams provide a powerful framework for reasoning with probabilistic and deterministic information.
Combinatorial optimization tasks such as finding the minimum or maximum cost solutions arise in
many applications and often can be efficiently solved by search or variable elimination schemes.

Although finding the optimal solution is paramount in many practical situations, we argue that it is
important to also know how many optimal solutions there are and, possibly to enumerate all or just
a fraction thereof. Indeed, in genetic linkage analysis finding the number of maximum likelihood
haplotype configurations may shed additional light on how the genetic information is transmitted
from ancestors to descendants in a pedigree [1]. In computational protein design finding the number
of optimal protein side-chain resonance assignments could be indicative for the protein structure
determination [2]. Similarly, knowing the number of optimal frequency assignments to the radio links
in a communication network could help the engineers produce more reliable network designs [3]. In
post-optimality analysis we may be interested in estimating the distribution of optimal solutions over
the values of a certain target variable, for which we clearly require the count of optimal solutions.
The number of optimal solutions may also be used as a feature for explaining the hardness of finding
an optimal solution to a problem instance. It thus may be employed to guide a random problem
generator to produce hard problem instances for optimization.

One approach that gained attention in the past decade has focused on knowledge compilation
techniques that produce a more compact representation of all optimal solutions [4, 5]. In particular,
[5] described an efficient way to compile a graphical model into a compact AND/OR Multi-Valued
Decision Diagram (AOMDD) which represents all its optimal solutions. More recently, [6] introduced
a collection of depth-first and best-first search algorithms for computing the set of m-best solutions
of a graphical model. However, both compilation based approaches or specialized m-best algorithms
will yield a count of the optimal solutions by enumeration. In particular, the compilation based
techniques typically count the number of optimal solutions during a secondary pass over the compiled
decision diagram, whereas the m-best algorithms must rely on a sequence of searches each with
a different value of m in order to recover the actual number of optimal solutions. In contrast, the
algorithms we will present and explore are not dependent on the number of optimal solutions.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

(a) Primal graph (b) Pseudo tree (c) Functions

Figure 1: A simple graphical model.

Contributions In this paper, we define the #opt task for graphical models, and show how the
common algorithmic principles of variable elimination and search can be extended to this task.
Specifically, the idea behind variable elimination for #opt is to first capture all the optimal solutions
as a constraint representation by flattening the relation of the cost-to-go functions and then apply the
counting variable elimination algorithm over the resulting set of constraints. In our algorithm these
two phases are interleaved. Subsequently, we present a depth-first branch and bound algorithm that
traverses an AND/OR search space of the graphical model. For each node the algorithm computes a
pair of values, one representing the optimal cost below the node in the search space and the other
the number of the corresponding optimal solutions. We also provide a formulation of the #opt task
within the semiring framework [7] thus placing it in relation to other well known graphical models
tasks. It is well known that counting the number of all solutions in a graphical model can be done
without enumeration in complexity exponential in the induced width of the model [8, 9]. We show
here that counting the number of optimal solutions can be done without enumeration as well, with
the same complexity. An empirical evaluation on various benchmark problems demonstrates the
effectiveness of the proposed algorithms compared with enumeration-based extensions of depth-first
and best-first search to this task.

The #opt task involves both summation and optimization. Other tasks involving these two operations
are Marginal MAP and finding optimal policies that maximize the expected utility, defined over
influence diagrams [10, 11, 12]. But, there is a notable difference. While, as we will show, #opt can
be formulated within the semiring framework [7] and solved by traditional algorithms exactly [13], it
does not land itself to the common approximation schemes such as the mini-bucket approach [14], at
least not in a straightforward manner. This, we think makes it more unique and thus deserving a more
focused attention.

2 Background

A graphical model is a tupleM = 〈X,D,F〉, where X = {Xi : i ∈ V } is a set of variables indexed
by set V and D = {Di : i ∈ V } is the set of their finite domains of values. F = {ψα : α ∈ F}
is a set of discrete real-valued local functions defined on subsets of variables, where we use α ⊆ V
and Xα ⊆ X to indicate the scope of function ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}. A solution
is a complete assignment to the variables, namely x = (X1 = x1, . . . , Xn = xn). Given a set of
variables S = {X1, . . . , Xk}, we denote by Ω(S) the Cartesian product of their domains, namely
Ω(S) = D1× · · ·×Dk. The function scopes yield a primal graph G whose vertices are the variables
and whose edges connect any two variables that appear in the scope of the same function. The
graphical modelM represents a global function, whose scope is X and which is the combination of
all the local functions, namely: F(x) =

∑
α∈F ψα(xα).

The most common optimization task (opt) for graphical models is to compute the optimal value
V ∗ = minx F(x) and its optimizing configuration x∗ = argminx F(x). The latter is also known as
the optimal solution.

However, a graphical model may have more than one optimal solution. We next define formally the
task of counting the number of optimal solutions of a graphical model which we abbreviate hereafter
by #opt.

DEFINITION 1 (#opt). Given a graphical modelM = 〈X,D,F〉, the #opt task is to compute |S|,
where S = {x | F(x) = V ∗, V ∗ = minx

∑
α∈F ψα(xα)}.

We also define the task e-opt which calls for enumerating explicitly all the optimal solutions:

2

DEFINITION 2 (e-opt). Given a graphical modelM = 〈X,D,F〉, the e-opt task is to enumerate
all elements in the set S = {x | F(x) = V ∗, V ∗ = minx

∑
α∈F ψα(xα)}.

An important feature of graphical models in characterizing complexity is the induced width (or
treewidth). The induced graph of G relative to an ordering τ of its variables is obtained by processing
the nodes in reverse order of τ . For each node all its earlier neighbors are connected, including
neighbors connected by previously added edges. The width of a node is the number of edges
connecting it to nodes lower in the ordering. The induced width of G along τ , denoted w∗(τ), is the
maximum width of the nodes in the induced graph.
Example 1. Figure 1(a) depicts the primal graph of a simple graphical model representing a global
function over 4 variables X = {A,B,C,D} with 4 local functions (shown in Figure 1(b)) defined by
the arcs (each pair is a scope of one function). There are 6 optimal solutions with optimal value 3,
namely S = {0000, 0010, 1000, 1001, 1010, 1011}.

We describe next brute-force search and variable elimination based schemes for counting the optimal
solutions.

Depth-First Branch and Bound Solving #opt can be done by a simple extension of depth-first
branch and bound search [15]. The algorithm, called BnB, traverses the space of partial assignments
in a depth-first manner while maintaining an upper bound U on the optimal value and a counter c
which is updated every time a new solution value V is found: c = c + 1 if V = U and c = 1 if
V < U , respectively. In the latter case, V becomes the current best upper bound. Throughout the
search, the algorithm also attempts to prune unpromising regions of the search space. Namely, at
each node n it computes a heuristic lower bound f(n) of the best solution extending the current
partial assignment and prunes the respective subtree if the heuristic estimate is strictly greater than
the current upper bound (f(n) > U). The strict inequality is required in order to find all optimal
solutions. When search terminates, the value of the counter c gives the number of optimal solutions.

Best-first Search Alternatively, we can use a best-first search strategy such as A* search [16].
Algorithm A* for #opt maintains the search frontier in the OPEN list and always expands first the
node n with the smallest f-value f(n) = g(n) + h(n), where g(n) is the cost of the path from the
root of the search space to n and h(n) is a lower bound of the best extension to a solution [17]. When
the optimal solution is encountered, the algorithm saves its value V ∗, initializes a counter c to 1
and continues the search. Every time a new optimal solution is found, the counter c is incremented.
Search terminates when OPEN is empty, in which case c gives the number of optimal solutions.

Variable Elimination An immediate extension to #opt within the compilation paradigm is to
apply a variable elimination scheme for optimization along an ordering τ and then enumerate all
optimal solutions one by one in a greedy fashion using the intermediate messages generated during
the elimination procedure [13]. The only difference between this algorithm and a regular variable
elimination is that the forward decoding pass does not terminate with the first optimal solution.

Complexity of Brute-Force Approaches All the algorithms presented above require enumerating
all the optimal solutions and thus have a factor of #opt in their complexity. If |T | captures the
search space size explored by best-first search for finding the first optimal solution and #opt is their
number, best-first can be bounded by O(|T | + #opt). Branch and bound is often faster and has a
better memory management than best-first search yet it is harder to bound and we cannot give a
better bound than O(|T | ·#opt). The simple variable elimination algorithm we described generates a
compiled representation in time and memory exponential in the induced width w∗τ along an ordering
τ . Then, generating each new optimal solution requires consulting the compiled structure and is in
the worst-case exponential in w∗τ implying an overall worst-case complexity of O(n · kw∗τ ·#opt),
where n is the number of variables and k bounds the domain size.

3 Bucket Elimination for #opt

The main drawback of the brute-force search and variable-elimination approaches described in
Section 2 is that they must enumerate explicitly all optimal solutions (i.e., they actually solve the
e-opt task). If the number of optimal solutions is large then the computational overhead can be
significant. In this and the next section we will describe more efficient methods for solving #opt that
are based on either bucket elimination or on depth-first branch and bound search over an AND/OR
search spaces, but avoid explicit enumeration of the optimal solutions.

3

Algorithm 1 BE for #opt

Require: graphical model M = 〈X,D,F〉,
elimination order τ = X1, . . . , Xn

1: Let Ψ = {ψα : ψα ∈ F}
2: for all variable Xp in the reversed order τ do
3: Create bucket Bp and its associated set Ψp

4: Let Ψp = {ψα ∈ Ψ : Xp ∈ vars(ψα)}
5: Let Ψ← Ψ \Ψp, Λp = ∅ and Γp = ∅
6: for all variable Xp in the reversed order τ do
7: Let Ψp = {ψ1 . . . ψr}, Λp = {λ1 . . . λm}

and Γp = {γ1, . . . , γq}
8: Let ψp ←

∑r
i=1 ψi

9: Let λp ← minxp(ψp +
∑m
j=1 λj)

10: Let γp ←
∑
x′p

(ψ̄p ·
∏q
k=1 γk) where

x′p ∈ argminxp(ψp +
∑r
i=1 ψi) and ψ̄p is

the flattened ψp (see text below for details)
11: Add λp and γp to the sets Λ and Γ of

the highest bucket corresp. to a variable in
vars(λp); If Xp is the first variable then add
λp to Λ0 and γp to Γ0

12: Let v∗ ←
∑
λ∈Λ0

λ and c∗ ←
∏
γ∈Γ0

γ

13: return 〈v∗, c∗〉

As noted, the optimal solution to a graphical model can be obtained by using the bucket elimination
(BE) algorithm which eliminates (minimizes over) the variables in sequence [13]. In order to extend it
to counting the optimal solutions and avoid enumeration we use the concept of flattened representation
of a function. Specifically, given a function ψ, its flattening denoted by ψ̄ is defined as: ψ̄(y) = 1
if ψ(y) 6= ∞ and ψ̄(y) = 0 otherwise, for all y ∈ Ω(vars(ψ)). When a variable X is eliminated,
we first record a standard cost message that represents the cost-to-go corresponding to minimizing
over the domain values of X . Then, we count the minimizing configurations of X and record them in
a new count message which has the same scope as the cost message. The latter can be viewed as a
counting step over a constraint representation of the flattened cost-to-go function.

Algorithm 1 presents the BE procedure for solving #opt. Given a variable ordering τ = X1, . . . Xn,
the functions are first partitioned into their corresponding buckets such that a bucket Bp is associated
with a single variable Xp and a function is placed in the bucket of its argument that appears latest in
the ordering (lines 1–5). With each bucket Bp we also assign three sets Ψp, Λp and Γp to store the
original functions as well as the cost and count messages, respectively.

The algorithm processes each bucket in reversed order, from last to first by a variable elimination
procedure that computes a new cost message and a new count message which are both placed into a
lower bucket. Specifically, let Xp be the current variable and let ψp be the bucket function which is
obtained by summing all original functions in the bucket (line 8). The cost message (or λ-message)
λp computed in bucket Bp is obtained by minimizing out variable Xp from the compound function
that combines by summation the bucket function and all incoming cost messages to this bucket.
Namely, λp ← minxp(ψp +

∑m
j=1 λj). This is the usual cost-to-go message when computing

the optimal solution. The count message (or γ-message) originating from Bp is computed by first
multiplying all the incoming count messages to this bucket with the flattened bucket function ψ̄p
and then summing over the bucket’s variable. Namely, we have γp ←

∑
x′p

(ψ̄p ·
∏q
k=1 γk). Notice

that the summation is performed only over the minimizing domain values x′p of Xp, namely over
x′p ∈ argminxp(ψp +

∑r
i=1 ψi). Finally, after the first variable in the ordering is processed, the sets

Λ0 and Γ0 contain all the constant messages generated during the execution. Therefore, the optimal
value is obtained by summing up all constants in Λ0 (line 12), while the number of optimal solutions
is calculated as the product of all constants in Γ0 (line 12), respectively.

We can show that BE for #opt is time and space exponential in the induced width w∗τ of the ordering
τ , i.e., O(n · kw∗τ), where n is the number of variables and k bounds the domain size.

4 AND/OR Branch and Bound for #opt

Significant recent improvements in search for optimization in graphical models have been achieved
by using AND/OR search spaces, which often capture problem structure far better than standard OR
search methods [18, 19, 20, 21]. We next introduce a depth-first branch and bound algorithm that
traverses an AND/OR search space to compute the number of optimal solutions as well as the optimal
value.

4

Figure 2: AND/OR search tree of the problem from Figure 1.

AND/OR Search Spaces The AND/OR search space is defined relative to a pseudo tree of the
primal graph, which captures problem decomposition.
DEFINITION 3 (pseudo tree). A pseudo tree of an undirected graph G = (V,E) is a directed rooted
tree T = (V,E′) such that every arc of G not included in E′ is a back-arc in T connecting a node in
T to one of its ancestors. The arcs in E′ may not all be included in E.

Given a graphical modelM = 〈X,D,F〉 with primal graph G and pseudo tree T of G, the AND/OR
search tree ST based on T has alternating levels of OR nodes corresponding to the variables, and
AND nodes corresponding to the values of the OR parent’s variable, with arc weights extracted from
the original functions F. Identical subproblems, identified by their context (the partial instantiation
that separates the subproblem from the rest of the problem graph), can be merged, yielding an
AND/OR search graph. Merging all context-mergeable nodes yields the context minimal AND/OR
search graph, denotedCT . The size ofCT is exponential in the induced width ofG along a depth-first
traversal of T (see also [18]).

A solution tree x̂ is a subtree of CT such that: (1) contains the root of CT ; (2) if an internal OR node
n ∈ CT is in x̂ then exactly one of its AND children is in x̂; (3) if an internal AND node n ∈ CT is
in x̂ then all its OR children are in x̂; (4) every tip node in x̂ is a terminal node.

4.1 Arc Weights and Node Values

The OR-to-AND arcs in the AND/OR search space are associated with weights that are defined based
on the graphical model’s functions [19]. In order to solve the #opt task, each node n in CT is
associated with two values denoted by v(n) and c(n), respectively. The optimal value below n is
given by v(n), while c(n) captures the number of optimal solutions of the conditioned subproblem
rooted at n. Based on previous work [18], the value v(n) can be computed recursively based on the
values of n’s successors in CT , as follows:

v(n) =

0, if n is terminal AND node∑
m∈succ(n) v(m), if n is AND node

minm∈succ(n)(w(n,m) + v(m)), if n is OR node
(1)

Similarly, we can compute c(n) recursively as:

c(n) =

1, if n is terminal AND node∏
m∈succ(n) c(m), if n is AND node∑
m′∈succ(n) c(m), if n is OR node, and m’ ∈ argminm∈succ(n)(w(n,m) + v(m))

(2)

Clearly, the values v(s) and c(s) of the root node s represent the optimal value and the number of
optimal solutions of the initial problem.
Example 2. Figure 2 displays the weighted AND/OR search tree of the problem from Figure 1 based
on the pseudo tree from Figure 1(b). The node values v(n) and c(n) are shown next to each node (in
black and red, respectively). Consider the highlighted subtree rooted at the OR node labeled C. The
optimal value of the subproblems rooted by its AND children is 3, and since both values of C are
optimal in this case it follows that the number of optimal solutions below C is 2.

5

Algorithm 2 AOBB for #opt

Require: graphical model M = 〈X,D,F〉,
pseudo tree T , heuristic h(n)

1: function AOBB(x̂,X,D,F)
2: if X = ∅ then
3: return (0, 1)
4: else
5: Xi ← SelectV ar(T)
6: Let n be the OR node labeled by 〈Xi〉
7: if Ctxt(n) in cache then
8: (v(n), c(n))← ReadCache(Ctxt(n))
9: else

10: v(n)←∞; c(n)← 0; ch(n)← ∅
11: for all domain value xi ∈ Di do
12: Extend partial solution x̂← x̂∪{xi}
13: Let m be the AND node 〈Xi, xi〉

14: Let v(m)← w(n,m); c(m)← 1
15: Calculate f(x̂) using the h(m) of the

unexpanded leaves m of x̂
16: if f(x̂) ≤ v(s) then
17: for all k = 1 . . . q do
18: (v, c)← AOBB(x̂,Xk,Dk,Fk)
19: v(m)← v(m) + v
20: c(m)← c(m)× c
21: ch(n)← ch(n) ∪ {m}
22: v(n)← minm∈ch(n) v(m)
23: c(n) ←

∑
m′∈ch(n) c(m

′), where
m′ ∈ argminm∈ch(n) v(m)

24: WriteCache(Ctxt(n), v(n), c(n))
25: return (v(n), c(n))

Branch and Bound Search The depth-first AND/OR branch and bound (AOBB) search method
for the #opt task is described by Algorithm 2. The following notation is used: (X,D,F) is the
problem with which the procedure is called, x̂ is the current partial solution subtree, Ctxt(n) denotes
the context of a node n, while v(n) and c(n) are the node values that are updated based on the values
of their successors in the search space (see also Equations 1 and 2). The weight w(n,m) labels the arc
from the OR node n to its AND child m. The algorithm assumes that variables are selected according
to a pseudo tree T . If the set X is empty, then the result is trivially computed (lines 2–3). Else,
AOBB selects a variable Xi and expands the OR node n labeled by Xi, namely it iterates over its
domain values xi (line 11) to compute the node values v(n) and c(n), respectively. The algorithm
attempts to retrieve the results cached at the OR nodes (lines 7–8). If a valid cache entry is found
for the current OR node then the node values are updated (line 8) and the search continues. Before
expanding the AND node m labeled by 〈Xi, xi〉, AOBB uses the h(·) values of the unexpanded leaf
nodes in x̂ to compute the heuristic evaluation function f(x̂) which yields a lower bound on the
optimal extension of x̂. Subsequently, it safely prunes the search space below m if f(x̂) > v(s),
where v(s) is the current value of the root node s and is an upper bound on the optimal solution value.
Notice that, unlike in regular branch and bound search, a strict inequality is required to account for
all optimal solutions. The problem is then decomposed into a set of q independent subproblems, one
for each child Xk of Xi in the pseudo tree, which are then solved sequentially (line 17). After trying
all feasible values of variable Xi , the minimal cost as well as the number of optimal solutions to
the problem rooted by Xi remain in v(n) and c(n), which are returned (line 25). Based on previous
work [18], we can show that the complexity of AOBB is time and space O(n · kw∗T), where n is
the number of variables, k bounds the domain size and w∗T is the induced width along a depth-first
traversal of the pseudo tree.

Although algorithms AOBB and BE have the same worst-case complexity for #opt, in practice,
AOBB is likely to be more effective than BE because it can exploit a heuristic evaluation function to
prune the search space. We will illustrate this experimentally on several problem benchmarks.

5 The Semiring Formulation for #opt

We next show how to formulate and solve the #opt task within a semiring based system [7].
Specifically, consider the semiring A = 〈R2,⊗,⊕〉 over pairs of real values, where operations ⊗ and
⊕ are defined as follows (intuitively, v is the cost of a solution and c is the count):

(v1, c1)⊗ (v2, c2) = (v1 + v2, c1 · c2) (3) (v1, c1)⊕ (v2, c2) =

(v1, c1 + c2), if v1 = v2

(v1, c1), if v1 < v2

(v2, c2), if v1 > v2

(4)

6

It is easy to verify that⊗ and⊕ are commutative and associative, namely a⊗b = b⊗a, a⊕b = b⊕a,
a⊗ (b⊗ c) = (a⊗ b)⊗ c and a⊕ (b⊕ c) = (a⊕ b)⊕ c, for all a, b, c ∈ R2, respectively. In order
to facilitate local computations over the semiring valuations, ⊗ must distribute over ⊕ [22].

PROPOSITION 1 (distributivity). Given a semiring A = 〈R2,⊗,⊕〉, then ∀a, b, c ∈ R2 we have that
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

Proof. Let a = (v1, c1), b = (v2, c2) and c = (v3, c3). Assume that v2 < v3 (the other cases
v2 > v3 and v2 = v3 can be shown in a similar manner). Clearly, v1 + v2 < v1 + v3 also holds.
Then a ⊗ (b ⊕ c) = (v1, c1) ⊗ (v2, c2) = (v1 + v2, c1 · c2). We have that (a ⊗ b) ⊕ (a ⊗ c) =
(v1 + v2, c1c2)⊕ (v1 + v3, c1 · c3) = (v1 + v2, c1 · c2), which concludes the proof.

Given a graphical model 〈X,D,F〉, each local function ψα(Xα) ∈ F can be expressed as a semiring
valuation φα : Ω(Xα) → R2 such that ∀y ∈ Ω(Xα), φα(y) = (ψα(y), 1). We use the two
operations ⊕ and ⊗ in A to define the combination and elimination operators, as follows. Given two
valuations φ1(Y) and φ2(Z) such that Y,Z ⊆ X, the combination

⊗
is defined by φ1

⊗
φ2(yz) =

φ1(y)⊗ φ2(z) for all y ∈ Ω(Y) and z ∈ Ω(Z). Similarly, given a valuation φ(Y) such that Y ⊆ X
and Y = {X} ∪ Z, the elimination

⊕
is defined by

⊕
X φ(z) = ⊕x∈Ω(X)φ(xz), for all z ∈ Ω(Z).

Clearly, solving #opt corresponds to computing: (v∗, c∗) =
⊕

X1
· · ·

⊕
Xn

⊗
α∈F φα, where v∗ is

the optimal solution cost and c∗ is the number of optimal solutions. This can be done using bucket
elimination and search based algorithms such as those presented in the previous section.

Mini-Bucket Approximation and #opt Mini-Bucket Elimination (MBE) is a classic relaxation of
the exact bucket elimination that approximates each elimination operator to enable the user to control
a bound on the space and time complexity [14]. The idea is to partition each bucket into smaller
subsets called mini-buckets, each containing at most i distinct variables (where i is a user selected
parameter called the i-bound). The mini-buckets are processed independently by the same variable
elimination procedure resulting in messages over fewer variables and thus requiring less time and
memory (namely, O(n · ki), where n is the number of variables and k bounds the domain size).

The distributivity property from Proposition 1 allows us to extend MBE to the #opt task as well.
Specifically, let Xk be the current variable. The bucket Bk = {φ1, . . . , φm} is partitioned into r
mini-buckets Qk = {Qk1, . . . Qkr} such that Qkj = {φj1, . . . φjl}. Then, the exact elimination of
Xk from bucket Bk, namely

⊕
Xp

⊕
φ∈Bk φ can be approximated by

⊗
Qkj∈Qk

⊕
Xk

⊗
φ∈Qkj φ.

Unfortunately, this computation does not provide a bound on the number of optimal solutions. In fact,
we can show that the number can go up or down in an unpredictable manner.

Consider for example the following valuations a1 = (2, 1), b1 = (1, 1), a2 = (2, 1) and b2 = (2, 1).
We would like to provide a bound on the exact computation (v∗, c∗) = (a1 ⊗ b1) ⊕ (a2 ⊗ b2) by
(v, c) = (a1 ⊕ a2) ⊗ (b1 ⊕ b2). In this case, we have that (v∗, c∗) = (3, 1) ⊕ (4, 1) = (3, 1) and
(v, c) = (2, 2) ⊗ (1, 1) = (3, 2). Clearly, c = 2 is an upper bound on c∗ = 1 . On the other hand,
if a1 = (2, 1), b1 = (1, 1), a2 = (1, 2) and b2 = (2, 1) then (v∗, c∗) = (3, 1)⊕ (3, 2) = (3, 3) and
(v, c) = (2, 2)⊗ (1, 1) = (2, 2) in which case c = 2 is a lower bound on c∗ = 3.

This observation is in stark contrast with what we know about other tasks for graphical models such
as counting all solutions and finding the optimal solution to the model, where the MBE scheme is
guaranteed to produce an upper and, respectively, a lower bound on the value of the exact computation.
Therefore, we leave the extension of MBE into a correct bounding scheme for #opt as future work.

6 Experiments

We evaluate empirically our proposed counting algorithms on four benchmarks for graphical models.
All experiments were run on a 2.6GHz processor with 10GB of RAM.

Benchmarks and Algorithms For our purpose, we considered two random problem domains: (1)
grid which consists of random m-by-m grid networks, and (2) random which consists of random
networks with n variables and 2 · n binary functions, respectively. We generated random problem
instances for each domain, as follows: for grid problems, m ranged between 8 and 14, respectively
(so that the number of variables varied between 64 and 196); for random problems, the number
of variables ranged between 60 and 120, respectively. In all cases, the domain size of the variables
was set to 3. The function values were distributed uniformly at random between 1 and 10. In order

7

Table 1: Results for grid (left) and random (right) networks.

grid instances random instances
size p = 0.20 p = 0.50 p = 0.80 size p = 0.20 p = 0.50 p = 0.80
n, w* alg N #opt time N #opt time N #opt time n, w* alg N #opt time N #opt time N #opt time
64, 10 AOBB 10 13 0.08 10 267 0.07 10 5.58E+09 0.09 60, 11 AOBB 10 10 0.33 10 591 0.41 10 1.11E+07 0.35

A* 10 13 0.08 10 267 0.09 0 0 - A* 10 10 0.33 10 591 0.48 9 9.27E+05 370.66
BE 10 13 0.27 10 267 0.27 10 5.58E+09 0.27 BE 10 10 5.85 10 591 14.91 10 1.11E+07 6.86
BnB 10 13 0.08 10 267 0.09 6 2.25E+08 206.02 BnB 10 10 0.34 10 591 0.49 10 1.11E+07 83.51

100, 13 AOBB 10 45 0.26 10 1,030 0.25 10 5.71E+12 0.26 80, 16 AOBB 10 56 1.72 10 1,201 1.40 10 1.16E+08 1.21
A* 10 45 0.33 10 1,030 0.56 0 0 - A* 10 56 7.72 10 1,201 4.78 8 1.12E+07 1085.97
BE 10 45 8.29 10 1,030 8.49 10 5.71E+12 9.92 BE 4 7 2260.07 4 238 2213.98 3 2.38E+08 2617.60
BnB 10 45 0.31 10 1,030 0.36 0 0 - BnB 10 56 1.91 10 1,201 2.18 9 7.98E+07 1021.19

196, 19 AOBB 10 182 199.32 10 9.71E+06 62.13 10 5.11E+22 113.34 120, 22 AOBB 7 320 1815.84 9 1.38E+05 1147.63 10 1.14E+13 182.24
A* 2 96 2887.35 2 2,352 2885.78 0 0 - A* 0 0 - 0 0 - 1 1.59E+07 3320.61
BE 0 0 - 0 0 - 0 0 - BE 0 0 - 0 0 - 0 0 -
BnB 8 209 1025.42 7 1.20E+07 1635.57 0 0 - BnB 6 149 2029.35 7 1.63E+05 1598.08 0 0 -

Table 2: Number of optimal solutions (#opt) and CPU time (sec) on ISCAS (left) and SPOT5 (right) instances.

ISCAS instances SPOT5 instances
instance n, k, w* #opt AOBB A* BE BnB instance n, k, w* #opt AOBB A* BE BnB
c432 (432, 2, 28) 32 0.07 0.54 - 1050.67 1502 (209, 4, 6) 4.66E+70 0.08 - 0.03 -
c499 (499, 2, 24) 32 39.60 17.10 118.03 - 29 (82, 4, 14) 1.13E+12 7.29 - 187.78 -
c880 (880, 2, 27) 32 1.27 27.05 - 2783.92 404 (100, 4, 19) 21120 0.55 - 40.43 164.54
s1196 (1196, 2, 54) 16 118.17 - - - 42 (192, 4, 26) 2.57E+11 2031.22 - - -
s1423 (1423, 2, 23) 256 0.10 4.06 56.49 1843.46 503 (143, 4, 9) 6.41E+33 0.33 - 0.42 -
s1488 (1488, 2, 46) 2 1.99 1.84 - 102.58 505 (240, 4, 22) 3.06E+42 3351.22 - - -
s1494 (1494, 2, 46) 2 0.95 2.16 - 195.44 54 (67, 4, 11) 216 0.55 0.58 1.53 0.58
s386 (386, 2, 20) 2 0.04 0.07 4.91 0.16
s953 (953, 2, 72) 32 99.67 5.50 - -

to control the number of optimal solutions we post-processed each function by randomly setting p
percent of the function values to 1. We refer to p as the perturbation parameter and, intuitively, as p
increases, the number of optimal solutions should increase as well.

In addition, we also considered two collections of real-world WCSP instances derived from the
ISCAS circuits [23] and SPOT5 satellite scheduling benchmark [24], respectively. For the SPOT5
instances the goal is to find the optimal schedule for an Earth observing satellite. Clearly, the number
of optimal schedules may indicate certain degrees of freedom to operate the satellite in orbit. The
ISCAS instances correspond to diagnosis of digital circuits where the goal is to compute the most
likely explanation of a small subset of failed components. In this case as well the number of optimal
solutions could explain the reliability of the circuits. The original problem instances which we
obtained from the UCI Graphical Models Repository (graphmod.ics.uci.edu) are specified
as Markov networks with real valued potential values between 0 and 1. We converted these instances
into equivalent WCSPs by taking the negative log of the potential values and rounding up to the
nearest integer value.

We evaluated algorithms BE and AOBB and compared them with the A* search and the depth-first
branch and bound (BnB) that enumerate explicitly the optimal solutions. All search algorithms
were by guided by a static mini-bucket heuristic MBE(i) which was pre-compiled along a min-fill
elimination ordering [14, 19, 25]. The heuristic uses a parameter called i-bound to control the
accuracy of the heuristic estimates. We set the i-bound to 10 and allowed a 1 hour time limit to all
algorithms.

Measures of Performance We report the average CPU time in seconds (time), the number of
problem instances solved (N) and the average number of optimal solutions over the solved instances
(#opt), respectively. In addition, we also collect the problems’ parameters as the number of variables
(n), maximum domain size (k), and the average induced width (w∗) obtained along a min-fill based
elimination ordering [26]. The best performance points are highlighted. A “-” denotes that the
respective algorithm exceeded the time or the memory limit.

Results Table 1 summarizes the results obtained on the grid and random domains. The left-
most column indicates the problem sizes, while the remaining columns are divided into 3 groups
corresponding to different values of the perturbation parameter p ∈ {0.20, 0.50, 0.80}. Each data
point represents an average over 10 random instances. We can see that AOBB is the overall best
performing algorithm both in terms of running time and the number of problem instances solved (over
96% of instances solved). Furthermore, algorithms A* and BnB are competitive only for problems

8

0.2 0.4 0.6 0.8 1.0

perturbation (p)

0

1

2

3

4

C
P
U

 t
im

e
 (

s
e
c
)

grid (n=144, k=3, w*=16): CPU time vs #opt

AOBB

103

106

109

1012

1015

1018

1021

1024

1027

#
o
p
t

0.2 0.4 0.6 0.8 1.0

perturbation (p)

0

20

40

60

80

100

120

140

160

C
P
U

 t
im

e
 (

s
e
c
)

random (n=120, k=3, w*=24): CPU time vs #opt

AOBB

103

105

107

109

1011

1013

1015

1017

#
o
p
t

Figure 3: CPU time in seconds (red) versus number of optimal solutions (blue).

with small and moderate numbers of optimal solutions (e.g., grid and random with p = 0.20 and
p = 0.50, respectively). However, they typically fail to solve most of the problem instances where
the number of optimal solutions is very large (e.g., grid and random with p = 0.80) because of
the prohibitively large overhead associated with enumerating the optimal solutions. Finally, BE is
competitive only on problem instances with relatively small induced widths.

In Table 2 we show the results for solving the ISCAS and SPOT5 problem instances. We see again
that AOBB offers the best performance, especially on the SPOT5 instances which have the largest
number of optimal solutions. As before, BE can only handle problems with relatively small induced
width regardless of the number of optimal solutions. In this case, the performance of A* and BnB is
quite poor compared with AOBB and BE because of the large number of optimal solutions.

Figure 3 plots the running time of AOBB and the number of optimal solutions as a function of the
perturbation value (p) for two representative problem classes from the grid and random domains.
Each data point represents an average over 100 random instances generated for the respective p value.
We see that as the number of optimal solutions increases (i.e., p increases), the problems become
easier to solve and the running time decreases. This is important especially when designing random
problem generators for optimization to control the hardness of the problem instances generated.

7 Related Work

Model counting (#SAT), solution counting (#CSP) or weighted model counting (WMC) are well
known #P-complete problems that have many applications in fields such as verification, planning
and automated reasoning. Exact approaches to counting solutions are based on either extending
systematic search-based SAT/CSP solvers such as DPLL and AND/OR search [27, 28, 29, 30], or
variable elimination algorithms [14] which are known to be time and space exponential in the induced
width of the problem. Our algorithms build on top of those ideas by combining summation and
optimization without resorting to explicit enumeration. Approximate model counting techniques
based on hashing were recently proposed [31, 32]. However, these methods are not directly applicable
to the #opt task, at least not in a straightforward manner. Maximum model counting (Max#SAT) is
a recent extension of #SAT [33] that is also related to #opt. The work by [34] develops a semiring
based formalism for counting weighted subgraphs in an explicit larger graph.

8 Conclusion

We introduced here the #opt task for graphical models, presented and evaluated variable elimination
and depth-first AND/OR branch and bound algorithms for this task. We also described a semiring
based formulation of the task. The complexity of the proposed algorithms is exponential in the
induced width and does not depend on the number of optimal solutions. Our empirical evaluation
demonstrated their effectiveness compared with brute-force search approaches that rely on explicitly
enumerating the optimal solutions. Overall, our proposed AOBB version appears to be superior.

9

References
[1] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for general

pedigrees. Human Heredity, 59(1):41–60, 2005.

[2] J. Zeng, P. Zhou, and B. Donald. A markov random field framework for protein side-chain
resonance assignment. In Research in Computational Molecular Biology (RECOMB), page
550–570, 2010.

[3] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warners. Radio link frequency assignment.
Constraints, 4:79–89, 1999.

[4] T. Hadzic and J. Hooker. Postoptimality analysis for integer programming using binary decision
diagrams. Technical Report, Carnegie Mellon., 2006.

[5] R. Mateescu, R. Dechter, and R. Marinescu. AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of Artificial Intelligence Research, 33:465–519,
2008.

[6] N. Flerova, R. Marinescu, and R. Dechter. Searching for the m best solutions in graphical
models. Journal of Artificial Intelligence Research, 55(1):889–952, 2016.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimization.
Journal of ACM, 44(2):201–236, 1997.

[8] R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[9] K. Kask, R. Dechter, and V. Gogate. Counting-based look-ahead schemes for constraint
satisfaction. In International Conference on Principles and Practice of Constraint Programming
(CP), pages 317–331, 2004.

[10] R. Marinescu, J. Lee, R. Dechter, and A. Ihler. Anytime best+depth-first search for bounding
marginal MAP. In AAAI Conference on Artificial Intelligence (AAAI), pages 1749–1755, 2017.

[11] R. Shachter. Probabilistic inference and influence diagrams. Operations Research, 36(4):589–
604, 1988.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[13] R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algo-
rithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2013.

[14] R. Dechter and I. Rish. Mini-buckets: A general scheme of approximating inference. Journal
of ACM, 50(2):107–153, 2003.

[15] E. Lawler and D. Wood. Branch and bound methods: A survey. Operations Research, 14:699–
719, 1956.

[16] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics, 8(2):100–107, 1968.

[17] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A*. In
Journal of ACM, 32(3):505–536, 1985.

[18] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intelligence,
171(2-3):73–106, 2007.

[19] R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

[20] R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1492–1524, 2009.

[21] W. Lam, K. Kask, J. Larrosa, and R. Dechter. Residual-guided look-ahead in AND/OR search
for graphical models. Journal of Artificial Intelligence Research, 60:287–346, 2017.

10

[22] J. Kohlas and N. Wilson. Semiring induced valuation algebras: exact and approximate local
computation algorithms. Artificial Intelligence, 172(1):1360–1399, 2008.

[23] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinatorial benchmark circuits and a target
translator in fortran. In IEEE International Symposium on Circuits and Systems, 1996.

[24] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management. Constraints,
4(3):293–299, 1999.

[25] K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics from
specification dependencies. Artificial Intelligence, 129(1-2):91–131, 2001.

[26] U. Kjaerulff. Triangulation of graph-based algorithms giving small total space. Technical
Report, University of Aalborg, Denmark, 1990.

[27] R. Bayardo and J. Pehoushek. Counting models using connected components. In National
Conference of Artificial Intelligence (AAAI), pages 157–162, 2000.

[28] R. Dechter and R. Mateescu. The impact of AND/OR search spaces on constraint satisfaction and
counting. In International Conference on Principles and Practice of Constraint Programming
(CP), pages 731–736, 2004.

[29] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model counting. In
National Conference of Artificial Intelligence (AAAI), pages 475–482, 2005.

[30] M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(1):772–799, 2008.

[31] A. Sabharwal S. Ermon, C. Gomes and B. Selman. Taming the curse of dimensionality: Discrete
integration by hashing and optimization. In International Conference on Machine Learning
(ICML), page 334–342, 2013.

[32] S. Chakraborty, D. Fremont, K. S. Meel, S. Seshia, and M. Y. Vardi. Distribution-aware
sampling and weighted model counting for sat. In AAAI Conference on Artificial Intelligence
(AAAI), page 1722–1730, 2014.

[33] D. Fremont, M. Rabe, and S. Seshia. Maximum model counting. In AAAI Conference on
Artificial Intelligence (AAAI), pages 3885–3892, 2017.

[34] V. Vassilevska and R. Williams. Finding, minimizing and counting weighted subgraphs. In
ACM Symposium on Theory of Computing (STOC), pages 455–464, 2009.

11

	Introduction
	Background
	Bucket Elimination for #opt
	AND/OR Branch and Bound for #opt
	Arc Weights and Node Values

	The Semiring Formulation for #opt
	Experiments
	Related Work
	Conclusion

