Submodel Decomposition for Solving Limited Memory Influence Diagrams Junkyu Lee (junkyul@uci.edu) University of California, Irvine

Summary

Tree Decomposition for Limited Memory Influence Diagrams

D-separation criteria identify a tree of 1-stage decision problems

Optimal Solution and the Worst-case Complexity

Equilibrium of policy functions within a submodel can be computed by exponential in the treewidth of submodel

Relaxation for Approximate Algorithms

Submodel tree provides a basis of various relaxations

Influence Diagrams^[1,2]

Submodel Tree Decomposition

Partial Evaluation and Submodel

Submodel: Subset of ID relevant for computing partial MEU

Identify relevant variables and functions for computing expected utility over a subset of decision and utility

 $\max \mathbb{E}[u_2(h_2, d_2)]$ Δ_{d_1}

observed variables: {h1} hidden variables: {h2, t2, d2}

Sequential Decision Making Under Uncertainty

Graphical Representation of SDM and Optimal Solution

Imperfect recall agent (remember only immediate observations)

Graph Separation Criteria for Identifying Submodel^[2,7,8,9]

(a) $\operatorname{REL}_U(\mathbf{D}) = \operatorname{desc}(\mathbf{D}) \cap \mathbb{U}$

(b) $\operatorname{REL}_O(\mathbf{D}, \mathbf{U}) = \bigcup_{D \in \mathbf{D}} \operatorname{pa}(D) \cap \operatorname{Backdoor}(\mathbf{D}, \mathbf{U})$

 $\operatorname{REL}_{H}(\mathbf{D},\mathbf{U}) = \{X | X \in \mathbb{H} \cap \operatorname{Frontdoor}(\cup_{D \in \mathbf{D}} \operatorname{pa}(D), \operatorname{ch}(\mathbf{U}))\}$ (C)

Submodel Tree Decomposition ${\mathcal T}$

 $\mathcal{O}_T := \{d_T, \cdots, d_1\} \leftarrow \text{a total decision order compatible with reverse topological order}$ $\mathcal{O}_D \leftarrow [] \quad \mathbf{X}_D = \text{decision variables} \quad \mathbf{D}_{\text{current}} = d_T$ while i in range(T,0, -1): if $\operatorname{REL}_H(\mathbf{D}_{\operatorname{current}}, \operatorname{REL}_U(\mathbf{D}_{\operatorname{current}}))$ has no decision in \mathbf{X}_D

the same information set

 $\searrow u(s_1, d_1, t_2, d_2, s_2)$ $+u(s_1, d_1, t_2, d_2, s_2)$ $-u(s_1, d_1, t_2, d_2, s_2)$ $\star u(s_1, d_1, t_2, d_2, s_2)$

 Multiselves equilibrium^[3,4,5,6] by Bayesian belief update followed by marginalization of missing history

Perfect recall agent (remember the whole history)

 $\mathcal{O}_D.append(\mathbf{D}_{current})$ $\mathbf{X}_D = \mathbf{X}_D \setminus \mathbf{D}_{\mathrm{current}}$ $\mathbf{D}_{\mathrm{current}} = []$ $\mathbf{D}_{\text{current}} = \mathbf{D}_{\text{current}} \cup \{d_i\}$

Message Passing (Variable Elimination) over Submodel Tree

Apply variable elimination^[10] for each submodel and propagate conditional expected utility

 \max_{d_2}

 \max_{d}

 \sum_{t_2}

Space/time Complexity $K^{\max \mathcal{M}_i \in \mathcal{T}} w_{\mathcal{M}_i}$ KMax. domain size $w_{\mathcal{M}_i}$ Tree-width of submodel

[1] Howardand Matheson, "Influence Diagrams", 1981 [2] Lauritzen, and Nilsson, "Representing and Solving Decision Problems with Limited Information", 2001 [3] Rubinstein, "Modeling bounded rationality", 1998 [4] Battigalli, "Dynamic consistency and imperfect recall", 1997 [5] Lambert, Marple, and Shoham, "On equilibria in games with imperfect recall", 2019 [6] Halpern, and Pass, "Sequential equilibrium in games of imperfect recall", 2016 [7] Nielsen and Jensen, "Well-defined Decision Scenarios", 1999 [8] Nielsen, "Decomposition of influence diagrams", 2001 [9] Pearl, "Causality", 2009 [10] Dechter, "A New Perspective on Algorithms for Optimizing Policies under Uncertainty", 2000 [11] Maua, de Campos and Zaffalon, "Solving Limited Memory Influence Diagrams", 2012 [12] Zhang and Poole, "Stepwise-Decomposable Influence Diagrams.", 1992 [13] Pralet, Schiex and Verfaillie, "From Influence Diagrams to Multi-operator Cluster DAGs", 2006

Backward induction with Bayesian Belief Update

