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ABSTRACT OF THE DISSERTATION

Decomposition Bounds for Influence Diagrams

By

Junkyu Lee

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Prof. Rina Dechter, Chair

Graphical models provide a unified framework for modeling and reasoning about complex

tasks. Example tasks include probabilistic inference and sequential decision making under

uncertainty. Influence diagrams (IDs) extend Bayesian networks with decision variables and

utility functions to model the interaction between an agent and a system aiming to cap-

ture the agent’s preferences. The standard task is to compute the maximum expected utility

(MEU) over the influence diagram and a corresponding sequence of policies. However, finding

the MEU is intractable, and it is one of the most challenging tasks in graphical models. The

goal of this dissertation is the development of decomposition bounds for influence diagrams.

Computing upper bounds on the MEU is desirable also because upper bounds can facilitate

anytime-solutions by acting as heuristics to guide search or sampling-based methods. Most

earlier approaches for upper bounding the MEU relied on polynomial reductions to other

standard tasks in graphical models. However, such reductions are ineffective in practice since

they highly inflate the size of the problems that needs to be solved. In this dissertation, we

present two direct bounding methods for IDs. The first builds on the algebraic framework

for influence diagrams, called valuation algebra. Using this framework, we extend two earlier

decomposition bounds to the MEU task. The second method provides upper bounds by ex-
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ploiting an exponentiated utility form of the MEU, which can be bounded by a conventional

task (i.e., marginal MAP) over a standard probabilistic graphical model. This enables the

use of two variational decomposition bounds for the well known marginal MAP task, yielding

what we call exponentiated utility bounds for the MEU. For both cases (using valuation al-

gebra and using exponentiated utilities), we present two kinds of message passing algorithms

derived from bounding schemes on the marginal MAP task. One is the generalized dual

decomposition algorithm, which propagates messages over a join-graph decomposition of an

ID. The other is a weighted mini-bucket algorithm that propagates messages over the mini-

bucket tree decomposition. We evaluated all the algorithms empirically and compared them

against earlier approaches over four synthetic benchmark domains. The empirical evaluation

results show that our direct bounding schemes generate upper bounds that are orders of

magnitude tighter than previous methods. In addition, the exponentiated schemes turn out

to be far more effective overall. We also evaluated our algorithms on the well-known system

administration domain and observed that one of the exponentiated algorithms exhibited a

remarkable performance generating upper bounds that are within a factor of two from the

exact MEU.

xiv



Chapter 1

Introduction

Graphical models provide a unified framework for modeling complex systems and reason-

ing inference tasks such as probabilistic inference and decision making under uncertainty

[Pearl, 1988, Lauritzen, 1996, Darwiche, 2009, Koller and Friedman, 2009, Dechter, 2013].

Probabilistic graphical models such as Bayesian networks (BNs) capture the local structure

in probability models, and they offer the basis of analysis and design of graph-based al-

gorithms. Influence diagrams (IDs) [Howard and Matheson, 1981] which extend Bayesian

networks with decision variables and utility functions, are discrete graphical models of a

single agent’s sequential decision making under uncertainty. The standard inference task

in IDs is computing the maximum expected utility (MEU) and finding an optimal set of

decision rules that achieves this MEU. It is considered one of the most challenging tasks in

graphical models.

Since its inception in the early 1980s, IDs have been a popular choice for modeling decision

problems [Owens et al., 1997, Nielsen and Jensen, 2003, Sommestad et al., 2009, Carriger

and Barron, 2011, Koenig and Matarić, 2017, Everitt et al., 2019]. IDs facilitate decision

analysis paired with Bayesian analysis as shown in medical decision problems [Owens et al.,

1997] and sensitivity analysis of the decisions subject to the changes in the model parameters

[Nielsen and Jensen, 2003]. Due to its intuitive appeal we can see many applications of IDs

in a variety of domains [Sommestad et al., 2009, Carriger and Barron, 2011, Koenig and

1



Matarić, 2017]. This popularity is partly because rational behavior can be formulated as an

inference task in IDs [Russell and Norvig, 2010]. We also see a more recent application of

IDs in modeling artificial general intelligence safety framework [Everitt et al., 2019] since IDs

allow flexible structures and capture richer local structures compared with other frameworks

such as Markov Decision Process.

Recent advances in graphical model inference algorithms mostly focus on developing new

approximate inference schemes, often relying on reformulating inference tasks as optimization

[Wainwright and Jordan, 2008], or improving the scalability and efficiency of algorithms to

solve more practical and for larger scale problems by using search [Pearl, 1984, Hansen

and Zhou, 2007]. However, in contrast to the popularity and success in advancing other

probabilistic inference tasks, the MEU task has been less addressed. Often it is considered

as a problem that can be solved through translation to other traditional well researched

tasks, partly due to its close relationship to the marginal MAP task [Mauá, 2016].

Our primary focus in this thesis is on computing upper bounds on the MEU in IDs. The upper

bound is desirable not only because it offers an approximate solution to the intractability of

the MEU task, but also because we can use it as a building block in other algorithms such as

heuristic search or in sampling-based schemes. As noted, earlier approaches for generating

upper bounds on the MEU rely on its reduction to marginal MAP (MMAP). This however

introduces a set of auxiliary variables and relations inflating the resulting problem size, as

we will illustrate. In this thesis, we present two direct approaches for bounding MEU:

• Generalize the existing algebraic framework called valuation algebra for IDs with the

powered-summation operation and extend variational decomposition bounds to this

framework,

• Introduce a new exponentiated utility bound for IDs, and then bounding it using

recently developed decomposition bounds.
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In both approaches, namely that of extending decomposition bounds to valuation algebra

and those decomposition bounds defined over the exponentiated utility bounds we present

two types of message passing algorithms. The first are iterative algorithms that propagate

messages over a join-graph decomposition [Mateescu et al., 2010] for IDs, and the second

sends messages over a mini-bucket tree decomposition [Dechter and Rish, 2003] for IDs. We

evaluate all the algorithms empirically and compared them against earlier approaches. The

empirical evaluation results show that our direct bounding schemes generate upper bounds

that are orders of magnitude tighter than earlier schemes, especially against translation based

schemes.

Chapter 2 provides a background of earlier methods and notation conventions. Chapters 3

and 4 provide the contributions of this thesis. In the following subsections, we will detail

the contributions in those two chapters.

1.1 Direct Decomposition Bounds for IDs

Chapter 3 focuses on developing direct decomposition bounds for the MEU task. One early

work that yields direct bounds on the MEU is the mini-bucket elimination scheme [Dechter,

2000, Dechter and Rish, 2003]. Later, a translation method introduced by Liu and Ihler

[2012] converts the MEU task into mixed inference task with the cost of introducing a

selector variable having a large domain size. Mauá [2016] introduced a different translation

showing the equivalence between the MEU task and MMAP task. In practice, the benefit of

both reductions is outweighed by the cost caused by the inflation of the problem size as is

clearly supported by our empirical evaluation. This observation motivated our development

of direct decomposition bounds for IDs.
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1.1.1 Bounding Schemes using Valuation Algebra for IDs

One difficulty in handling the MEU task is the presence of two kinds of combination op-

erators. Namely, we have a multiplication operator applied to probability functions and a

summation operator applied to utility or value functions. The valuation algebra processes

pairs of probability and value functions using a single combination operator, thus simplifying

the representation, inviting traditional schemes such as exact variable elimination, and de-

composition bounds schemes. Specifically, using the valuation algebra [Jensen et al., 1994],

we present bounding algorithms that apply generalized dual decomposition (GDD) [Liu and

Ihler, 2012, Liu, 2014, Ping et al., 2015] and weighted mini-bucket elimination (WMBE)

[Dechter, 1999, Dechter and Rish, 2003, Liu and Ihler, 2011, Ihler et al., 2012, Liu, 2014,

Marinescu et al., 2014] schemes, developed for MMAP, to the MEU task.

Contributions

• We define the powered-summation operation for the valuation algebra for IDs.

• We generalize the decomposition bounds in probabilistic graphical models to the val-

uation algebra for IDs.

• We formulate an optimization problem over join-graph decomposition of IDs, yielding

the algorithm JGD-ID applying the GDD scheme.

• We formulate an optimization problem over the mini-bucket tree decomposition of IDs,

yielding algorithm WMBE-ID applying both GDD and the WMBE schemes.

1.1.2 Bounding Schemes using Exponentiated Utility Functions

While the valuation algebra simplifies representation and facilitates variable elimination

procedures it is known to result in higher induced width due to using its pairs representation
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over a constrained variable ordering. In addition, the optimization formulation over the

valuation algebra yields a non-convex optimization problem that is much harder to solve.

Therefore, we moved back to developing bounding algorithms without using valuation alge-

bra, by introducing the exponentiated utility bounds. Here also we present two algorithms

that are built on top of the GDD scheme [Ping et al., 2015] and the weighted mini-bucket

with moment matching (WMBMM) scheme [Marinescu et al., 2014].

Contributions

• We define the exponentiated ID, which exponentiates the sum of utility functions,

yielding multiplicative exponentiated utility functions.

• Using the exponentiated ID we introduce a new bound to the MEU expressed as mixed

inference.

• We combine the resulting exponentiated utility bound with decomposition bounds in

a mixed inference task, allowing direct reuse of existing bounding algorithms

• We implement two bounding algorithms: JGD-EXP using GDD and WMBMM-EXP

using WMBMM.

1.2 Empirical Evaluation of Decomposition Bounds for IDs

We dedicate Chapter 4 to the empirical evaluation of the proposed direct bounding algo-

rithms, JGD-ID, WMBE-ID, JGD-EXP, andWMBMM-EXP.We also evaluate two reduction

based approaches. The first approach uses the translation method by Liu and Ihler [2012],

which yield mixed inference tasks to which we applied the GDD algorithm [Ping et al., 2015].

The second approach uses the translation by Mauá [2016], to which we applied WMBMM

for MMAP task [Marinescu et al., 2014].
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1.2.1 Benchmark Results from Synthetic Domains

We generated four synthetic benchmark domains including fully observable factored Markov

Decision Process (MDP) problems, partially observable MDP problems, IDs with random

graphs, and IDs modified from existing BNs. Each domain has instances with varying ranges

of difficulties from easy to hard.

Contributions

• We generated new benchmark sets for evaluating algorithms over IDs.

• We illustrated the negative impact of reduction-based methods and in particular showed

the extent to which such methods inflate problem sizes.

• We experimented with varying time and memory resource bounds and characterize the

algorithms performance at different combinations of the resource limits.

1.2.2 A Case Study on System Administration Planning Domains

The system administration domains [Guestrin et al., 2003] are popular problem domains

in probabilistic planning, and are used in the international planning competitions [Sanner

et al., 2011]. We selected our best-performing algorithm, WMBMM-EXP and evaluated its

power to yield upper bounds on a large scale, factored MDP/POMDP domains. Since the

exact MEU is unknown for most of the problem instances, we evaluated using state-of-the-art

online planners to obtain lower bounds of the MEU.

Contributions

• We converted into influence diagram framework system administration problems that

are expressed in planning domain languages [Sanner, 2010].
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• Our results show that the gap between the our upper bounds using our best direct

decomposition schem and the lower bounds obtained from an online planner is at most

47 percent (within a factor of two).

7



Chapter 2

Background

This chapter reviews the background and basic notations. Section 2.1 introduces basic con-

cepts in graphical models. Section 2.2 reviews decomposition methods in graphical models.

Section 2.3 reviews variational decomposition bounds for generating upper bounds in prob-

abilistic inference tasks. Section 2.4 reviews the basic concepts in influence diagrams (IDs)

and earlier works for solving IDs.

2.1 Probabilistic Graphical Models

Graphs are the main language in graphical models. Graphs represent a model comprised of

variables and relations, serve as a tool for analyzing the computational complexity and ab-

stract schemes for solving inference tasks, and implementing data structures and algorithms.

We denote a set by the bold-face capital letters (e.g., X, D, F), a set of indices of a set S

by IS, the number of elements of a set S by |S|, a member of a set by the upper case letters

often followed by its index in a set (e.g., Xi ∈ X), a domain of a variable Xi by dom(Xi),

an assignment of a value xi to a variable Xi by Xi = xi, an assignment of values x to a set

of variables X by X = x or (X1 = x1, . . . , XN = xN), and a scope of a function Fi by sc(Fi).

Basic notations for graphs are given as follows. In a directed graph G := 〈V , E〉 over a set of
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nodes V and a set of edges E , we denote a set of parent nodes of Y by pa(Y ), a set of child

nodes of Y by ch(Y ), a set of ancestor nodes of Y by an(Y ), a set of descendant nodes of Y

by de(Y ), a family of a node of Y by fa(Y ) := pa(Y ) ∪ {Y }, and a set of neighbor nodes of

Y by nhd(Y ) := pa(Y )∪ ch(Y ). In an undirected graph, a set of neighbors of Y is the set of

nodes adjacent to y. The above graph notations can be extended to a subset of nodes Y by

taking the unions of the individual sets, e.g., pa(Y) = ∪i∈IYpa(Yi). While describing graph

concepts in graphical models, we will interchange the notations for the variables and nodes

when it is clear from the context.

Definition 2.1 (Graphical Model M). A probabilistic graphical model M is a tuple

〈X,D,F〉, where

1. X is a finite set of variables {X1, X2, . . . , Xn},

2. D is a set of finite domains of variables {D1, D2, . . . , Dn} s.t. ∀i ∈ IX Di = dom(Xi)

3. F is a finite set of non-negative functions {F1, F2, . . . , Fm} s.t. ∀i ∈ IF sc(Fi) ⊂ X.

2.1.1 Bayesian Networks and Markov Networks

Bayesian networks and Markov networks are two popular probabilistic graphical models that

each represents the local structure either by a directed acylic graph (DAG) or an undirected

graph (UG).

Definition 2.2 (Bayesian Networks MBN). A Bayesian network MBN := 〈X,D,F〉 is

a graphical model with a set of conditional probability functions that factorizes the joint

probability distribution P (X) over DAG GBN := 〈V , E〉 by

P (X) =
∏
Xi∈X

P
(
Xi|pa(Xi)

)
. (2.1)
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(a) Bayesian Network (b) Markov Network

Figure 2.1: Example of Bayesian Network and Markov Network

The GBN represents a set of variables X by nodes V, and the scope of each P
(
Xi|pa(Xi)

)
by

directed edges from pa(Xi) to Xi.

Definition 2.3 (Markov Networks MMN). A Markov network MMN := 〈X,D,F〉 is

a graphical model with a set of non-negative real valued functions that factorizes the join

probability model F (X) over an UG GMN := 〈V , E〉 by

P (X) =
1

Z

∏
Fi∈F

Fi, Z =
∑
X

∏
Fi∈F

Fi, (2.2)

where Z is the normalization constant or partition function. The GMN represents a set of

variables X by nodes V, and two nodes Xi and Xj are connected by an edge (Xi, Xj) ∈ E if

they appear together in the scope of some function Fi ∈ F.

Example 2.1. Figure 2.1 illustrates an example of Bayesian network and Markov network.

In the Bayesian network shown in Figure 2.1a, the nodes {A,B,C,D,E, F} represents dis-

crete random variables and the directed edges defines conditional probability functions that

defines joint probability distribution

P (A,B,C,D,E, F ) = P (A)P (B|A)P (C|A)P (D|A,B)P (E|B,C)P (F |E). (2.3)
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In the Markov network shown in Figure 2.1b, the nodes {A,B,C,D,E, F} represents dis-

crete random variables and the undirected edges define the scope of non-negative real-valued

functions. Assuming all functions are defined over two variables the joint probability model

can be written by

F (A,B,C,D,E, F ) = F1(A,B) · F2(A,C) · F3(A,D) · F4(B,C)·

F5(B,D) · F6(B,E) · F7(C,E) · F8(E,F ). (2.4)

Unlike Bayesian networks, the joint probability model in Markov network is not a probability

distribution since it is not normalized. Therefore, we need to normalize F (A,B,C,D,E, F )

by

Z =
∑

A,B,C,D,E

F (A,B,C,D,E, F )

to define a joint probability distribution

P (A,B,C,D,E, F ) =
1

Z
F (A,B,C,D,E, F ).

2.1.2 Inference Tasks in Probabilistic Graphical Models

For defining inference tasks, it is convenient to introduce the valuation algebra [Shenoy, 1997,

Kohlas and Shenoy, 2000].

Definition 2.4 (Valuation). Given a set of variables X′ ⊂ X, a valuation ΨX′ is the set of

the values from all the possible assignments to the variables X′. For the set of all variables

X, ΨX is the set of all valuations ΨX′ over all possible subsets X′ ⊂ X, and we denote the

set of all valuations over any X′ ⊂ X by

ΨΨΨ := ∪X′⊂XΨX′ .
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We say that X′ is the domain of ΨX′,

dom(ΨX′) = X′.

The set of all possible domains of the valuations is the power set of X denoted by

D := 2X.

The combination operation ⊗ is a binary operation that maps a pair of valuations to another

valuation

⊗ : ΨΨΨ×ΨΨΨ→ ΨΨΨ,

and the projection operation ⇓X′ projects the domain of a valuation by a mapping

⇓X′ : ΨΨΨ× D→ ΨΨΨ, s.t. dom(⇓X′ Ψ) = X′.

Definition 2.5 (Valuation Algebra). A system of valuations Υ := 〈ΨΨΨ,D,⊗,⇓〉 over the

set of all valuations ΨΨΨ := {ΨX′i
|X′i ∈ D} with the combination operation ⊗ and the projection

operation ⇓ defines a valuation algebra if it satisfies the following axioms [Kohlas and Shenoy,

2000].

1. Semigroup: ΨΨΨ is associative and commutative under the combination operation ⊗.

2. Domain of combination: For ΨX′i
,ΨX′j

∈ ΨΨΨ,

dom(ΨX′i
⊗ΨX′j

) = dom(ΨX′i
) ∪ dom(ΨX′j

). (2.5)
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3. Marginalization: For ΨX′i
∈ ΨΨΨ and X′j ∈ D,

⇓X′j ΨX′i
=⇓X′i∩X′j ΨX′i

, dom(⇓X′j ΨX′i
) = X′i ∩X′j, ⇓X′i ΨX′i

= ΨX′i
. (2.6)

4. Transitivity of marginalization: For Ψ ∈ ΨΨΨ,

⇓X′i
(
⇓X′j Ψ

)
=⇓X′i∩X′j Ψ. (2.7)

5. Distributivity of Marginalization over Combination: For ΨX′i
,ΨX′j

∈ ΨΨΨ,

⇓X′i
(
ΨX′i
⊗ΨX′j

)
= ΨX′i

⊗
(
⇓X′i ΨX′j

)
. (2.8)

6. Neutrality: For X′i,X
′
j ∈ D,

eX′i ⊗ eX′i = eX′i∪X′j , (2.9)

where eX′ is a neutral element such that Ψ ⊗ eX′ = eX′ ⊗ Ψ = Ψ for all valuations

Ψ ∈ ΨX′.

Let F denote a set of all real valued factors defined over the set of discrete random variables

X inM. Then, the tuple 〈F,D,+,×〉 is a semi-ring with addition + and multiplication ×

operations that forms a valuation algebra [Shenoy, 1989, Kohlas and Shenoy, 2000, Kohlas

and Wilson, 2008].

Proposition 2.1 (Valuation Algebra over Discrete Factors). The tuple 〈F,D,
⊗
,
w�〉

over a probabilistic graphical modelM = 〈X,D,F〉 is a valuation algebra with the following

operations.

1. projection:
w�

Y
F :=

∑
sc(F )\Y F ,

2. combination: Fi
⊗

Fj := Fi × Fj.
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For a probabilistic graphical model, the combination of all factors Fi ∈ F defines a joint

probability model

F :=
⊗
Fi∈F

Fi =
∏
Fi∈F

Fi. (2.10)

We define inference tasks over the probabilistic graphical models by using the type of pro-

jection operators applied to the functions. The projection operator in Proposition 2.1 can

be replaced by other operations than summation such as maximization, minimization, or the

powered-summation that generalizes others.

Definition 2.6 (Powered-summation). The powered-summation operation
∑w

X is defined

by
w∑
X

F (X) =
[∑

X

|F (X)|1/w
]w
,

where the variable X associated with a weight 0 < w ≤ 1.

For a non-negative function, the powered summation reduces to the summation, maximiza-

tion, and minimization when w = 1, limw→0+

∑w
X F (X), and limw→0−

∑w
X F (X), respec-

tively.

In probabilistic inference, the summation task computes a marginal probability by marginal-

izing out a subset of variables, the normalization constant of an unnormalized distribution, or

the probability of evidence by marginalizing out a subset of variables after assigning evidence

to the observed variables.

Definition 2.7 (Summation Task). Given a probabilistic graphical modelM := 〈X,D,F〉

defining a joint probability model F (X), the summation task marginalizes out a subset of

variables Y ⊂ X from the scope of the joint distribution by

∑
Y

∏
Fi∈F

Fi. (2.11)
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The optimization task seeks the extreme values of a function either by maximization or

minimization depending on the context. In this thesis, we assume all optimization tasks

maximize their respective objective function.

Definition 2.8 (Maximization Task). Given a probabilistic graphical modelM := 〈X,D,F〉

defining a joint probability model f(X), the optimization task is defined by

max
X

∏
Fi∈F

Fi, (2.12)

and finds an optimal assignment

x∗ = argmax
X

F (X). (2.13)

The marginal MAP (MMAP) task generalizes the maximization task by allowing a subset

of the variables to be marginalized.

Definition 2.9 (Marginal MAP Task). Given a probabilistic graphical model M :=

〈X,D,F〉 defining a joint probability model F (X), the marginal MAP task first marginalizes

out the subset of variables by the summation, then performs the maximization task,

max
XM

∑
XS

F (X), (2.14)

where XM is the maximization variables and XS = X\XM is the summation variables. The

optimal assignment x∗M to the maximization variable is defined by

x∗M = argmax
XM

∑
XS

F (X). (2.15)

The mixed inference task also involves the summation operation and the maximization op-

eration as the MMAP task, and we often use the MMAP task and the mixed inference task
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interchangeably when it is clear from the context.

Definition 2.10 (Mixed Inference Task). Given a probabilistic graphical model M :=

〈X,D,F〉 defining a joint probability model F (X), the mixed inference task marginalizes out

variables from the joint distribution by alternating max and
∑

operations subject to a partial

elimination order O := {XM0 ,XS0 ,XM1 ,XS1 , . . . ,XMN
,XSN},

max
XM0

∑
XS0

· · ·max
XMN

∑
XSN

F (X), (2.16)

where XMk
is a subset of variables eliminated by the maximization, and XSk is a subset of

variables eliminated by the summation. The partial order O is the order of applying the

respective sum and max projections, which do not commute. We define the function defining

the optimal assignments for the set of variables XMk
given each assignment to the previous

variables x∗M0
, . . . ,x∗Sk−1

by

∆∗(XMk
|XM0 ,XS0 , . . . ,XSk−1

) = argmax
XMk

∑
XSk

· · ·
∑
XMN

F
(
XM0 = x∗M0

, . . . ,XSk−1
= x∗Sk−1

)
. (2.17)

Theses can be called mixed best cost-to-go function.

2.1.3 Graph Separation and Independence Models

Given a graphical modelM, dependency relations between sets of variables can be assessed

by the graph separation [Pearl, 1988].

Definition 2.11 (Conditional Independence). Given a probability distribution P , we

denote that a set of variables X and Y are conditionally independent given Z by (X ⊥

Y|Z)M.

Definition 2.12 (Separation in a Graph). By denoting (X ⊥ Y|Z)G, a set of nodes Z

separates X and Y in G in a directed or undirected graph G if every path between nodes from

X to Y is disconnected in the graph or blocked by nodes in Z, as defined shortly.
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In Bayesian networks, separation is defined by the d-separation criterion over the DAG. It

was shown that the d-separation captures conditional independence between variables in the

presence of evidence in the given Bayesian network [Pearl, 1988].

Definition 2.13 (d-Separation). Given a DAG G, a path p is d-separated by a set of nodes

Z if and only if

1. p contains a chain i→ m→ j or a fork i← m→ j such that m ∈ Z, or

2. p contains a collider i→ m← j such that m 6∈ Z and de(m) ∩ Z = ∅.

A set Z d-separates X for Y if and only if Z d-separates every path from a node in X to a

node in Y. In undirected Markov networks GMN, a set Z separates X for Y if and only if Z

disconnects every path from a node in X to a node in Y.

The connection between a probability modelM and a graph G is formalized by the notion

of dependency and independency maps.

Definition 2.14 (I-map). We say a graph G is an I-map (Independence map) of a prob-

ability model M if any graph separation (X ⊥ Y|Z)G implies conditional independence

(X ⊥ Y|Z)M. If removing an edge in G renders G not being an I-map, the G is minimal.

Definition 2.15 (D-map). We say a graph G is a D-map (Dependency map) of a probability

modelM if a conditional independence (X ⊥ Y|Z)M implies graph separation (X ⊥ Y|Z)G.

Definition 2.16 (P-map). We say a graph G is a P-map (Perfect map) of a probability

modelM if it is both I-map and D-map.

Remarkable results in graphical models make connections between two concepts, the one

on the conditional independence assertions in a probability model and the other on the

separation in a primal graph [Pearl, 1988].
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Definition 2.17 (Primal Graph GP). A primal graph of a graphical model MG is an

undirected graph of nodes representing the variables. An edge connects two nodes if they

appear in the scope of a function.

Markov networks represent its structure by primal graphs, whereas the DAG of a Bayesian

network can be transformed into a primal graph by moralizing the DAG.

Definition 2.18 (Moral Graph GM). A moral graph of a directed graph is an undirected

graph obtained by processing the directed graph by

1. connecting all the parents of a node, and

2. remove the direction of all arcs.

Then, the following theorems state that a primal graph GP of a probabilistic graphical model

M indeed captures some conditional independence assertions in P .

Theorem 2.1 (Soundness of the graph separation). Let p(X) be a joint distribution

of a probabilistic graphical model M := 〈X,D,F〉 either a Bayesian network or a Markov

network. Then, the primal graph GP ofM is an I-map ofM.

Theorem 2.2 (Hammersley-Clifford [Hammersley and Clifford, 1970]). If p is a positive

distribution, and G is an I-map of p, then p can be factorizes over the cliques of G.

Now, we define a decomposable model that leads to the join-tree decomposition and exact

algorithms for the inference tasks [Lauritzen and Spiegelhalter, 1988, Pearl, 1988].

Definition 2.19 (Chordal Graph). A graph G is chordal if every cycle of length four or

more has at least one chord.

Definition 2.20 (Decomposable Model). A graphical model MG is decomposable if it

has a graph G that is a minimal I-map and chordal. In this case, we say the probability model

is decomposable relative to the chordal graph G.
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(a) Primal Graph (b) Chordal Graph (c) Join Tree

Figure 2.2: Illustration of Graphs Related to Join-Tree.

Definition 2.21 (Join-tree). For a chordal graph G, a join-tree TJT := 〈C,S〉 is a tree with

the cliques of G as its nodes C such that any two cliques Ci, Cj ∈ C containing a variable X

are connected by a path of clique nodes that contain the variable X, which is called running

intersection property.

Theorem 2.3. If a probability model P is decomposable relative to a chordal graphG and

TJT := 〈C,S〉 is a join-tree of G, then the joint distribution can be written as a product of the

distributions of the cliques of G divided by a product of the distributions of their intersections.

P (X) =
∏
Ci∈C

P (XCi)

P (XCi ∩XCj(i))
, (2.18)

where Ci is a clique of nodes associated with the variables XCi, and Cj(i) is the parent of Ci

in a tree traversal order [Lauritzen and Spiegelhalter, 1988, Pearl, 1988].

Example 2.2. Figure 2.2 illustrates graphs related to a join-tree shown in Definition 2.21.

Figure 2.2a shows a primal graph over the random variables {A,B,C,D,E, F}, and Figure

2.2b triangulates the primal graph by adding an edge (B,C). Figure 2.2c shows a join-tree

of the chordal graph in Figure 2.2b.
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2.2 Decomposition Methods in Graphical Models

Exact inference algorithms in graphical models solve inference tasks by decomposing the

input graphical model into a cluster tree, and propagating messages between clusters. The

tree decomposition leads to approximate graph decomposition schemes by introducing re-

laxation to the decomposed tree structure, and the graph decomposition schemes provide a

framework for developing approximate inference algorithms.

2.2.1 Join-tree Decomposition

The joint distribution of a probabilistic graphical model can be factorized over a join-tree due

to Theorem 2.3. If a primal graph GP is not a chordal graph, we introduce additional edges to

make it chordal. A join-tree generated by a chordal graph of a GP provides a decomposable

probability model that can be parameterized over a tree, which allows application of dynamic

programming for inference tasks [Dechter, 1999]. We next review the definitions related to

join-tree decomposition [Dechter, 2013].

Definition 2.22 (Join-Tree Decomposition). We define a join tree decomposition of a

probabilistic graphical model M := 〈X,D,F〉 with a primal graph GP by a tuple TJT :=

〈T (C,S), χ, ψ〉, where T (C,S) is a tree, χ and ψ are labeling functions which associate each

node C ∈ C to a set of variables by χ(C) and a set of functions by ψ(C). For any two nodes

Ci and Cj, ψ(Ci) ∩ ψ(Cj) = ∅. For the variables assigned to a node C, χ(C) covers all the

scope of functions ψ(C), i.e., ∪i∈Iψ(C)
sc(Fi) ⊆ χ(C). Lastly, the join tree T satisfies the

running intersection property.

Definition 2.23 (Separator). For a join tree decomposition TJT := 〈T (C,S), χ, ψ〉, the

separator of cluster nodes Ci and Cj in a join tree T is sep(Ci, Cj) := χ(Ci)∩χ(Cj), or SCi,Cj

for short. We also define eliminator of Ci with respect to Cj by elim(Ci, Cj) = χ(Ci)\χ(Cj).

Definition 2.24 (Width of Tree Decomposition). The tree width of a tree decomposition
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TJT := 〈T (C,S), χ, ψ〉 is defined by the maximum cluster size,

max
C∈C
|χ(C)| − 1.

The separator width of a tree decomposition is the maximum separator size.

Definition 2.25 (Tree-width w∗ of G). For an undireced graph G, we define induced width

relative to the order O as the maximum clique size - 1 of its triangulated graph and denote

it by w(O). The tree width w∗ of G is the smallest induced width along all orderings O.

We will often interchange the terms such as nodes in a join-tree to clusters, and join-tree de-

composition to cluster-tree. A tree decomposition can be generated from any variable order

by triangulating the primal graph along that ordering. For an inference task with a con-

strained elimination ordering, the constraints restrict the variable ordering to be consistent,

and we denote an induced width from constrained ordering by wc(O).

2.2.2 Tree Clustering Schemes for Inference Tasks

Tree clustering schemes [Kask et al., 2005, Dechter, 2013] offer procedures for generating

a join-tree decomposition from a primal graph, and solving inference tasks by propagating

messages over a cluster tree. The join-tree decomposition also provides useful invariants for

the message-passing algorithms, which characterize the solution of the inference tasks.

Suppose we have an inference task with a partial constrained elimination ordering, and

a graphical model M := 〈X,D,F〉 with a primal graph GP. Bucket elimination algorithm

[Dechter, 1999] processes variables by a total order O that is compatible with the constrained

ordering specified by the inference task.

Definition 2.26 (Bucket and its Scope). A bucket BXi has its key associated with each
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variable Xi ∈ X and collects functions that have Xi in its scope,

BXi := {Fi|Fi ∈ F, Xi ∈ sc(Fi)}. (2.19)

We define the scope of a bucket BXi as the union of the scopes of all functions in its bucket,

sc(BXi) := ∪Fj∈BXi sc(Fj) (2.20)

Starting from the first variable in O := {X1, . . . , X|X|}, the bucket elimination algorithm

[Dechter, 1999] creates a bucket BXi and generates a new function, called message, by

eliminating variable Xi from the combined function at BXi ,

λXi =
ww�

sc(BXi )\{Xi}

( ⊗
Fj∈BXi

Fj

)
. (2.21)

Let’s consider a tree of buckets connected by the edges associated with the messages. Then,

the buckets BXi and BXj are connected by an edge if λXi is placed at BXj . After processing

all variables, the combination of all the constant messages is the solution of the inference

task, and the bucket-tree is a valid join-tree.

Theorem 2.4 (Complexity of Bucket Tree Elimination Algorithm). The time com-

plexity of the bucket tree elimination algorithm is O(nf ·deg·k(w∗+1)) and the space complexity

is O(n · kw∗), where n is the number of variables, nf is the number of functions deg is the

maximum degree of the bucket tree, k is the maximum domain size, and w∗ is the tree width.

Example 2.3. Figure 2.3 illustrates an example of bucket tree. Suppose the set of functions

in the graphical models is

F = {F1(A), F2(A,B), F3(A,C), F4(A,B,D), F5(B,C,E), F6(E,F )}

22



(a) Bucket Tree (b) Cluster Tree with w=2 (c) Cluster Tree with w=3

Figure 2.3: Example of Bucket-Tree and Cluster-Tree.

and the inference task is eliminating variables by maxA
∑

B maxC
∑

D maxE
∑

F F(X) sub-

ject to a total variable elimination order O = {F ≺ E ≺ D ≺ C ≺ B ≺ A}. The

bucket tree elimination algorithm processes variables in the order appear in O. In Figure

2.3a, The first bucket to process is BF = {F6(E,F )}, and the message from BF to BE

is λF =
∑

F F6(E,F ). The next bucket to process is BE = {λF (E), F5(B,C,E)}, and

λE = maxE[λF (E) · F5(B,C,E)]. Continuing the variable elimination process following the

total order O to the end, we obtain the solution of the inference task and the bucket tree as

shown in Figure 2.3a.

Tree clustering for solving an inference task is not unique as shown in Figure 2.3b. Another

cluster-tree can be obtained by merging cluster nodes as long as it satisfies Definition 2.22.

Merging every cluster Ci to its adjacent cluster Cj when its scope χ(Ci) is a subset of χ(Cj),

we can find a minimal tree decomposition.

Definition 2.27 (Minimal Tree Decomposition). We say a tree decomposition with a

cluster tree TCT := 〈C,S〉 is minimal if sep(Cj, Cj) 6⊂ χ(Ci) and sep(Ci, Cj) 6⊂ χ(Cj) for

(Ci, Cj) ∈ S.

Cluster trees shown in Figure 2.3b and 2.3c are minimal cluster trees because none of the
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clusters subsumes to others. Cluster tree elimination algorithm [Kask et al., 2005, Dechter,

2013] eliminates more than one variable while computing a message between clusters in a

cluster-tree T (C,S) by

mCi→Cj :=
ww�

XSCi,Cj

( ⊗
R∈nhd(Ci),R 6=Cj

mR→Ci

)
⊗
( ⊗
i∈ψ(Ci)

Fi

)
. (2.22)

Following a similar process illustrated in Example 2.3, we obtain cluster trees shown in Figure

2.3b and 2.3c. Until now, we implicitly assumed that the message propagation follows the

order of underlying total order O that generated the tree decomposition. In general, the

message propagation over a cluster tree could be processed in asynchronous manner until

convergence as long as the elimination order along the message propagation remains valid

in the inference task. Concretely, each cluster Ci sends a message shown in Eq. (2.22) to

all adjacent cluster nodes Cj by pulling incoming messages from its neighbors except for the

message from Cj.

Definition 2.28 (Cluster Tree Calibration). We say that the cluster tree is calibrated

when the messages are converged.

Now, we review properties of the calibrated cluster-tree for the summation task.

Proposition 2.2. Given a graphical model with a joint probability model F (X) = Z ·P (X),

the calibrated cluster-tree reparameterizes the cluster tree TCT := 〈C,S〉 by

F (X) :=

∏
Ci∈C b(XCi)∏

(Ci,Cj)∈S b(XSCi,Cj
)

=

∏
Ci∈C

[
FCi(XCi) ·

∏
Cj∈nhd(Ci)

MCj ,Ci(XSCj,Ci
)
]

∏
(Ci,Cj)∈SMCi,Cj(XSCi,Cj

) ·MCj ,Ci(XSCi,Cj
)
, (2.23)

where b(XCi) and b(XSCi,Cj
) are unnormalized marginal probability functions or beliefs.

Therefore, the marginal probability P (X′) of a subset of random variables X′ ⊂ X can be

computed from the belief at calibrated cluster C if X′ ⊆ sc(XC). In addition, the calibrated
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cluster tree satisfies consistency relations over the separators,

b(XSCi,Cj
) =

∑
elim(Ci,Cj)

b(XCi) =
∑

elim(Cj ,Ci)

b(XCj). (2.24)

We see that tree clustering schemes reparameterizes the joint probability model F (X) to

a decomposable model over over a cluster tree TCT, and the task of computing marginal

probability can be performed locally to each cluster node once the tree is calibrated.

Finally, the complexity of cluster-tree elimination algorithms is also characterized by the

graph-based parameter as follows.

Theorem 2.5 (Complexity of Cluster-Tree Elimination Algorithm). The time com-

plexity of the cluster tree elimination algorithm is O((nf + nc) · deg · kw
∗+1) and the space

complexity is O(nc ·k|sep|), where nf is the number of functions, nc is the number of clusters,

deg is the maximum degree of the cluster tree, k is the maximum domain size, w∗ is the width

of tree decomposition, and |sep| is the separator width.

2.2.3 Mini-bucket Tree and Join-graph Decomposition

The complexity of tree clustering schemes for inference tasks is intractable for practical prob-

lems, so designing approximate inference algorithms with a bounded complexity is a main

research topic in graphical models. Our primary interest is in decomposition methods that

generate upper bounds by graph decomposition schemes offering lower complexity structure

with smaller clusters.

Approximate decomposition schemes such as mini-bucket elimination [Dechter and Rish,

2003] or join-graph decomposition [Mateescu et al., 2010] decompose a join-tree into possibly

a loopy graph using the mini-bucket relaxations. Such mini-bucket based graph decompo-

sition schemes can limit the maximum cluster size below a bounding parameter i-bound so
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that the complexity of one iteration of message passing is bounded exponentially by the

i-bound.

Consider a bucket BX that collects functions having a variable X in its scope. Mini-bucket

relaxation partitions the bucket to P mini-buckets {B1
X , . . . ,B

P
X} such that the i-bound

limits the scope size of each mini-bucket by |sc(Bp
X) ≤ i + 1. Then, the message λX from

the bucket BX can be bounded by the weighted mini-bucket relaxation [Dechter and Rish,

2003, Liu and Ihler, 2011].

Theorem 2.6 (Weighted Mini-bucket Relaxation).

λX :=

wX∑
X

[ ∏
i∈BX

Fi

]
≤

P∏
p=1

[ wXp∑
Xp

[ ∏
i∈BpX

Fi

]]
≤

P∏
p=1

λX
p

(2.25)

wX =
P∑
p=1

wXp , 0 < wX , wXp ≤ 1. (2.26)

X = X1 = X2 = · · · = XP (2.27)

If a variable X is eliminated by the maximization, we use wX = 0+, and all the weights

{wX1 , . . . , wXP } in Eq. (2.26) are arbitrary close to zero. Any combination of weights satis-

fying Eq. (2.26) generates a valid upper bound if X is eliminated by the summation, wX = 1.

Dechter and Rish [2003] presented the mini-bucket relaxation by the maximization and the

summation operations, and Liu and Ihler [2011] generalized it to the weighted mini-buckets

as shown in Eq. (2.25). Eq. (2.27) defines a set of equality constraints enforcing variables

X at the bucket BX and duplicated variables Xp at each mini-bucket BXp are the same.

The idea of decomposing a coupled problem (bucket) into smaller problems (mini-buckets)

appears frequently in the context of optimization, and we will revisit this mini-bucket re-

laxation from the optimization perspective later when we review variational decomposition

bounds.
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Algorithm 2.1 WMB(i): Weighted Mini-bucket Elimination
Require: Graphical modelMG := 〈X,D,F〉, Total variable elimination ordering O, i-bound
Ensure: Mini-bucket tree Decomposition TMB := 〈T (C, E), χ, ψ〉, Upper bound to a mixed inference

task UB
1: UB← 1.0 . Initialize UB for the multiplicative functions
2: for each variable Xi ∈ O do
3: BXi ← {Fi|Xi ∈ sc(Fi), Fi ∈ F} . Collect functions to a bucket BXi

4: F← F \BXi . Remove the functions assigned to bucket
5: Partition BXi to mini-buckets {BX1

i
, . . .BXP

i
} such that maxp |sc(BXp

i
)| ≤ i+ 1

6: Assign positive weights wXp
i
to each variable Xp

i such that wX =
∑P

p=1wXp
i

7: for each mini-bucket BXp
i
∈ {BX1

i
, . . .BXP

i
} do

8: Add a cluster node BXp
i
to TMB . Structure mini-bucket tree

9: ψ(BXp
i
)← {Fi|Fi ∈ BXp

i
} . Update node labeling functions

10: χ(BXp
i
)← ∪i∈IB

X
p
i

sc(Fi)

11: Connect two cluster nodes U, V in T if ψ(V ) contains the outgoing message from U

12: λX
p
i ←

∑w
X
p
i

Xp
i

[∏
Fi∈BXp

i

Fi

]
. Compute weighted mini-bucket message

13: if sc(λX
p
i ) is empty then

14: UB← UB · λX
p
i . Multiply constant message to upper bound

15: else
16: F← F ∪ {λX

p
i }

return UB and message propagated mini-bucket tree T (C, E)

By using the weighted mini-bucket relaxation, we can modify the bucket elimination algo-

rithm to the weighted mini-bucket elimination in a straightforward manner. Algorithm 2.1

shows the weighted mini-bucket elimination algorithm for a mixed inference task with a

combination operator ⊗ being the multiplication between functions. From line 3 to line 6,

a bucket BXi is partitioned into P mini-buckets, and each mini-bucket cluster is added to

a mini-bucket tree decomposition from line 8 to line 11. The weighted mini-bucket elimi-

nation algorithm computes the outgoing messages from the mini-buckets and accumulates

constant messages to yield UB from line 12 to line 16, which we can skip computing the

actual messages when structuring the mini-bucket tree decomposition. Since the size of all

cluster scopes are bounded by i-bound, the space and time complexity for bounding the

inference task by the mini-bucket elimination algorithm is exponential in the i-bound.

A join-graph decomposition [Mateescu et al., 2010] refines a join-tree into a join-graph with
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smaller clusters.

Definition 2.29 (Join-graph Decomposition GJG). A join-graph decomposition of a

graphical model M := 〈X,D,F〉 is a tuple GJG := 〈G,χ, ψ〉, where G := 〈C,S〉 is a graph

with nodes C and edges S, and χ and ψ are labeling functions, where χ maps a node C ∈ C

to a set of variables χ(C) = XC ⊂ X, and ψ allocates each function Fi ∈ F exclusively to

a node C ∈ C such that sc(Fi) ⊂ XC. An edge (Ci, Cj) ∈ S is associated with a subset of

variables shared between the two clusters χ(Ci)∩χ(Cj), called separator SCi,Cj . The labeling

function should ensure the running intersection property; for each variable Xi ∈ X, the set

{C ∈ C|Xi ∈ ψ(C)} induces a connected sub-graph.

A valid join-graph can be systematically obtained from a mini-bucket tree by connecting

mini-buckets {BX1
i
, . . .BXP

i
} in a chain. The separators between mini-buckets of the same

bucket BX have a single variable {X}, and the scope of separators SCi,Cj is determined by

the scope of the message sent from mini-bucket cluster Ci to Cj. The join-graph structured

from a mini-bucket tree can further be simplified by merging adjacent clusters if the scope

of a cluster subsumes the other. A nice property of a join-graph based on a mini-bucket tree

is that the separators are minimal in the sense that removing any variable from a separator

renders the join-graph decomposition invalid. The message propagation over a join-graph

aims to provide an approximation that imrpoves over the belief propagation algorithm [Pearl,

1988]. However, it does not guarantee an upper bound to the optimal solution like the

mini-bucket tree elimination. Yet, we can propagate messages in an iterative manner until

convergence if it happens, or a time limit with space and time complexity for each iteration

bounded exponentially by the i-bound.

Example 2.4. Figure 2.4a shows an example of mini-bucket tree that approximate the bucket

tree shown in Figure 2.3a. We can see that the bucket BC is divided into two mini-buckets

{BC1 ,BC2} due to the i-bound 1. Figure 2.4b is a join-graph structured from the mini-

bucket tree by adding a separator with single variable {C} between clusters BC1 and BC2
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(a) Mini-bucket Tree (i=1) (b) Join-graph(i=1) (c) Simplified Join-graph

Figure 2.4: Example of Mini-bucket Tree and Join-graph Decomposition.

that introduces a cycle. Figure 2.4c is a simplified join-graph that merges clusters that can

be subsumed to the adjacent ones.

The mini-bucket tree and join-graph decomposition provide a structural decomposition of an

input graphical model for the approximate inference algorithms. In the following, we review

variational inference framework that derives message passing algorithms sending messages

over such graph decompositions. The message passing algorithms derived by variational in-

ference use region graphs, which can be any graph reflecting the structure of the graphical

model. The join-graph is a reasonable choice for the region graph since it allows a system-

atic construction procedure for generating higher-order region graphs that can improve the

quality of approximation with increased i-bounds leading to anytime property.

2.3 Variational Decomposition Bounds

Variational inference is an optimization based approximate inference framework that greatly

improves the quality of approximate solutions compared with naive message passing algo-

rithms [Yedidia et al., 2001, Minka, 2001, Wainwright et al., 2003, Opper and Saad, 2001,
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Wainwright and Jordan, 2008, Komodakis et al., 2010, Sontag et al., 2011]. The graph de-

composition schemes such as the mini-bucket tree [Dechter and Rish, 2003] or the join-graph

decomposition [Mateescu et al., 2010] provide a basis for approximate inference frameworks

that can control the complexity of inference tasks by limiting the maximum cluster size

[Dechter, 2013]. We can derive the upper bounds of the inference tasks in the form of mes-

sage passing algorithms over the decomposed graph, and the variational inference framework

tightens the gap between upper bounds and the optimal solution. The variational inference

provides the primal and dual optimization view on the inference tasks [Wainwright and Jor-

dan, 2008]. We say that the inference task is a primal problem when it is formulated in the

natural parameter space. The dual problem can be obtained by taking conjugate dual or

Lagrangian dual of the primal problem. Variational decomposition bounds develop upper

bounds of inference tasks by combining two bounding frameworks defined in the primal and

dual spaces. For example, decomposition schemes using the mini-bucket relaxation offer up-

per bounds in the primal problem. The conjugate dual formulation of the inference task also

offers additional dimensions for tightening the upper bound. We now review the weighted

mini-bucket elimination bounds [Liu and Ihler, 2011, 2012, Liu, 2014] and generalized dual

decomposition bounds [Komodakis et al., 2010, Sontag et al., 2011, Ping et al., 2015] for the

mixed inference task to provide background on the decomposition bounds for the MEU task

in IDs in this thesis.

2.3.1 Exponential Family Representation

A discrete function Fi ∈ F in a discrete graphical model M := 〈X,D,F〉 has a tabular

representation, and it can be represented by the exponential family form as follows.

Definition 2.30 (Discrete Functions in Exponential Family Form). A discrete function
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Fi ∈ F can be represented in exponential family form by

Fi(XFi) = exp

[∑
xFi

θxFi I(XFi = xFi)

]
, (2.28)

where XFi is the scope of the function Fi, and xFi is an assignment to XFi. I(Xfi = xFi)

is the indicator function that returns 1 if Xfi = xfi and returns 0 otherwise, and θxFi =

logFi(XFi = xFi).

The joint probability distribution P (X) = 1
Z

∏
Fi∈F Fi can be written as

P (X) =
1∑

X F (X)
exp

[∑
Fi∈F

∑
xFi

θxFi I(XFi = xFi)

]
= exp

[∑
Fi∈F

θi(XFi)− Φ(θθθ)

]
, (2.29)

where θi(XFi) = logFi(XFi), θθθ = {θi|i ∈ IF}, and Φ(θθθ) is the log partition function,

Φ(θθθ) := logZ(θθθ) = log
∑
X

exp

[∑
Fi∈F

θi(XFi)

]
. (2.30)

While, we restrict our work to discrete random variables, many statements in this section

hold for general exponential family distributions with minor modifications. In Eq. (2.29), the

indicator functions I(XFi = xFi) are the sufficient statistics. where each indicator function

counts the occurrence of discrete events such as XFi = xFi in the product space of the

discrete random variables, and the coefficients θxFi are called natural parameters.

The expectation of the sufficient statistics I(XFi = xFi) over the joint distribution yields the

first moment of the random variable that is the mean occurrence of xFi ,

µxFi
:= EP (X)

[
I(XFi = xFi)

]
, (2.31)
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The first order moments can be generated by the gradients of the log partition function by

∂Φ(θθθ)

∂θxFi
=
∑
X

I(XFi = xFi)
exp

[∑
i∈IF θi(XFi)

]
Z(θθθ)

= µxFi
. (2.32)

We denote a mean vector that concatenates all µxFi
in the P (X) by µµµ, and the corresponding

sufficient statistics vector by φφφ(X) with its associated natural parameter vector by θθθ. Then,

µµµ = EP (X)

[
φφφ(X)

]
, P (X) = exp

[
〈θθθ,φφφ(X)〉 −Ψ(θθθ)

]
, (2.33)

where 〈θθθ,φφφ(X)〉 denotes the inner product between θθθ and φφφ(X). The joint distribution

parameterized by natural parameters θθθ ∈ Θ in Eq. (2.29) can also be represented by mean

parameters µµµ ∈M. The collection of all the mean parameters M is called marginal polytope,

and it is defined by

M :=
{
µµµ | Ep(X)

[
φφφ(X)

]}
, (2.34)

which can be obtained by the gradient mapping of the log partition function,

∇θθθΨ(θθθ) = µµµ. (2.35)

Uinsg the overcomplete representation of discrete graphical model, the set in Eq. (2.34)

defines implicit constraints that enforce the consistency between all marginals. Note that

the mapping in Eq. (2.35) is not one-to-one [Wainwright and Jordan, 2008]. The gradient

mapping of the log partition function provides a mapping from the natural parameter space

Θ to the mean parameter space M. The reverse mapping is given by the entropy function.

The entropy of a join probability distribution in Eq. (2.33) can be written by

H(µµµ) :=
∑
X

−P (X) · logP (X) = −〈θθθ,µµµ〉 −Ψ(θθθ). (2.36)
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The gradient mapping of the entropy in Eq. (2.36) with respect to µµµ obeys

∇µµµH(µµµ) = −θθθ. (2.37)

We can see that the exponential family representation offers the dual representation of prob-

ability distributions by the natural parameters and the mean parameters. This is the con-

sequence of the conjugate duality of the Legendre-Fenchel transformation [Rockafellar and

Wets, 2009].

Definition 2.31 (Legendre-Fenchel transformation). Let F : Rn → R and F ∗ : Rn →

R be functions mapping from the n-dimensional real space to the extended real-line R ∪

{−∞,+∞}. We say F ∗ is conjugate to F iff.,

F ∗(X∗) := sup
X

{
〈X,X∗〉 − F (X)

}
. (2.38)

Now, we have the conjugate dual relationship between the log partition function Φ(θθθ) and

the entropy H(µµµ) by applying the Legendre-Fenchel transformation to Φ(θθθ),

Φ(θθθ) = sup
µµµ∈M

{
〈θθθ,µµµ〉+ H(µµµ)

}
. (2.39)

This conjugate duality is the basis of the variational inference framework, and it defines opti-

mization problems over the primal natural parameter space Θ and the dual mean parameter

space M with a certain optimization objective and a set of constraints.

2.3.2 Weighted Mini-bucket Bounds

Given a graphical model M := 〈X,D,F〉, consider the mixed inference task with a total

variable elimination ordering O := {X1 ≺ . . . ≺ XN}, where N = |X|, and each Xi is asso-

ciated with the weight wXi , which is either 0 if Xi is a maximization variable or 1 if Xi is
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a summation variable. Let a mini-bucket tree decomposition TMB(B,S) with some i-bound

relaxes each bucket BXi in a bucket tree TBT to a set of Pi mini-buckets {BX1
i
, . . . ,B

X
Pi
i
}.

Then, the weighted mini-bucket relaxation scheme bounds the mixed inference task, and we

can tighten upper bounds by enforcing the auxiliary constraints introduced by the relax-

ation. We can also view the relaxed graphical model as an augmented graphical model with

additional duplicated random variables, one per mini-bucket by the mini-bucket relaxation.

Definition 2.32 (Augmented Graphical Model). An augmented graphical modelM :=

〈X,D,F〉 over the mini-bucket tree TMB(B,S) is a graphical model obtained by introducing

a set of auxiliary random variables {X1

i , . . . , X
Pi
i } per each variable Xi by the mini-bucket

relaxation. Namely, we introduce duplicated random variables X = ∪Ni=1{X
p

i |p ∈ {1, . . . , Pi}}

with the same domain dom(X
p

i ) = dom(Xi) ∀X
p

i ∈ X, and replace the original variables

in the scope of a function sc(Fi) with the duplicated random variables along a path in the

mini-bucket tree starting from the mini-bucket BX
p
i
that contains the function Fi.

The symbols with an over-line denote the elements in the augmented model. For example,

N denotes the total number of variables in the augmented model, Xp

i denotes a variable

associated with Xi and the p-th mini-bucket BXp
i
, F i denotes a function defined in the

augmented model, θθθi denotes the natural parameters, µµµ denotes the the mean parameters,

and so on.

The primal bound of the mixed inference task can be derived by applying the weighted

mini-bucket relaxation as shown in Theorem 2.6.

Φw(θθθ) := log

wXN∑
XN

· · ·
wX1∑
X1

exp
(
θθθ(X)

)

≤ Φw(θθθ) := log
( wXPNN∑

X
PN
N

· · ·
w
X

1
N∑

X
1
N

)
· · ·
( wXP1

1∑
X
P1
1

· · ·
w
X

1
1∑

X
1
1

)
exp

(
θθθ(X)

)
. (2.40)
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The conjugate dual representation of the primal bound of the mixed inference can be obtained

by using the dual representation of the mixed inference task [Liu, 2014].

Theorem 2.7 (Conjugate Dual of the Mixed Inference Task). Given a graphical model

M := 〈X,D,F〉 and a mixed inference task with a total elimination order O consistent with

the constrained ordering of the mixed inference task, and a set of the maximization variables

XM and the summation variable XS. We write the joint probability model p(X) as a product

of conditional probability functions,

P
(
X
)

= P
(
X1|pa(X1)

)
· P
(
XN−1|pa(XN−1)

)
· · ·P

(
XN

)
, (2.41)

where each parent of Xi is the induced parents in the triangulated graph induced by O, and

pa(Xi) ⊂ {Xi+1, . . . , XN}. The conjugate dual representation of the mixed inference task

Φw(θθθ) can be written as follows.

Φw(θθθ) := log

wXN∑
XN

· · ·
wX1∑
X1

exp(θθθ(X)) = sup
µµµ∈M

{
〈θθθ,µµµ〉+

N∑
i=1

wXiH(Xi|pa(Xi))
}

= sup
µµµ∈M

{
〈θθθ,µµµ〉+ H(µµµ)−

∑
Xi∈XM

H(Xi|pa(Xi))
}
. (2.42)

The optimal mean parameters µµµ∗ of the dual optimization problem in Eq. (2.42) define the

optimal pseudo probability distribution q∗(X),

q∗(X) =
exp

(
θθθ(X)

)1/wX1∑
X1

exp
(
θθθ(X)

)1/wX1

·

[∑wX1
X1

exp
(
θθθ(X)

)]1/wX2

∑
X2

[∑wX1
X1

exp
(
θθθ(X)

)]1/wX2

· · ·

[∑wXN−1

XN−1
· · ·
∑wX1

X1
exp

(
θθθ(X)

)]1/wXN

∑
XN

[∑wXN−1

XN−1
· · ·
∑wX1

X1
exp

(
θθθ(X)

)]1/wXN
,

= q∗
(
X1|pa(X1)

)
· q∗
(
XN−1|pa(XN−1)

)
· · ·q∗

(
XN

)
. (2.43)

35



The following weighted mini-bucket bounding scheme further tightens the variational bound

in Eq. (2.42) by optimizing over the auxiliary constraints in the augmented graphical model.

Proposition 2.3 (Weighted Mini-bucket Bounds). The dual optimization problem of

the weighted mini-bucket bound for the mixed inference task Φw(θθθ) can be written by

Φw(θθθ) = sup
µµµ∈L

{
〈θθθ,µµµ〉+

N∑
i=1

wXi
H(X i|pa(X i))

}
, (2.44)

s.t.


X

1

i = X
2

i = · · · = X
Pi
i ∀i ∈ IX∑Pi

p=1 wXp
i

= 1 ∀i ∈ IX, wXp
i
≥ 0,

(2.45)

where L denotes the marginal polytope of the augmented tree model, and the entropy decom-

position assumes the probability model factorizes over the augmented distribution p(X) by

the mini-bucket tree decomposition. Eq. (2.45) shows the constraints on the duplicated ran-

dom variables and the weights of the augmented graphical model introduced by the weighted

mini-bucket relaxation.

Fixing the weights and using Eq. (2.43), the optimal parameterization over the mini-bucket

tree is

q∗
(
X
)

= q∗
(
X1|pa(X1)

)
· q∗
(
XN−1|pa(XN−1)

)
· · ·q∗

(
XN

)
. (2.46)

Eq. (2.46) shows that Algorithm 2.1 computes the upper bounds of the original mixed infer-

ence task. The forward mini-bucket message sent from mini-bucket BX
p
i
to BX

q
j
is

m(BX
p
i
,BX

q
j
) =

w
X
p
i∑

Xp
i

[
exp

(
θB

X
p
i

)
·
∏

(BXpr ,BXpi
)∈S

m(BX
s
r
,BX

p
i
)
]
, (2.47)

where Xr ≺O Xi ≺O Xj, m(BX
s
r
,BX

p
i
) is incoming messages to BX

p
i
. The backward mini-
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bucket message from BX
p
i
to BX

q
j
is

m(BX
p
i
,BX

q
j
) =

[ ∑
XB

X
p
i

\XB
X
q
j

[
exp

(
θB

X
p
i

)
·
∏

BXpr∈nhd(B
X
p
i

) m(BX
s
r
,BX

p
i
)
]1/w

X
p
i

m(BX
q
j
,BX

p
i
)
1/w

X
q
j

]w
X
q
j

, (2.48)

whereXj ≺ Xi and m(BX
p
i
,BX

p
i
) is the forward message fromBX

q
j
toBX

p
i
, and m(BX

s
r
,BX

p
i
)

is the forward and the backward message sent to BX
p
i
.

We can tighten the weighted mini-bucket upper bound by enforcing the equality constraint

by the Lagrange multipliers ηηη and optimizing the weights distributed to the mini-buckets w

subject to the constraint in Eq. (2.45).

The Lagrangian function L(θθθ,ηηη) for optimizing ηηη can be written as

L(θθθ,ηηη) := 〈θθθ,µµµ〉+
N∑
i=1

wXi
H(X i|pa(X i)) +

N∑
i=1

(
Pi∑
p=1

〈ηηηpi ,µµµXp
i
〉 − ψi

( Pi∑
p=1

ηηηpi

))
, (2.49)

where ηηηpi is the Lagrange multiplier for the constraint Xp

i −Xi = 0, and ψi is the Lagrange

multiplier for the constraint
∑Pi

p=1 ηηη
p
i (Xi) = 0, and µµµXp

i
is the mean parameters of the random

variable Xp

i . A fixed point update performing the moment matching on the mini-buckets

{B
X

1
i
, . . . ,B

X
Pi
i
} can be derived as

θθθB
X
p
i

= θθθB
X
p
i

+ wXp
i

(
log q∗(Xp

i )− log q(X
p

i )
)
, (2.50)

q(X
p

i ) ∝
∑

XB
X
p
i

\{Xp
i }

[
exp

(
θθθ
)
·
∏

BXpr∈nhd(B
X
p
i

)

m(BX
s
r
,BX

p
i
)
]1/w

X
p
i , (2.51)

log q∗(Xi) =
1∑Pi

p=1wXp
i

( Pi∑
p=1

wXp
i

log q(X
p

i )
)
. (2.52)
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The Lagrangian function L(θθθ,w) for optimizing w can be written by

L(θθθ,w) := 〈θθθ,µµµ〉+
N∑
i=1

wXi
H(X i|pa(X i)) +

N∑
i=1

(
Pi∑
p=1

λpiwXp
i
− ψi

( Pi∑
p=1

wXp
i
− 1
))

, (2.53)

where λpi is the Lagrange multiplier for the constraint wXp
i
≥ 0, and ψi is the Lagrange

multiplier for the constraint
∑Pi

p=1wXp
i

= 1. The entropy matching condition for the fixed

point update of weights can be derived as

wXp
i

(
H(X

p

i |pa(X
p

i )−
Pi∑
p=1

wXp
i
H(X

p

i |pa(X
p

i )

)
. (2.54)

The moment-matching by Eq. (2.50) and the entropy-matching by Eq. (2.54) can be per-

formed in conjunction with the forward and backward message passing over the mini-bucket

tree shown in Eq. (2.47) and Eq. (2.48). For further details on the message passing update,

we refer to Liu [2014].

A simpler one iteration version of the message passing algorithm, called weighted mini-

bucket with moment-matching (WMBMM) is shown to be useful in practice [Ihler et al.,

2012, Marinescu et al., 2014]. The WMBMM only performs the moment-matching updates

between mini-buckets with fixed uniform weights while performing the forward message pass-

ing. This only changes the weighted mini-bucket elimination algorithm shown in Algorithm

2.1 by adding one additional step, which matches the marginals between mini-buckets before

generating messages.

2.3.3 Generalized Dual Decomposition Bounds

The bounding scheme using weighted mini-buckets interleaves optimization and message

passing to compute pseudo marginals and to tighten the upper bounds. Due to cyclic depen-

dency while updating the optimization parameters, the fixed-point updates in the weighted
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mini-bucket bound may lead to unstable numerical behavior. We can push further the idea

of duplicating one random variable between mini-buckets to duplicating all shared random

variables between clusters in a join-graph. This approach leads to the generalized dual de-

composition bounds for the mixed inference task [Ping et al., 2015], which is a generalization

of the dual decomposition for the maximization task and the weighted mini-bucket for the

summation task.

Given a graphical model M := 〈X,D,F〉 and its join-graph decomposition GJG(C,S) :=

〈G(C,S), χ, ψ〉, consider the mixed inference task with a total variable elimination order

O := {X1, . . . , XN} and a set of weights {wX1 , . . . , wXN}. The joint probability model can

be written by

p(X) =
1

Z

∏
C∈C

exp
(
θθθC(XC)

)
, (2.55)

where XC is the set of variables at C, θC is the natural parameters at C obatined by∑
i∈ψ(C) θi, and Z is the normalization constant.

The following primal bound of the mixed inference task can be obtained by fully decoupling

the random variables between adjacent clusters,

Φw(θθθ) := log

wXN∑
XN

· · ·
wX1∑
X1

exp
(∑
C∈C

θθθC(XC)
)
≤
∑
C∈C

(
log

w
XC
N∑

XC
N

· · ·
w
XC1∑
XC

1

exp
(
θθθC(XC)

))
. (2.56)

Since Eq. (2.56) duplicates all the variables between clusters, the probability distribution in

the augmented model is simply the product of marginals at each cluster,

q(X) =
∏
C∈C

q(XC) (2.57)

where each marginal q(XC) is at cluster C is factorized by the local conditional probability
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functions,

q(XC) =
∏
C∈C

q(X
C

1 |X
C

2 , . . . , X
C

N) · · ·q(X
C

N−1|X
C

N) · q(X
C

N).

The following generalized dual decomposition bounds tightens the primal bound in Eq. (2.56)

by enforcing auxiliary constraints defined over the join-graph decomosition.

Proposition 2.4 (Generalized Dual Decomposition Bounds). The dual optimization

problem of the generalized dual decomposition bound for the mixed inference task Φw(θθθ) can

be written by

Φw(θθθ) = sup
µµµ∈L

{
〈θθθ,µµµ〉+

∑
C∈C

N∑
i=1

w
X
C
i
H
(
X
C

i |pa(X
C

i )
)}
, (2.58)

s.t.


XSCi,Cj

= XCi
SCi,Cj

= X
Cj
SCi,Cj

∀(Ci, Cj) ∈ S∑
C∈C wXC

i
= 1 ∀i ∈ IX, w

X
C
i
≥ 0,

(2.59)

where L denotes the marginal polytope of the augmented model that ensuring local consistency

between marginals at adjacent clusters, and XCi
SCi,Cj

and X
Cj
SCi,Cj

in the equality constraints

are the random variables over the separator between adjacent clusters Ci and Cj.

The optimal parameterization at each cluster C is

q∗(XC) =
exp

(
θθθC(XC)

)1/w
X
C
1∑

X
C
1

exp
(
θθθC(XC)

)1/w
X
C
1

·

[∑w
X
C
1

X
C
1

exp
(
θθθC(XC)

)]1/w
X
C
2

∑
X
C
2

[∑w
X
C
1

X
C
1

exp
(
θθθC(XC)

)]1/w
X
C
2

· · ·

[∑w
X
C
N−1

X
C
N−1

· · ·
∑w

X
C
1

X
C
1

exp
(
θθθC(XC)

)]1/w
X
C
N

∑
X
C
N

[∑w
X
C
N−1

X
C
N−1

· · ·
∑w

X
C
1

X
C
1

exp
(
θθθC(XC)

)]1/w
X
C
N

,

= q∗
(
X
C

1 |pa(X
C

1 )
)
· q∗
(
X
C

N−1|pa(X
C

N−1)
)
· · ·q∗

(
X
C

N

)
, (2.60)

whereXC
= {XC

1 , . . . X
C

N} and q∗(X
C

) is factorized similar to Eq. (2.43). The only difference

is that the functions θθθC and variables XC are local in each cluster C. Fully eliminating the
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variables at all clusters generates an upper bound of φw(θθθ) that we can minimize by the

moment matching and the entropy matching updates similar to the weighted mini-bucket

bounds.

Introducing the cost-shifting functions over the separators, the primal bound can be rewritten

by

Φw(θθθ,ηηη) :=
∑
C∈C

(
log

w
XC
N∑

XC
N

· · ·
w
XC1∑
XC

1

exp
(
θθθC(XC)−

∑
(C,C′)∈S

ηηη(C,C′)(X(C,C′))
))
, (2.61)

s.t. ηηη(XSC,C′
) + ηηη(C ′, C)(XSC,C′

) = 0, (2.62)

where ηηη(XSC,C′
) is the Lagrange multiplier that moves cost from the cluster C to C ′. The

partial derivative of the upper bound with respect to the ηηη(XSC,C′
) can be evaluated as

∂Φw(θθθ,ηηη)

∂ηηη(XSC,C′
)

= −
∑

elim(C,C′)

q∗
(
XC

)
+

∑
elim(C′,C)

q∗
(
XC′

)
. (2.63)

We see that the partial derivative is the difference between the pseudo-marginals at the adja-

cent clusters C and C ′ that encourages moment-matching. The entropy matching update is

the same as the condition shown in Eq. (2.54) after replacing the index running over the mini-

buckets p with the index over the clusters C. By using the moment and entropy matching

conditions, the upper bound Φw(θθθ,ηηη,w) can be tightened by gradient-based optimization

such as the block coordinate descent algorithm that alternates updating the cost-shifting

parameters and the weight parameters by gradient descent optimization algorithms.

2.4 Influence Diagrams

Influence Diagrams provide a modeling and inference framework for sequential decision mak-

ing under uncertainty, representing the probabilistic knowledge by a Bayesian network and
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the preference by utility functions over the chance variables and decision variables [Howard

and Matheson, 1984, Nielsen and Jensen, 2009]. This section defines influence diagrams and

reviews earlier graphical model algorithms.

2.4.1 Influence Diagrams and Perfect Recall Condition

Howard and Matheson [1981] introduced influence diagrams (IDs) as a compact graphical

representation of decision trees for modeling and solving sequential decision making problems.

We can view IDs as a discrete graphical model of the single-agent sequential decision making

problem under uncertainty, which extend Bayesian networks with decision variables and

utility functions. The standard task in IDs is to compute the maximum expected utility

(MEU), and a set of optimal policy functions that jointly achieve the MEU subject to

the constraints on the available information at each decision. The perfect recall influence

diagrams assumes no limitation of memory in an agent, and it allows decisions can be made

subject to the past history. The limited memory influence diagrams limits the memory in an

agent, and the decisions can be made only subject to a partial history under the imperfect

recall condition.

Definition 2.33 (Influence Diagrams). An ID is a tupleM := 〈X,D,P,U,O〉, where

1. X = {X1, . . . , XN} is a set of N discrete chance random variables, where the domain

of Xi is denoted by ΩXi

2. D = {D1, . . . , DM} is a set of M discrete decision variables, where the domain of Di

is denoted by ΩDi

3. P = {P1, . . . , PN} is a set of conditional probability functions,

4. U = {U1, . . . , UR} is a set of additive utility functions,
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5. O = {{pa(Di) ≺ {Di}|Di ∈ D} is a set of precedence relations, where pa(Di) is the

parents of Di subject to the DAG G of an ID.

A DAG G := 〈V , E〉 of anM is defined by three types of nodes,

1. VX is the set of chance nodes associated with the chance variables X drawn as circles,

and the parents of a node Xi ∈ X define the scope of the conditional probability function

P
(
Xi|pa(Xi)

)
,

2. VD is the set of decision nodes associated with the decision variables D drawn as

squares. The incoming arcs to a decision node are called informational arcs and we en-

force each pa(Di) to include all the observed chance variables and the previous decision

variables remaining in the memory while making decision Di,

3. VU is the value nodes associated with the utility functions U drawn as diamonds, and

the parents of a node Ui ∈ U defines the scope of the utility function sc(Ui) = pa(Ui).

Note that the conventional IDs only require informational arcs to be specified from the

immediately observed chance variables and ask for the additional regularity condition, which

defines a direct path over all the decision variables. However, we must be explicit on the

observed variables remaining in the memory for each decision in Definition 2.33. This way

we don’t need the regularity condition.

Definition 2.34 (MEU Task). Given an ID M, either a perfect recall influence diagram

or a imperfect recall influence diagram, the MEU task computes

max
∆∆∆

EP (X,D)

[ ∑
Ui∈U

Ui

]
, (2.64)

P (X,D) =
( ∏
Pi∈P

Pi
(
Xi|pa(Xi)

))
×
( ∏

∆i∈∆∆∆

∆i

(
Di|pa(Di)

))
, (2.65)

∆∆∆ := {∆(Di|pa(Di)) | ∆(Di|pa(Di)) : Ωpa(Di) → ΩDi ∀Di ∈ D}, (2.66)
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(a) Perfect Recall ID (b) Limited Memory ID

Figure 2.5: Example of perfect recall and limited memory influence diagram

where ∆∆∆ in Eq. (2.66) is a set of policy functions that maps from the Cartesian product of

the domains of the observed variables Ωpa(Di) = ×X∈pa(Di)ΩX to the domain of the decision

variable ΩDi, and the expectation is taken over the joint distribution in Eq. (2.65).

The set of optimal policy functions ∆∆∆∗ is obtained by

∆∆∆∗ = argmax
∆∆∆

EP (X,D)

[ ∑
Ui∈U

Ui

]
. (2.67)

Example 2.5. Figure 2.5a and 2.5b show an example of IDs of perfect recall and LIMIDs.

The chance nodes V = {X1, X2, X3} are drawn as circles, and the directed arcs to the chance

nodes define the scope of probability functions P = {P (X1), P (X2|X1, X1), P (X3|X2)}. The

decision nodes VD := {D1, D2} are drawn as squares, and the informational arcs define the

scope of policy functions ∆∆∆ = {D1|pa(D1)),∆(D2|pa(D2))}. The value nodes VU : {U1, U2}

are drawn as diamonds. The difference between Figure 2.5a and Figure 2.5b is in informa-

tional arcs. As we can see, Figure 2.5b has less informational arcs compared with Figure

2.5a that models the agent forgets {D1, X1} when making decision D2.
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2.4.2 Valuation Algebra over Jensen’s Potentials

The valuation algebra is a system with combination and marginalization operations [Shenoy,

1989, 1997, Kohlas and Shenoy, 2000, Kohlas and Wilson, 2008] . Since there are multiplica-

tive probability functions and additive utility functions in IDs, Jensen et al. [1994] proposed

a valuation algebra over the pair of probability and utility or value functions for computing

the MEU task in IDs of perfect recall.

Definition 2.35 (Jensen’s Potential). Given an ID M := 〈X,D,P,U,O〉, we define a

pair of probability and value functions Ψ(XΨ) = (P (XΨ), V (XΨ)) over a set of variables

XΨ ⊂ (X ∪D) as a potential, or valuation for IDs.

The scope of a potential Ψ is the union of the scope of probability and value functions

sc(Ψ) = sc(P ) ∪ sc(V ). We next define operations over the Jensen’s potentials for IDs.

Definition 2.36 (Combination). Given two potentials Ψ1(X1) := (P1(X1), V1(X1)) and

Ψ2(X2) := (P1(X2), V1(X2)), the combination of the two valuations is defined by

Ψ1(X1)⊗Ψ2(X2) := (P1(X1)P2(X2), P1(X1)V2(X2) + P2(X2)V1(X1)), (2.68)

where X1 and X2 is the scope of the Ψ1 and Ψ2, respectively.

Definition 2.37 (Neutral Potential and Inverse). The neutral potential is
(
1(X),0(X)

)
,

where the 1 and 0 is the constant function that maps ΩX to to 1 and 0, respectively. We

define the inverse of (P (X), V (X)) by
( 1

P (X)
,
−V (X)

P 2(X)

)
.

Definition 2.38 (Marginalization). Given Ψ(X) :=
(
P (X), V (X)

)
, marginalizing out

Y ⊂ X by the summation, the maximization, and the powered-summation with weights w is
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(a) Perfect Recall ID (b) Constrained Joint-tree

Figure 2.6: Example of constrained join-tree decomposition of an ID of perfect recall.

defined by

∑
Y

Ψ(X) :=
(∑

Y

P (X),
∑
Y

V (X)
)
, (2.69)

max
Y

Ψ(X) :=
(

max
Y

P (X),max
Y

V (X)
)
, (2.70)

w∑
Y

Ψ(X) :=
( w∑

Y

P (X),
w∑
Y

V (X)
)
. (2.71)

Definition 2.39 (Comparison). Given two potentials Ψ1(X1) := (P1(X1), V1(X1)) and

Ψ2(X2) := (P1(X2), V1(X2)), we define inequality between two potentials by

Ψ1(X1) ≤ Ψ2(X2) ⇐⇒ P1(X1) ≤ P2(X2) & V1(X1) ≤ V2(X2). (2.72)

Now, we define an IDM := 〈X,D,ΨΨΨ,O〉 using valuation algebra over the Jensen’s potential,

where ΨΨΨ = {(Pi, 0)|Pi ∈ P} ∪ {(1, Ui)|Ui ∈ U}. The MEU task can be rewritten as

∑
pa(D1)

max
D1

· · ·
∑

pa(DM )

max
DM

∑
X\pa(DM )

⊗
α∈IΨΨΨ

Ψα(Xα), (2.73)

where IΨ is the set of indices of all valuations ΨΨΨ, and Xα denotes the scope of Ψα.

46



2.4.3 Constrained Join-tree Decomposition of IDs of Perfect Recall

By using the valuation algebra over the Jensen’s potential, a tree decomposition of an ID of

perfect recall can be defined as follows [Jensen et al., 1994].

Definition 2.40 (Constrained Join-tree Decomposition). A constrained join-tree de-

composition TCJT of an ID M := 〈X,D,ΨΨΨ,O〉 is a tuple TCJT := 〈T (C,S), χ, ψ〉, where

T (C,S) is a rooted tree with a root cluster Croot. χ and ψ is a labeling function mapping

each cluster node C ∈ C to a set of variables by χ(C) ⊂ (X ∪D) and to a set of potentials

ψ(C) ⊂ ΨΨΨ, respectively. The labeling functions satisfy additional conditions: (1) for any two

nodes Ci and Cj, ψ(Ci) ∩ ψ(Cj) = ∅, (2) for a potential ψ ∈ ψ(C), sc(ψ) ⊂ χ(C), and (3)

for any node C and a set of clusters C along the path from the node C to the root node Croot,

∪Ci∈Cχ(Ci) ≺ χ(C) in the constrained order O. Lastly, the join-tree T satisfies the running

intersection property.

The primal graph GP of the DAG G of an ID M can be obtained by moralizing the DAG

and removing the value nodes for an ID M := 〈X,D,ΨΨΨ,O〉, and a constrained join-tree

TCJT can be obtained by triangulating the primal graph GP following any elimination order-

ing consistent with the precedence relations O. Once we obtained a constrained join-tree,

message passing over the tree performs the variable elimination for computing the MEU

[Jensen et al., 1994, Mauá et al., 2012]. Algorithm 2.2 shows the message passing algorithm

over the constrained join-tree decomposition TCJT for computing MEU. The message pass-

ing procedure starts from the leaf clusters in TCJT, and it recursively collects, combines, and

sends messages over the tree from leaf clusters to the root cluster. The MEU is the value

component of the potential constant Ψ generated from the root cluster.

Example 2.6. Figure 2.6a illustrates an ID of perfect recall and a schematic trace of the vari-

able elimination algorithm using Jensen’s potential. We use Oelim := {D2, X3, X4, D1, X1, X2}

as an elimination order for generating the constrained join-tree. The first eliminated variable
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Algorithm 2.2 Message passing over constrained join-tree for computing MEU
Require: IDMG := 〈X,D,ΨΨΨ,O〉, Constrained join-tree decomposition TCJT := 〈T (C,S), χ, ψ〉
Ensure: TCJT augmented with messages sent out from clusters, MEU

1: for each cluster C from the leaf to the root do
2: Collect messages (λCk→C , ηCk→C) from incoming separators {(Ck → C)|Ck ∈ de(C)}
3: ΨC(χ(C))← (

⊗
Ψ∈ψ(C) Ψ)⊗

(⊗
Ck∈de(C)(λ

Ck→C , ηCk→C)
)

. Combine potentials at C
4: (λC→pa(C), ηC→pa(C))←⇓

sep
(
C,pa(C)

) ΨC(χ(C)) . Compute out-going message

5: Send out-going message (λC→pa(C), ηC→pa(C)) to separator C → pa(C)

6: (λ∅, η∅) ←⇓∅ ΨCroot . Marginalize out all variables in the root cluster
7: return η∅ . Return MEU

is D2, so the variable elimination algorithm collects potentials whose scope includes D2 in

Bucket D1. Then it generates the outgoing message (λD1 , ηD1) and sends it to Bucket X3.

Bucket X3 combines the allocated valuations and the incoming messages, and generates the

outgoing message (λS2 , ηS2). This variable elimination procedure continues until we obtain

the MEU.

2.4.4 Earlier Bounding Schemes for IDs of Perfect Recall

One early work that yields bounds on many inference tasks in an anytime manner is the

mini-bucket elimination (MBE) scheme that provides upper and lower bounds of graphical

model queries by enforcing problem decomposition during the variable elimination process

[Dechter and Rish, 2003]. In particular, Dechter [2000] presented an MBE algorithm for

influence diagrams. A different principle for generating bounds on the MEU is to relax the

constraints imposed on the information available at each stage and for each decision (thus

making more observations visible to each decision). This information relaxation scheme

relaxes the constraints imposed on the information available at each stage and it also permits

variable reordering during processing [Nilsson and Hohle, 2001]. In particular, Yuan et al.

[2010] presented an AND/OR depth-first branch and bound search algorithm guided by

upper bounds generated by such flexible variable orderings. An alternative set of schemes

exploit translations between the MMAP task in a Bayesian network and the MEU task in IDs
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[Mauá, 2016]. The idea is to compute the upper bound of the MMAP of the BN translated

from an input ID. However, the number of auxiliary variables introduced by the translation

is exponential in the size of the history under the perfect recall assumption. If all utility

functions were multiplicative, an ID could be treated as an unnormalized distribution and

MMAP inference would be applied directly. Liu and Ihler [2012] presented a variational

formulation for computing the MEU and message passing algorithms for such IDs where the

additive utilities are converted into multiplicative utilities by introducing a latent selector

variable. However, such a translation can make it difficult to exploit decompositions present

in the additive utility functions.
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Chapter 3

Direct Decomposition Bounds for

Influence Diagrams

This chapter presents decomposition methods for bounding the MEU of influence diagrams

having perfect recall, which we call IDs in the rest of the chapters. While earlier bounding

schemes mostly used reductions to the MMAP or to the mixed inference task over a Bayesian

Network [Mauá, 2016], we develop here a direct decomposition by extending the variational

bounding schemes to the constrained join-graph decomposition of IDs to avoid the explosion

in the model size due to reductions. Section 3.1 motivates developing direct decomposition

bounds for IDs and overviews the chapter. Then, we present two types of bounding schemes.

In Section 3.2, we present our first approach that extends the weighted mini-bucket relaxation

to the valuation algebra and extends decomposition bounds in the MMAP task to the MEU

task. In Section 3.3, we present our second approach also applied directly on the ID GM but

without using Jensen’s potential. In this later case, we present two bounding methods: (1)

The first bounds the expected utility using Jensen’s inequality [Jensen et al., 1906] applied

to the exponential function (eE[X] ≤ E[eX ]) [Chandler, 1987], (2) the second uses variational

decomposition bounds in probabilistic graphical models applied to IDs with exponentiated

utility functions. We summarize and conclude in Section 3.4.
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3.1 Introduction

Decomposition methods for bounding graphical model inference queries are composed of two

techniques: (1) the parameterization of the inference query by introducing auxiliary parame-

ters over the graphical model decomposition, and subsequently, (2) the numerical procedures

that optimize the auxiliary parameters for tightening upper-bounds. For example, General-

ized Dual Decomposition (GDD) bounds for the mixed inference task, shown in Proposition

2.4, minimizes the upper bounds by optimizing some parameters, called cost-shifting func-

tions and weights that are defined over a join-graph. Various variational decomposition

bounds are available in the literature and they vary by the decomposition schemes, meth-

ods of parameterization, and the optimization frameworks [Komodakis et al., 2010, Sontag

et al., 2011, Liu and Ihler, 2011, 2012, Ping et al., 2015]. The common characteristic of

such variational decomposition bounds is that they decompose the original graphical model

to a relaxed lower complexity one, compute the global bounds for the relaxed model, and

optimize the global bounds by some additional local computations. We propose two ap-

proaches for bounding the MEU in IDs. The first, presented in Section 3.2, is described on

top of the valuation algebra representation [Shenoy, 1989, 1997, Kohlas and Shenoy, 2000].

Namely, we extend the variational decomposition bounds to the valuation algebra for IDs

[Jensen et al., 1994, Mauá et al., 2012]. In this approach, we develop a bounding scheme

that processes pairs of probability and value functions
(
P (X), V (X)

)
. Given two poten-

tials
(
P1(X), V1(X)

)
and

(
P2(X), V2(X)

)
, the combination of the two is the component-

wise product for the probability function and the weighted sum for the value function,(
P1(X)P2(X), V1(X)P2(X) + V2(X)P1(X)

)
. Therefore, we present a method that decom-

poses the product of the probability functions and the weighted sum of the value functions

using variational bounds. In particular, we extend two known variational decomposition

schemes to IDs: (1) the GDD bound [Ping et al., 2015] extended to the constrained join-

graph decomposition of IDs, which leads to a scheme we call JGD-ID, and (2) the weighted
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mini-bucket (WMB) bound [Dechter and Rish, 2003, Liu and Ihler, 2011] over the mini-bucket

tree decomposition, which lead to a scheme called WMBE-ID. Both bounding schemes for-

mulate constrained optimization problems over the decomposed graph in order to tighten the

upper bounds, which take the form of a message passing algorithm. The second approach,

presented in Section 3.3, does not use the valuation algebra. We generate upper-bounds in

two stages. First, we exponentiate the utility functions based on Jensen’s inequality for the

exponential function yielding E[X] ≤ logE[eX ] [Chandler, 1987], and then apply variational

decomposition bounds to the resulting IDs. Once all utility functions are exponentiated, we

can combine functions by multiplication resulting in a regular probabilistic graphical model

to which we can apply decomposition bounds for the mixed inference task directly. In partic-

ular, we present two bounding algorithms on the exponentiated representation: (1) a GDD

bound yielding JGD-EXP scheme, and (2) a Weighted Mini-bucket with Moment Match-

ing (WMBMM) bound [Liu and Ihler, 2012, Marinescu et al., 2014] called WMBMM-EXP

scheme.

3.2 Bounding Schemes using Valuation Algebra for IDs

We will build on concepts and definitions provided in Section 2.4.

3.2.1 Powered-Summation and Decomposition Bounds

We recap the definition of the combination operation for Jensen’s potentials [Jensen et al.,

1994, Mauá et al., 2012] given in Definition 2.38 for ease of reading.

Definition 3.1 (Powered-summation). Given Ψ(X) :=
(
P (X), V (X)

)
, where P (X) and

V (X) stand for a probability and value component of an IDM := 〈X,D,P,U,O〉 as defined

in Definition 2.35, we define the powered-summation that marginalizes out a variable X ∈ X
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from Ψ(X) by

w∑
X

Ψ(X) :=
( w∑

X

P (X),
w∑
X

V (X)
)
, (3.1)

where w is a weight 0 < w ≤ 1, and the powered-summation reduces to the summation and

maximization when w = 1 and w = 0+, respectively.

Note that the powered-summation in Eq. (3.1) is defined by

w∑
X

(
P (X), V (X)

)
:=
([∑

X

∣∣P (X)
∣∣1/w]w, [∑

X

∣∣V (X)
∣∣1/w]w), (3.2)

where the value component
[∑

X

∣∣V (X)
∣∣1/w]w uses the absolute value

∣∣V (X)
∣∣ raised to the

1/w-th power. Namely, the powered-summation cannot distinguish between the positive

and negative value of V (X) for the weights 0 < w < 1. This could lead to bad bounds.

To mitigate this issue, we introduce an alternative definition for the powered-summation as

follows.

Definition 3.2 (Modified Powered-summation). Given Ψ(X) :=
(
P (X), V (X)

)
and for

any constant A, we define the modified powered-summation by

(w,A)∑
X

(
P (X), V (X)

)
:=
( w∑

X

P (X),
w∑
X

h(P (X),V (X),A)(X)
)
⊗ (1,−A), (3.3)

where w is the set of weights (0 < w ≤ 1) associated with the given set of variables X. The

function h(P (X),V (X),A)(X) transforms the value function V (X) into a non-negative function

as follows. For any constant A,

h(P (X),V (X),A)(X) =


P (X)(V (X)

P (X)
+ A) if V (X=x)

P (X=x)
+ A > 0

0, otherwise.
(3.4)
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In Definition 3.2, we see that the function h(P (X),V (X),A)(X) adds a real-valued constant A,

and it clips negative utility values where the constant A ensures

V (X)

P (X)
+ A ≥ 0,

so that the absolute value will not change the sign of value functions, namely,

h(P (X),V (X),A)(X) =
∣∣h(P (X),V (X),A)(X)

∣∣.
In addition, when the weights w are close to 1 and if V (X)

P (X)
+ A is a non-negative function,

the result of eliminating all the variables X from V (X) by the modified powered-summation

becomes close to the result using the normal summation. Namely:

w∑
X

h(P (X),V (X),A) ≈
∑
X

V (X) + A. (3.5)

This is why in the modified powered-summation in Eq. (3.3), it adds and subtracts a utility

constant A from the value function, which thus converges to the regular sum-marginalization

when the weights w are close to 1. Namely,

lim
w→1

(w,A)∑
X

(
P (X), V (X)

)
= lim

w→1

[( w∑
X

P (X),
w∑
X

h(P (X),V (X),A)

)
⊗ (1,−A)

]
=
(

lim
w→1

w∑
X

P (X), lim
w→1

[ w∑
X

h(P (X),V (X),A) − A ·
w∑
X

P (X)
])
≈
(

1,
∑
X

V (X)
)
.

Equipped with a new powered-summation operation, we state the decomposition bounds

for IDs. But first we need some more notations. We denote the sequence of the modified
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powered-summation with the constant A = 0 by
∑(w,0)
O , where we define

(w,0)∑
O

∆
=

wpa(D1)∑
pa(D1)

wD1∑
D1

· · ·
wpa(DM )∑
pa(DM )

wDM∑
DM

wpa(DM )∑
X\pa(DM )

, (3.6)

following a constrained ordering O. In Eq. (3.6), the weights wpa(Dk) are 1 for the summation

variables, while weights wDk are 0 for the maximization variables.

Theorem 3.1 (Decomposition Bounds for IDs). Given an ID M := 〈X,D,ΨΨΨ,O〉,

where X is a set of chance variables, D is a set of decision variables, ΨΨΨ is a set of potentials

representing probability and utility functions, O is the constrained ordering, and given a set

of constants Aα for α ∈ IΨΨΨ and a set of weights w and wα such that wi =
∑

α∈IΨ w
α
i , where

wi is the weight of Xi ∈ X and wαi is the weight of Xi at Ψα(Xα), the MEU can be bounded

by
(w, 0)∑
O

⊗
α∈IΨΨΨ

Ψα(Xα) ≤
⊗
α∈IΨΨΨ

(wα, Aα)∑
O

Ψα(Xα), (3.7)

where the left-hand side of Eq. (3.7) is the MEU shown in Eq. (2.73).

Proof. The decomposition bound can be obtained by applying Minkowski’s inequality and

Hölder’s inequality [Hardy et al., 1952] shown in Eq. (3.8) and Eq. (3.9), respectively.

Minkowski’s inequality:
w∑
X

f(X) + g(X) ≤
w∑
X

f(x) +
w∑
X

g(X) (3.8)

Hölder’s inequality:
w∑
X

f(X) · g(X) ≤
w1∑
X

f(x)

w−w1∑
X

g(X) (3.9)

Denoting the probability component and the value component of a potential Ψ(X) by[
Ψ(X)

]
1
and

[
Ψ(X)

]
2
, namely, Ψ(X) :=

([
Ψ(X)

]
1
,
[
Ψ(X)

]
2

)
, we rewrite bounding in-

equalities for each component. The probability component in the left-hand side of Eq. (3.7)
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can be bounded by applying Hölder’s inequality, namely:

[
(w, 0)∑
O

⊗
α∈IΨΨΨ

Ψα(Xα)

]
1

=
w∑
O

∏
i∈IΨΨΨ

Pi(Xi) ≤
∏
i∈IΨΨΨ

wi∑
O

Pi(Xi). (3.10)

The value component can be bounded by the following steps. We rewrite the MEU by intro-

ducing constant utilities Ai as shown in Eq. (3.11), and collect utility functions and constant

utilities separately as shown in Eq. (3.12). The sum of the constant utilities
∑

i∈IΨΨΨ A
i in

Eq. (3.12) subtracts a constant expected utility from the MEU, so it is independent to the

maximization operations. Then, we bound the MEU by the function hi defined in Eq. (3.4)

as shown in Eq. (3.13). The non-constant term in Eq. (3.13) can be further bounded by

applying Minkowski’s inequality yielding Eq. (3.14) and then by Hölder’s inequality yielding

Eq. (3.15).

[
(w, 0)∑
O

⊗
α∈IΨΨΨ

Ψα(Xα)

]
2

=
w∑
O

∑
i∈IΨΨΨ

(
Vi(Xi) + Pi(Xi) · (Ai − Ai)

)(∏
j 6=i

Pj(Xj)
)

(3.11)

=
w∑
O

∑
i∈IΨΨΨ

[
Pi(Xi) ·

(Vi(Xi)

Pi(Xi)
+ Ai

)
·
(∏
j 6=i

Pj(Xj)
)]
−
( ∏
j∈IΨΨΨ

Pj(Xj)
)
·
∑
i∈IΨΨΨ

Ai (3.12)

≤
w∑
O

∑
i∈IΨΨΨ

[
h(Pi(Xi),Vi(Xi),Ai)(Xi)

(∏
j 6=i

Pj(Xj)
)]
−
∑
i∈IΨΨΨ

Ai (3.13)

≤
∑
i∈IΨΨΨ

w∑
O

[
h(Pi(Xi),Vi(Xi),Ai)(Xi)

(∏
j 6=i

Pj(Xj)
)]
−
∑
i∈IΨΨΨ

Ai (3.14)

≤
∑
i∈IΨΨΨ

( wi∑
O

h(Pi(Xi),Vi(Xi),Ai)(Xi)
)(∏

j 6=i

wj∑
O

Pj(Xj)
)
−
∑
i∈IΨΨΨ

Ai. (3.15)

Note that the weights w at the left hand side of Eq. (3.10) and in Eq. (3.15) are associ-

ated with variables X and wi at the right hand side of Eq. (3.10) and in Eq. (3.15) are

associated with individual variables Xi. The final result can be obtained by represent-

ing the upper bound on the right hand side of the probability component in Eq. (3.10),∏
i∈IΨΨΨ

∑wi

O Pi(Xi) , and the upper bound on the value component given in Eq. (3.15),
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∑
i∈IΨΨΨ

(∑wi

O h(Pi(Xi),Vi(Xi),Ai)(Xi)
)(∏

j 6=i
∑wj

O Pj(Xj)
)
−
∑

i∈IΨΨΨ A
i as a potential. Namely

as the pair:

( ∏
i∈IΨΨΨ

wi∑
O

Pi(Xi),
∑
i∈IΨΨΨ

( wi∑
O

h(Pi,Vi,Ai)(Xi)
)(∏

j 6=i

wj∑
O

Pj(Xj)
)
−
∑
i∈IΨΨΨ

Ai.

)
(3.16)

We will now show in a sequence of expression equalities that this leads to the right hand

side of expression Eq. (3.7).

( ∏
i∈IΨΨΨ

wi∑
O

Pi(Xi),
∑
i∈IΨΨΨ

( wi∑
O

h(Pi,Vi,Ai)(Xi)
)(∏

j 6=i

wj∑
O

Pj(Xj)
))⊗(

1,−
∑
i∈IΨΨΨ

Ai
)

(3.17)

=

[⊗
i∈IΨ

( wi∑
O

Pi(Xi),
wi∑
O

h(Pi,Vi,Ai)(Xi) ·
∏
j 6=i

wj∑
O

Pj(Xj)
)]⊗[⊗

i∈IΨ

(
1,−Ai

)]
(3.18)

=
⊗
i∈IΨ

[( wi∑
O

Pi(Xi),
wi∑
O

h(Pi,Vi,Ai)(Xi) ·
∏
j 6=i

wj∑
O

Pj(Xj)
)⊗(

1,−Ai
)]

(3.19)

=
⊗
i∈IΨ

(wi,Ai)∑
O

(Pi(Xi), Vi(Xi)) =
⊗
α∈IΨ

(wα,Aα)∑
O

Ψα(Xα). (3.20)

3.2.2 Join-graph Decomposition Bounds for IDs

Next, we will use Theorem 3.1 to extend GDD bounds [Ping et al., 2015] defined over a

join-graph decomposition to IDs, yielding algorithm called JGD-ID described in Section

3.2.2. We subsequently also extend WMB bounds [Dechter, 2013, Liu, 2014] defined over

mini-bucket tree decomposition, yielding a weighted mini-bucket elimination bounds for IDs,

called WMBE-ID described in Section 3.2.3.

Given an ID M := 〈X,D,ΨΨΨ,O〉, a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 can

be structured from the mini-bucket tree of the constrained join-tree decomposition TCJT as
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(a) Perfect Recall ID

(b) Join-graph Decomposition

Figure 3.1: Join-graph Decomposition of an ID with the Valuation Algebra.

noted in Section 2.2.3. We next provide a running example illustrating our bounding scheme,

JGD-ID. We start with the join-graph decomposition of IDs.

Example 3.1. Figure 3.1a shows the graph of an ID. Figure 3.1b shows a possible join-graph

decomposition GJG := 〈G(C,S), χ, ψ〉. The primal graph GP can be obtained by removing all

informational arcs (which represent ordering constraints) before moralizing the parent nodes,

and subsequently removing all value nodes (representing utility functions, see Section 2.4)

after moralizing their parent nodes. From Gp and given a legal variable elimination ordering

compatible with O, the join-graph decomposition GJG in Figure 3.1b was generated when
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limiting the maximum cluster size to 3. The labeling functions χ and ψ are displayed inside

each node, and the separators SCi,Cj label the edges. Comparing with the constrained join-

tree shown in Figure 2.6b, we see that we have an additional cluster node C2 containing the

probability function P (X4|D1, X1) , which was extracted from Bucket X4 in the constrained

join-tree.

3.2.2.1 Derivation of Upper Bounds

Given a join-graph decomposition GJG := 〈G(C,S), χ,Ψ〉 of an ID M := 〈X,D,P,U,O〉,

we denote the combination of all the potentials at each cluster node C ∈ C by ΨC(XC) =

(PC(XC), VC(XC)), where XC = χ(C) are the variables assigned at the cluster. We denote

the potential ΨCi,Cj(XCi,Cj) defined over the separator (Ci, Cj) ∈ S by

ΨCi,Cj(XCi,Cj) :=
(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
.

The following Proposition 3.1 presents the parameterized decomposition bounds over a join-

graph decomposition derived using Theorem 3.1.

Proposition 3.1. Given an ID M := 〈X,D,P,U,O〉, ΨΨΨ := {(Pi(Xi), 0)|Pi ∈ P} ∪

{(1, Vi(Xi)|Vi ∈ U} and a constant A and given a join-graph decomposition of M, GJG :=

〈G(C,S), χ, ψ〉, then a parameterized decomposition bound can be obtained relative to GJG,

which is denoted by ΨU :=
(
Uprob, Uvalue). Namely,

MEU :=

(w,0)∑
O

⊗
α∈IΨΨΨ

Ψα(Xα) ≤ ΨU , (3.21)
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where
(
Uprob, Uvalue) are defined by:

Uprob =
∏
Ci∈C

wCi∑
O

P̃Ci(XCi), (3.22)

Uvalue =
∑
Ci∈C

( wCi∑
O

h(P̃Ci (XCi
),ṼCi (XCi

),ACi )
(XCi)

)
·
( ∏
Cj 6=Ci

wCj∑
O

P̃Cj(XCj)
)
− ACi , (3.23)

and P̃C(XCi) are defined by:

P̃C(XCi) = PC(XCi)
∏

(Ci,Cj)∈S

λCi,Cj(XCi,Cj), (3.24)

and ṼCi(XCi) are defined by:

ṼCi(XCi) = PCi(XCi)
(VCi(XCi)

PCi(XCi)
+

∑
(Ci,Cj)∈S

ηCi,Cj(XCi,Cj)

λCi,Cj(XCi,Cj)

)
, (3.25)

and they obey the constraints

ΨCi,Cj(XCi,Cj)
∆
=
(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
, (3.26)

ΨCi,Cj(XCi,Cj)
⊗

ΨCj ,C1(XCi,Cj) =
(
1(XCi,Cj),0(XCi,Cj)

)
∀(Ci, Cj) ∈ S. (3.27)

In other wrods, P̃Ci(XCi) and ṼCi(XCi) are the reparameterized probability and value func-

tions obtained by incorporating probability cost-shifting functions λCi,Cj(XCi,Cj) and utility

cost-shifting functions ηCi,Cj(XCi,Cj) over the separators (Ci, Cj) ∈ S, respectively.

Proof. From Theorem 3.1 we can obtain the following inequality

(w,0)∑
O

⊗
α∈IΨΨΨ

Ψα(Xα) ≤
⊗
C∈C

(wC ,AC)∑
O

ΨC(XC) (3.28)

by collecting potentials relative to a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉, and
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introducing cost-shifting functions ΨCi,Cj(XCi,Cj) over all separators (Ci, Cj) ∈ S such that

ΨCi,Cj(XCi,Cj) and ΨCj ,Ci(XCj ,Ci) cancel each other. Namely, ΨCi,Cj(XCi,Cj)⊗ΨCj ,Ci(XCj ,Ci) =

(1(XCj ,Ci),0(XCj ,Ci)). Re-arranging the potentials and introducing the above cost-shifting

functions, we can obtain the following reparameterization over the join-graph:

⊗
α∈IΨΨΨ

Ψα(Xα) =
[⊗
C∈C

( ⊗
α∈Iψ(C)

Ψα(Xα)
)]
⊗
[ ⊗

(Ci,Cj)∈S

ΨCi,Cj(XCi,Cj)
]

(3.29)

=
⊗
Ci∈C

[
ΨCi(XCi)⊗

( ⊗
Ci,Cj∈S

ΨCi,Cj(XCi,Cj)
)]
. (3.30)

Applying the inequality Eq. (3.7) of Theorem 3.1 to Eq. (3.30), we can obtain the desired

result. Namely,

w,0∑
O

⊗
α∈IΨΨΨ

Ψα(Xα) ≤
⊗
Ci∈C

wCi ,ACi∑
O

⊗
Ci∈C

[
ΨCi(XCi)⊗

( ⊗
Ci,Cj∈S

ΨCi,Cj(XCi,Cj)
)]
. (3.31)

To get the expression for Uprob and Uvalue as in Eq. (3.21), we should continue and unpack

the expression in Eq. (3.31).

Proposition 3.1 introduces four kinds of optimization parameters: (1) probability cost-

shifting functions λCi,Cj(XCi,Cj), (2) utility cost-shifting functions ηCi,Cj(XCi,Cj), (3) utility

constants AC introduced through the function hPC(XC),VC(XC),AC , and (4) weight parameters

wCi that satisfies the following condition, wX =
∑

Ci∈C w
Ci
X for all X ∈ χ(Ci).

Example 3.2. Figure 3.2 illustrates the optimization parameters introduced in Proposition

3.1 relative to the join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 in Figure 3.1b. The po-

tentials at each node Ci ∈ C are displayed inside each node in Figure 3.1b and the utility con-

stants ACi are attached next to each node. The cost-shifting potentials δCi,Cj := (λCi,Cj , ηCi,Cj)

are shown next to the directed edges from Ci to Cj implying that the cost is moving from Ci

to Cj, and δCi,Cj = (λCi,Cj , ηCi,Cj) and δCj ,Ci = (λCj ,Ci , ηCj ,Ci) cancel each other. Namely,
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Figure 3.2: The Optimization Parameters for the Join-graph Decomposition Bounds for
the ID in Figure 3.1b.

Algorithm 3.1 Block Coordinate Descent (BCD)
Require: An objective function F (X) of a minimization problem , a set of optimization

parameters X, iteration limit M , inner-optimization routine Inner-Optimization
Ensure: a local optimal solution U∗ and the assignments X∗

Initialization Steps of BCD
1: Partition optimization parameters X to N block s.t. X = X1 ∪X2 ∪ · · · ∪XN .
2: Initialize all parameters X1,X2, . . .XN to X̃1, X̃2, . . . X̃N

Outer-loop of BCD
3: iter=0, U∗ = inf
4: while iter < M or U∗ is not converged do

Inner-loop of BCD
5: for each block Xi ∈ {X1,X2, . . .XN} do
6: U∗ ← min (U∗, Inner-Optimization( F (X̃1, X̃2, . . . ,Xi, X̃i+1, X̃N), Xi ) )
7: X̃i ← X∗i . update X̃i by the local optimal solution X∗i .
8: iter = iter + 1
return U∗

λCj ,Ci = 1
λCi,Cj

, ηCj ,Ci = − ηCi,Cj
λ2
Ci,Cj

and δCi,Cj ⊗ δCj ,Ci = (1,0)

3.2.2.2 Optimizing the Parameterized Bounds

We will use the block coordinate descent (BCD) method [Boyd et al., 2004] to optimize the

bound. The BCD method shown in Algorithm 3.1 is an iterative procedure that has an
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Algorithm 3.2 Join-Graph GDD Bounds for IDs (JGD-ID)
Require: ID M = 〈X,D,ΨΨΨ,O〉, weights wXi associated with each variable Xi ∈ X, i-

bound, iteration limit M for the outer-loop of BCD.
Ensure: an upper bound of the MEU, Uvalue

Initialization Steps of BCD
1: Generate a join-graph decomposition GJG = 〈G(C,S), χ, ψ〉 with the i-bound
2: Execute a single pass cost-shifting by the messages generated by MBE algorithm.
3: Initialize the weights for each chance variable Xi ∈ X to uniform weights: wCXi =

1
|{C|Xi∈χ(C)}| , and for each decision variable Di ∈ D, wCDi ≈ 0.
Outer-loop of BCD

4: iter=0, Uvalue = inf
5: while iter < M or Uvalue is not converged do

Inner-loop of BCD
6: for each variable Xi ∈ X do
7: Uvalue ← min(Uvalue, Update-Weights(GJG, Xi)) . see Algorithm 3.3
8: for each edge (Ci, Cj) ∈ S do
9: Uvalue ← min(Uvalue, Update-Costs(GJG, (Ci, Cj))) . see Algorithm 3.4

10: for each cluster Ci ∈ C do
11: Uvalue ← min(Uvalue, Update-Util-Const(GJG, Ci)) . see Algorithm 3.5
12: iter = iter + 1

return Uvalue

inner-loop and an outer-loop. In the inner-loop, BCD cycles through a subset of parameters,

called a block, and each iteration minimizes a single block of parameters while keeping the

rest fixed. For the inner-optimization routine, we can apply any off-the-shelf optimization

routine. The common choices are gradient based first or second order optimization algorithms

[Nocedal and Wright, 2006]. The outer-loop repeats the inner-loop until convergence or other

termination criteria met. In earlier works on variational decomposition bounds, BCD was

shown to perform well on maximization tasks [Sontag et al., 2011] and on mixed inference

tasks [Ping et al., 2015]. For more details on the scheme see [Sontag et al., 2011, Ping et al.,

2015].

Message Passing Algorithm (JGD-ID) We now present our JGD-ID algorithm for min-

imizing the upper bound Uvalue shown in Eq. (3.21) using the BCD method. Given an ID

M := 〈X,D,ΨΨΨ,O〉, and a join-graph decomposition G := 〈G(C,S), χ, ψ〉, we use the param-
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eters over the join-graph as defined in Proposition 3.1. Namely, we have pairs of cost-shifting

functions (λCi,Cj , ηCi,Cj) over separators (Ci, Cj) ∈ S, weight parameters wX = {wCX |X ∈

χ(C)} for each variable X ∈ X over a sub-tree of the G(C,S), and utility constants AC

over clusters C ∈ C. In the inner-loop of BCD method, each iteration optimizes a block of

optimization parameters dictated by the join-graph decomposition GJG.

Algorithm 3.2 outlines the overall procedure of BCD updates in JGD-ID. Given an input

ID M := 〈X,D,ΨΨΨ,O〉, the initialization step generates a join-graph decomposition GJG =

〈G(C,S), χ, ψ〉 with an input i-bound (line 1). For details on how to structure a join-graph

decomposition, see [Mateescu et al., 2010]. Then, (line 2) we assign probability and utility

functions to the clusters in C defining the labeling function ψ and χ, by executing a single

pass cost-shifting over the join-graph using the messages generated by simple MBE [Dechter

and Rish, 2003] applied to the valuation algebra [Jensen et al., 1994, Mauá et al., 2012].

We subsequently (line 3) initialize uniform weights wCXi . The outer-loop of BCD begins by

initializing the iteration counter and the minimum upper bound Uvalue to an arbitrary large

number (line 4), and repeat the inner-loop until it reaches the iteration limit M or Uvalue

converges (line 5). The inner-loop of JGD-ID minimizes over a subset of weight parameters

wX = {wCX |X ∈ χ(C)} for each variable X by iterating over the clusters {C|X ∈ χ(C)} in a

sub-tree that satisfies the running intersection property and calling UPDATE-WEIGHTS(GJG, Xi)

in Algorithm 3.3 (described ahead) (line 6-7), a pair of cost-shifting functions (λCi,Cj , ηCi,Cj)

by visiting each edge (Ci, Cj) ∈ S and calling UPDATE-COSTS(GJG, (Ci, Cj)), in Algorithm 3.4

(described ahead) (line 8-9), and a utility constant AC by visiting each cluster C ∈ C and

calling UPDATE-UTIL-CONST(GJG, Xi) in Algorithm 3.5 (described ahead) (line 10-11).

Next, we will present each optimization routine for updating the three types of parameters

using gradient descent with line search [Nocedal and Wright, 2006], which is a popular choice

in machine learning for numerical optimization due to its simplicity and efficiency [Murphy,

2012].
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Gradient Descent for Minimizing Uvalue Given a minimization problem with an objective

function F (X) over a set of parameters X, a gradient descent algorithm iteratively updates

the parameters from the t-th step to the next step t + 1 by using the gradient of F (X)

evaluated at the parameters Xt at the step t,

Xt+1 ← Xt − s · ∇F (Xt), (3.32)

where s is a real-valued step size parameter determined by the line search algorithm that

finds the s that satisfies F (Xt−s ·∇F (Xt)) < Xt). For more details on the gradient descent

with line search, see [Nocedal and Wright, 2006].

We can see that computing the gradient of Uvalue is the core component for implementing

the three optimization routines UPDATE-WEIGHTS(GJG, Xi), UPDATE-COSTS(GJG, (Ci, Cj)), and

UPDATE-UTIL-CONST(GJG, Xi). Therefore, we will provide some details of the gradients of

Uvalue with respect to the parameters wCX , λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj), and AC . First, we

define the concept of pseudo marginals [Wainwright and Jordan, 2008, Liu, 2014, Ping et al.,

2015] that plays a central part in this approach, and other useful expressions for deriving

the gradients.

Definition 3.3 (Pseudo Marginals [Liu, 2014]). Given a non-negative real-valued function

Z0(X1:N) over a set of variables X1:N = {X1, . . . , XN}, and the weights w = {w1, . . . , wN}

associated with X1:N , we define a partial powered-sum elimination of variables ranging from

X1 to Xi, X1:i = {X1, . . . , Xi} recursively by

Zi(Xi+1:N)
∆
=

w1∑
x1

w2∑
x2

· · ·
wi∑
xi

Zi−1(Xi:N). (3.33)

We define the pseudo marginal of Z0(X1:N) denoted Λ
(
Z0(X1:N)

)
by:

Λ
(
Z0(X1:N)

) ∆
=
(ZN−1(XN)

ZN

)1/wN
· · ·
(Z0(X1:N)

Z1(X2:N)

)1/w1

. (3.34)
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Note that Λ(Z0(X1:N)) is a normalized probability distribution over variables X1:N , and

each
(
Zi−1(Xi:N )
Zi(Xi+1:N )

)1/wi
can be viewed as a conditional distribution over the variable Xi given

Xi+1:N = {Xi+1, . . . , Xn}.

Next, let’s define a selector function Fi(Cj) that selects a probability or a value function

from cluster Cj depending on the given index i as,

Fi(Cj)
∆
=


h(PCj ,VCj ,ACj )(XCj), if j = i

PCj(XCj), otherwise.
(3.35)

We will denote the product of the upper bounds on the probability functions from all clusters

C ∈ C by ρ, which is defined by:

ρ
∆
=

wC1∑
XC1

PC1(XC1)
wC2∑
XC2

PC2(XC2) · · ·
w
C|C|∑

XC|C|

PC|C|(XC|C|). (3.36)

The upper bound on the value function at cluster C can be simplified after substituting

terms defined in Eq. (3.35) and (3.36). Namely,

θCi
∆
= ρ ·

∑wCi

XCi
hPCi ,VCi ,ACi (XCi)∑wCi

XCi
PCi(XCi)

=
∏
Cj∈C

wCj∑
XCj

Fi(Cj). (3.37)

Updating Weights The UPDATE-WEIGHTS routine in Algorithm 3.2 updates the weights

w
Cj
Xi

for each variable Xi over clusters {C|Xi ∈ χ(C)}. Following the implementation of

GDD algorithm for the mixed inference task [Ping et al., 2015], we also used exponentiated

gradient descent algorithm [Kivinen and Warmuth, 1997], which is a variant of gradient

descent algorithm that exponentiates the objective function. Due to exponentiation, the
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parameter update equation is given by

wCi,t+1
Xk

←
wCi,tXk

exp
[
− s ·

(
∇
w
Ci
Xk

Uvalue(w
Ci,t
Xk

)
)]

∑
Cj∈C w

Cj ,t
Xk

exp
[
− s ·

(
∇
w
Cj
Xk

Uvalue(w
Cj ,t
Xk

)
)] , (3.38)

where wCi,tXk
is the weight parameter for a variable Xk in cluster Ci at the t-th iteration of

the gradient descent algorithm and s is the step size determined by line search [Nocedal

and Wright, 2006]. Following standard methods for partial derivatives [Gillespie, 1955], we

obtained the following closed-form expression for the partial derivatives of Uvalue with respect

to wCiXk .

∂Uvalue

∂wCiXk
=wCiXk ·

[{
HΛ(PCi (XCi

))

(
Xk|Xk+1:N

)
· (
∑

Cl∈{C|Xk∈χ(C)}

θCl − θCi)− H̄prob
}

+
{
HΛ(Fi(Ci)(XCi

))

(
Xk|Xk+1:N

)
· θCi − H̄value

}]
, (3.39)

where,

HΛ(F (X))(Xk|Xk+1:N)
∆
= −

∑
X

Λ(F (X)) log Λ(Xk|Xk+1:N), (3.40)

H̄prob
∆
=
∑
Ci

wCiXkHΛ(PCi (XCi
))

(
Xk|Xk+1:N

)
· (

∑
Cl∈{C|Xk∈χ(C)}

θCl − θCi), (3.41)

H̄value
∆
=
∑
Ci

wCiXkHΛ(FiCi(XCi
))

(
Xk|Xk+1:N

)
· θCi . (3.42)

We see therefore from Eq. (3.39) that the partial derivative of Uvalue with respect to wCiXk

can be expressed as a function of conditional entropies HΛ(PCi (XCi
)) and HΛ(Fi(Ci)(XCi

)) of

the pseudo marginals obtained from probability and value functions at cluster Ci, and the

upper bound of the value functions at each cluster θCi after rearranging terms. Algorithm

3.3 summarizes the gradient descent updates using the closed-form expression in Eq. (3.39).
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Algorithm 3.3 UPDATE-WEIGHTS(GJG, Xi) – JGD-ID
Require: a join-graph decomposition GJG, Xi) of an IDM = 〈X,D,ΨΨΨ,O〉, weights wXi =
{wCiXi |Xi ∈ χ(Ci)} associated with variable Xi ∈ X, iteration limit M for the gradient
descent

Ensure: an upper bound of the MEU, Uvalue,
1: t=0
2: while t < M or Uvalue is not converged do
3: Compute gradients of Uvalue with respect to wXi using Eq. (3.39)
4: Update weights wt+1

Xi
from wt

Xi
using Eq. (3.38)

5: Compute new Uvalue with the updated weights wt
Xi

6: t = t+ 1

Updating Cost-shifting Functions The UPDATE-COSTS routine in Algorithm 3.2 updates

the cost-shifting functions
(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
over separators (Ci, Cj) ∈ S by

a gradient descent algorithm using Eq. (3.32), where we obtain a closed-form gradient ex-

pression for the cost-shifting paramters by evaluating the partial derivatives of Uvalue in Eq.

(3.23) with respect to
(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
as follows.

∂Uvalue

∂λCi,Cj(XCi,Cj)
=
∑
Ck∈C

θCk ·
[ ∑
XCj

\XCi,Cj

Λ
(
Fk(Cj)(XCj)

)
−
∑

XCj
\XCi,Cj

Λ
(
Fk(Ci)(XCi)

)]
, (3.43)

∂Uvalue

∂ηCi,Cj(XCi,Cj)
=

[
θCj ·

∑
XCj

\XCi,Cj

Λ
(
Fj(Cj)(XCj)

) PCj(XCj)

Fj(Cj)(XCj)

]

−

[
θCi ·

∑
XCi
\XCi,Cj

Λ
(
Fi(Ci)(XCi)

) PCi(XCi)

Fj(Ci)(XCi)

]
. (3.44)

Algorithm 3.4 summarizes the gradient descent update steps for the cost shifting param-

eters. In each iteration, we first set the cost-shifting functions to a neutral potential

(1(XCi,Cj),0(XCi,Cj)), which has constant 1 and 0 for the probability function and the value

function, respectively (line 3). Then, we compute gradients and find the cost-shifting param-

eters using Eq. (3.32) (line 4-6), and then we reparameterize the functions at cluster Ci and

Cj (line 7-8). We repeat this until we reach the iteration limit M or until Uvalue converges.
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Algorithm 3.4 UPDATE-COSTS(GJG, (Ci, Cj)) – JGD-ID

Require: a join-graph decomposition GJG, Xi) of an ID M = 〈X,D,ΨΨΨ,O〉, separator
(Ci, Cj) iteration limit M for the gradient descent

Ensure: an upper bound of the MEU, Uvalue,
1: t=0
2: while t < M or Uvalue is not converged do
3:

(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
← (1(XCi,Cj),0(XCi,Cj))

4: Compute gradient of Uvalue with respect to the probability cost functions by Eq. (3.43)
5: Compute gradient of Uvalue with respect to the value cost functions by Eq. (3.44)
6: Find cost-shifting functions

(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
by Eq. (3.32).

7: ΨCi(XCi)← ΨCi(XCi)⊗ 1(
λCi,Cj (XCi,Cj

),ηCi,Cj (XCi,Cj
)
)

8: ΨCj(XCj)← ΨCj(XCj)⊗
(
λCi,Cj(XCi,Cj), ηCi,Cj(XCi,Cj)

)
9: Compute new Uvalue with the updated ΨCi(XCi) and ΨCj(XCj)

10: t = t+ 1

Updating Utility Constants The UPDATE-UTIL-CONSTS routine in Algorithm 3.2 updates

the utility constant AC at each cluster C ∈ C by a gradient descent algorithm. Similar to

the previous update routines for the weights and cost-shifting functions, we can obtain a

closed-from gradient expression by evaluating the partial derivatives of Uvalue with respect

to AC yielding,

∂Uvalue

∂ACi
=
[
θC ·

∑
XCi
\XCi,Cj

Λ(Fi(Ci)(XCi))
PCi(XCi)

Fi(Ci)(XCi)

]
− 1. (3.45)

Algorithm 3.5 summarizes the gradient descent update steps for updating the utility constant

parameter at cluster Ci ∈ C. Similar to the previous parameter updates, we iteratively

update utility constant parameters until the iteration limit or convergence of Uvalue. For

each internal iteration, we repeat computing the gradient of Uvalue with respect to ACi using

Eq. (3.45), and find the updated parameter using Eq. (3.32).

Complexity of JGD-ID We will next discuss the complexity of our algorithm.

Theorem 3.2 (Complexity of Algorithm JGD-ID). Given an IDM := 〈X,D,P,U,O〉

and a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 structured from a mini-bucket tree with
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Algorithm 3.5 UPDATE-UTIL-CONSTS(GJG, Ci) – JGD-ID
Require: a join-graph decomposition GJG of an ID M = 〈X,D,ΨΨΨ,O〉, cluster node Ci,

iteration limit M for the gradient descent
Ensure: an upper bound of the MEU, Uvalue,

1: t=0
2: while t < M or Uvalue is not converged do
3: Compute ∇Uvalue with respect to the utility constant ACi using Eq. (3.45)
4: AtCi ← AtCi − s · ∇Uvalue . Update utility constant ACi by Eq. (3.32).
5: Compute new Uvalue with the updated ACi
6: t = t+ 1

an i-bound, the time complexity of JGD-ID is O
(
M1 ·M2 · (|X∪D| · |C| ·Gw · ki+1 + ·|S| ·Gp ·

ki+1 + ·|S| ·Gv ·ki+1 + |C| ·Gu ·ki+1)
)
and the space complexity is O

(
2 · (|C| ·ki+1 + |S| ·k|sep|)

)
,

where M1 is the iteration limit of the outer-loop of the BCD method, M2 is the iteration

limit of the gradient descent algorithms in the inner-loop of the BCD method, |X∪D| is the

number of variables, k is the maximum domain size, |C| and |S| are the number of clusters

and separators in the join-graph decomposition GJG, and |sep| is the separator width. Gw,

Gp, Gv, and Gu are constants that bounds the number of factor operations for evaluating

gradients.

Proof. Algorithm JGD-ID is an iterative algorithm that terminates the outer-loop and the

inner-loop either by the iteration limit or by the convergence. The complexity of a single

iteration of the outer-loop can be characterized by the complexity of the gradient based

inner-optimization routines in Algorithm 3.3, Algorithm 3.4, and Algorithm 3.5. Since a

gradient descent algorithm is an iterative algorithm that repeats updating the optimization

parameters by Eq. (3.32), processing gradient expressions dominate the overall complexity.

The closed-form expressions for evaluating gradients involve a constant number of factor

operations over the pseudo marginals at each cluster C ∈ C (see Eq. (3.39), Eq. (3.43),

Eq. (3.44), and Eq. (3.45)). Since pseudo marginals are computed locally within each cluster

in a join-graph decomposition, the time complexity for processing a single factor operation

over pseudo marginals is bounded by O(ki+1).
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The time complexity of in Algorithm 3.3 is O(Gw ·M2 ·ki+1) since it repeats a single gradient

update at most M2 times. The number of calls to Algorithm 3.3 in a single outer-loop

iteration is bounded by O(|X ∪ D| · |C|), so the overall time complexity for updating the

weight parameters is O(M1 · |X∪D| · |C| ·Gw ·M2 · ki+1). The time complexity of Algorithm

3.4 is O((Gp +Gv) ·M2 ·ki+1), and the overall time complexity for updating the cost-shifting

parameters is O(M1 · |S| · (Gp + Gv) ·M2 · ki+1), where |S| bounds the number of calls to

Algorithm 3.4. The time complexity of Algorithm 3.5 is O(Gu ·M2 · ki+1), and overall time

complexity is O(M1 · |C| · (Gu) ·M2 ·ki+1), where |C| bounds the number of calls to Algorithm

3.5.

For the space complexity, we store pseudo marginals and cost-shifting functions for the prob-

ability component and the value component at clusters and separators in GJG, respectively.

Therefore, the space complexity is O
(
2 · (|C| · ki+1 + |S| · k|sep|)

)
.

Summary We have presented a message-passing algorithm JGD-ID for computing the up-

per bound of the MEU in IDs over a join-graph decomposition [Mateescu et al., 2010]

based on GDD bound in the mixed inference task [Ping et al., 2015]. We first modified

the powered-sum operations for the valuation algebra to handle the issue with negative util-

ity values. Then, we derived a decomposition bound for IDs that uses the valuation algebra

representation, which extends the previous decomposition bounds for the MMAP task. We

subsequently formulated an optimization problem over a join-graph decomposition of IDs by

introducing optimization parameters along with the join-graph decomposition. Algorithm

JGD-ID implemented a block coordinate descent type algorithm using gradient descent al-

gorithms as its inner optimization routines.
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3.2.3 Weighted Mini-bucket Elimination Bounds for IDs

The optimization objective function Uvalue for JGD-ID algorithm derived in Proposition 3.1

is not in a convex form because the upper bound expression of the MEU Uvalue involves the

multiplication of the local upper bounds on the probability and value functions,as given next

Uvalue=
∑
Ci∈C

[( wCi∑
O

h(P̃C(XCi
),ṼCi (XCi

),ACi )
(XCi)

)
·
{∏
Cj 6=Ci

wCj∑
O

(
PC(XCi)

∏
(Ci,Cj)∈S

λCi,Cj(XCi,Cj)
)}
−ACi

]
,

where,


P̃C(XCi) = PC(XCi)

∏
(Ci,Cj)∈S λCi,Cj(XCi,Cj),

ṼCi(XCi) = PCi(XCi)
(
VCi (XCi

)

PCi (XCi
)

+
∑

(Ci,Cj)∈S
ηCi,Cj (XCi,Cj

)

λCi,Cj (XCi,Cj
)

)
.

(3.46)

This non-convex objective function (see Boyd et al. [2004] for the basic properties of convex

functions) may degrade the quality of the upper bounds as the number of optimization pa-

rameters grows. Indeed, in our empirical evaluation (see Chapter 4), JGD-ID often provides

worse upper bounds even when using higher i-bounds, consuming more time and memory

resources. The degradation is due to the expansion of the dimension of the optimization

parameter space, which grows exponentially with the i-bounds. This motivated developing

an alternative approach, where we interleave the variable elimination and the decomposition

of the clusters on the fly while performing the variational inference more locally. This can

be achieved by using mini-bucket tree decomposition of IDs, resulting in our WMBE-ID, an-

other new weighted mini-bucket elimination bounds for IDs. The algorithm will be described

in the following paragraphs.

Given an IDM := 〈X,D,ΨΨΨ,O〉, a mini-bucket tree decomposition TMBT can be structured

from the constrained join-tree decomposition TCJT by limiting the maximum cluster size to

the i-bound. For the details of obtaining a mini-bucket tree, see [Dechter and Rish, 2003].

We will use a running example for illustrating algorithm WMBE-ID.

72



Figure 3.3: The Weighted Mini-bucket Decomposition of an ID with Valuation Algebra.

Example 3.3. Figure 3.3 illustrates the schematic trace of weighted mini-bucket elimination

applied to the ID in Figure 3.1a with i-bound 2. We will review the mini-bucket tree decom-

position [Dechter and Rish, 2003] and introduce some necessary modification to the notation

to accommodate Jensen’s potentials [Jensen et al., 1994]. First, we use a constrained elimi-

nation ordering consistent with the precedence constraints O as dictated by the informational

arcs, which is Oelim := {D2 ≺ X3 ≺ X4 ≺ D1 ≺ X1 ≺ X2}. To generate a mini-bucket

tree, we process the variables along the order Oelim. For each variable Xi, we collect all the

functions having Xi in their scopes and place them in the bucket Xi. If the total number of

variables in a bucket exceeds i+1, we partition the bucket into mini-buckets such that each

mini-bucket contains i+ 1 or fewer variables. For example, bucket X3 is partitioned into two

mini-buckets in Figure 3.3. Subsequently, we generate messages by eliminating the bucket

variable of each mini-bucket from its combined potential and send the message having a pair

of probability and value functions to a mini-bucket in a lower layer along the tree. For ex-
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ample, the mini-bucket X ′3 sends its message (λX
′
3(X1, X2), ηX

′
3(X1, X2)) to bucket X1. We

can also assign weights to each bucket labelled by a summation variable [Liu and Ihler, 2011]

to facilitate use of powered-sum. We can obtain a weighted mini-bucket bound at bucket X3

as follows

∑
X3

λD2(X3, X4)⊗ (P (X3|X1, X2), 0) ≤
( wX3∑

X3

λD2(X3, X4)
)
⊗
( wX′3∑

X3

(P (X3|X1, X2), 0)
)
,

where the left-hand side is the exact message function computed at bucket X3 in the bucket-

tree elimination [Dechter, 2013], and the right-hand side is the combination of two mini-

bucket message functions, from the mini-bucket X3 and the mini-bucket X ′3.

3.2.3.1 Deriving the Upper-Bounds

We will now apply Theorem 3.1 to each layer of the mini-bucket tree associated with one vari-

able, along the constrained elimination ordering Oelim. As usual, the intermediate messages

are sent to mini-buckets at lower layers, as illustrated in Figure 3.3. To tighten the upper

bounds, we introduce cost-shifting functions between mini-buckets, yielding the following

parameterized bound for each bucket of a variable X. Namely,

wX∑
X

q⊗
α=1

Ψα(Xα) ≤
q⊗

α=1

(wαX ,A)∑
Xα

(
Ψα(Xα)⊗ δα−1,α(X)

δα,α+1(X)

)
, (3.47)

where wX is the weight of the variable X (1 or 0), q is the number of mini-buckets, wαX is

the weight of X at its α-th mini-bucket, and δα,α+1(X) := (λα,α+1(X), ηα,α+1(X)) is a cost-

shifting potential from the α-th mini-bucket to the (α + 1)-th mini-bucket. In the example

in Figure 3.3, the reparameterized upper bound at Bucket X3 can be written as,

((wX3
,A)∑

X3

(
λD2(X3, X4), ηD2(X3, X4)

)
⊗ 1

δX3,X′3
(X3)

)
⊗
((wX′3 ,A′)∑

X′3

(P (X ′3|X1, X2), 0)⊗ δX3,X′3
(X3)

)
.
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However, we can immediately see some issues in Eq. (3.47) when we try to optimize the pa-

rameters such as the cost-shifting functions, the weight parameters, and the utility constant.

First, the value component on the right-hand side of Eq. (3.47) is not a scalar quantity,

but rather a function. Second, the powered-summation used in Theorem 3.1 is well-defined

when we fully eliminate all variables, but here we only eliminate a single variable X. To

be more specific, the partial elimination cannot use Definition 3.2 since the constants A will

be multiplied by all the probability functions at other mini-buckets. As a result, it is not a

simple shift of the overall expected utility value by the constant A.

To address all this, we propose a surrogate optimization objective function based on the fully

decomposed bound in Theorem 3.1, which uses the powered-sum elimination operation in

Definition 3.1 as follows.

Proposition 3.2. Given an ID M := 〈X,D,ΨΨΨ,O〉 and a constrained variable elimination

ordering Oelim over all variables X∪D, {XN , XN−1, . . . , X1}, assume that Xn is the current

variable to be eliminated and the variables {XN , XN−1, . . . , Xn+1} were already processed by

the weighted mini-bucket elimination algorithm [Dechter and Rish, 2003, Liu and Ihler, 2011].

For the remaining variables X1:n = {Xn, Xn−1, . . . , X1}, let ΨXi(X1:i) be the combination of

all potentials allocated to bucket Xi (1 ≤ i ≤ n) of the bucket-tree, let QXi := {1, . . . , qXi} be

the mini-bucket partitioning of bucket Xi, and ΨXi
α (XXi

α ) be the combination of the potentials

at the α-th mini-bucket of the bucket Xi. Then, we define a surrogate upper bound on the

MEU for the remaining subproblem as follows.

(1,MEU) =

w1:n−1∑
X1:n−1

[( n−1⊗
i=1

ΨXi(X1:i)
)
⊗
( wXn∑

Xn

ΨXn(X1:n)
)]

(3.48)

≤
w1:n−1∑
X1:n−1

[( n−1⊗
i=1

ΨXi(X1:i)
)
⊗
( ⊗
α∈QXn

wXn,αXn∑
Xn

ΨXn
α (XXn

α )
)]

(3.49)

≤
n−1⊗
i=1

( ⊗
α∈QXi

w
Xi,α
1:i∑
X1:i

ΨXi
α (XXi

α )
)
⊗
( ⊗
α∈QXn

wXn,α
1:n∑
X1:n

ΨXn
α (XXn

α )
)
, (3.50)
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where the weights w1:n := {wX1 , . . . , wXn} in Eq. (3.48) are the set of original weights for

variables X1:n, either 1 (chance variable) or 0 (decision variable), and the weights wXi,α
1:k :=

{wXi,αX1
, . . . , wXi,αXk

} in Eq. (3.50) is a set of weights of all the variables {X1, X2, . . . , Xk} in

the α-th mini-bucket of bucket Xi such that wXj =
∑k

l=1

∑
α∈QXl

wXl,αXj
.

Proof. Eq. (3.48) is the MEU computed from the remaining subproblem after eliminat-

ing variables {XN , XN−1, . . . , Xn+1}. The inequality in Eq. (3.49) is obtained by applying

weighted mini-bucket relaxation to bucket Xn only. The final inequality, Eq. (3.50), is ob-

tained by applying the JGD-ID upper-bounds to all the mini-buckets ∪Xi∈X1..nQXi in the

remaining subproblem, independently, yielding a scalar valued function that bounds the

MEU.

When variable Xn is the variable to be eliminated, we can introduce parameters relative

for a chain of mini-buckets QXn = {1, . . . , qXn} into the WMBE-ID bound according to

Proposition 3.2, yielding the bound,

(1,MEU) =

w1:n−1∑
X1:n−1

[( n−1⊗
i=1

ΨXi(X1:i)
)
⊗
( wXn∑

Xn

⊗
α∈QXn

ΨXn
α (XXn

α )
δXnα−1,α(Xn)

δXnα,α+1(Xn)

)]
(3.51)

≤
w1:n−1∑
X1:n−1

[( n−1⊗
i=1

ΨXi(X1:i)
)
⊗
{(wXn,1

1:n∑
X1:n

ΨXn
1 (XXn

1 )
1

δXn1,2 (Xn)

)
⊗
(wXn,2

1:n∑
X1:n

ΨXn
2 (XXn

2 )
δXn1,2 (Xn)

δXn2,3 (Xn)

)

· · · ⊗
(wXn,qXn

1:n∑
X1:n

ΨXn
qXn

(XXn
qXn

)δXnqXn−1,qXn
(Xn)

)}]
∆
= (Uprob, Uvalue) (3.52)

The parameters to be optimized over in Eq.(3.52) denoted by δα−1,α(Xn) are the pair of cost-

shifting functions between two adjacent mini-buckets, and the weights over the mini-buckets
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in QXn namely, we have the sets of parameters:

Cost-shifting functions :{δXnα,α+1(Xn)|∀α, α + 1 ∈ QXn} (3.53)

Weights :{wXn,αXn
|∀α, α+1 ∈ QXn}, (3.54)

where δXnα,α+1(Xn) is the pair
(
λXnα,α+1(Xn), ηXnα,α+1(Xn)

)
.

We can obtain a closed-form expression of the objective function Uvalue by some algebraic

manipulation of Eq. (3.52). Dropping the arguments of the functions, we obtain:

Uvalue = Γ ·

[
n−1∑
i=1

(∑
α∈QXi

∑w
Xi,α
1:n−1

X1:n−1
V Xi
α∑w

Xi,α
1:n−1

X1:n−1
PXi
α

)
+
∑

α∈QXn

∑wXn,α
1:n

X1:n
PXn
α

λXnα−1,α

λXnα,α+1

[V
Xn
α

PXnα
− ηXnα,α+1

λXnα,α+1

+
ηXnα−1,α

λXnα−1,α

]∑wXn,α
1:n

X1:n
PXn
α

λXnα−1,α

λXnα,α+1

]
, (3.55)

where Γ is just the product of probability components, namely,

Γ
∆
=
( n−1∏
i=1

∏
α∈QXi

PXi
α

)
·
( ∏
α∈QXn

PXn
α

λXnα−1,α

λXnα,α+1

)
. (3.56)

The probability function at the α-th mini-bucket of bucket of Xn is reparameterized by the

probability cost-shifting functions λXnα−1,α(Xn) and λXnα,α+1(Xn), yielding

PXn
α (Xα)

λXnα−1,α(Xn)

λXnα,α+1(Xn)
. (3.57)

Similarly, the value component at the α-th mini-bucket of the bucket ofXn is reparameterized

by subtracting the outgoing utility cost
ηXnα,α+1(Xn)

λXnα,α+1(Xn)
from

V Xn
α (Xα)

PXn
α (Xα)

and adding to it the

incoming utility cost
ηXnα−1,α(Xn)

λXnα−1,α(Xn)
. Then, multiplying by the new probability component in

Eq. (3.57), we get

(
PXn
α (Xα)

λXnα−1,α(Xn)

λXnα,α+1(Xn)

)
·
(V Xn

α (Xα)

PXn
α (Xα)

−
ηXnα,α+1(Xn)

λXnα,α+1(Xn)
+
ηXnα−1,α(Xn)

λXnα−1,α(Xn)

)
. (3.58)
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Figure 3.4: Optimization Parameters for WMBE-ID Bounds for IDs.

Example 3.4. Figure 3.4 illustrates how we associate the cost-shifting parameters between

mini-buckets of the bucket X3 in Figure 3.3. Before entering the optimization loop, the

mini-buckets of the bucket X3 are pre-allocated the potentials and the messages received from

the upper layers. Namely, ΨX3
1 (X3, X4) =

(
λD2(X3, X4), ηD2(X3, X4)

)
is the message sent

from bucket D2, and ΨX3
2 = (P (X3|X1, X2), 1) is the potential allocated to bucket X3 at the

initialization step. We first show the cost-shifting potential δX3
1,2(X3) between Mini-bucket1

and Mini-bucket2. We associated with the two mini-buckets the weight parameters de-

noted wX3,1
X3

and wX3,2
X3

. These will be optimized under the constraint 1 = wX3,1
X3

+ wX3,2
X3

.

Once we finish updating the cost-shifting valuation and the weight parameters by the op-

timization algorithms which we will introduce shortly, we compute the out-going messages

from each mini-bucket. In Mini-bucket1, the message
(
λX3,1(X4), ηX3,1(X4)

)
is computed

by
∑w

X3,1
X3

X3
ΨX3(X3, X4)⊗ 1

δ
X3
1,2 (X3)

, and sent to bucket X4. Bucket X4 combines this incoming

message with the preassigned potential ΨX4
1 (X1, X4, D1), and adds the incoming weight wX3,1

X4

to wX4,1
X4

. In Mini-bucket2, the message
(
λX3,2(X4)(X1, X2), ηX3,2(X4)(X1, X2)

)
is computed

by
∑w

X3,2
X3

X3
ΨX3

1 (X3, X4) ⊗ δX3
1,2(X3), and sent to the bucket of X1. Bucket X1 combines this

incoming message with its preassigned potential and update the weights. Since there are no

more mini-buckets in the remaining subproblem, we compute the upper bound on the MEU
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by the variable elimination algorithm [Dechter, 2013].

In summary, Example 3.4 illustrates the procedure WMBE-ID, which interleaves a message

passing stage by the weighted mini-bucket elimination algorithm [Dechter, 2013, Liu and

Ihler, 2011] and a reparameterization stage that optimizes the parameters defined over a

chain of mini-buckets. Next, we will present the message passing algorithm for optimizing

the WMBE-ID bound, which is based on the BCD method [Boyd et al., 2004].

3.2.3.2 Optimizing the Paramterized Bounds

Message Passing Algorithm (WMBE-ID) Given an IDM := 〈X,D,ΨΨΨ,O〉, and a mini-

bucket tree decomposition TMBT defining a set of mini-buckets QXi := {1, . . . , qXi} for each

of bucket Xi, where Xi ∈ X ∪ D, Proposition 3.2 introduces three kinds of optimization

parameters: (1) probability cost-shifting function {λXiα,α+1(Xi)|α, α + 1 ∈ QXi}, (2) value

cost-shifting function {ηXiα,α+1(Xi)|α, α+ 1 ∈ QXi}, and (3) weight parameters over the mini-

buckets {wXi,αXi
|α, α + 1 ∈ QXi}. Reviewing the notation for the cost-shifting functions,

λXiα,α+1(Xi) and ηXiα,α+1(Xi), the superscript Xi denotes the label of bucket Xi, and subscript

(α, α+ 1) denotes a separator between the α-th mini-bucket and the (α+ 1)-th mini-bucket

partitioning bucket Xi. For the weight parameter, wXi,αXi
, the superscript (Xi, α) denotes the

α-th mini-bucket of bucket Xi. To define the inner-loop of the BCD method, we partition

the optimization parameters into two types of blocks, one containing the weight parameters

and the other containing the cost-shifting functions. Algorithm 3.6 presents the WMBE-

ID algorithm. The algorithm minimizes the surrogate upper bound Uvalue in Eq. (3.55) by

alternating the optimization routines for the costs and weights, respectively.

Given an input IDM, and an i-bound, the initialization step generates a mini-bucket tree

decomposition (line 1) (see [Dechter and Rish, 2003]). Then, we assign functions to the

mini-buckets and initialize weights (line 2-4) as usual. The main procedure (line 5-16) pro-
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Algorithm 3.6 Weighted Mini-Bucket Elimination Bounds for IDs (WMBE-ID)
Require: ID M = 〈X,D,ΨΨΨ,O〉, total constrained elimination order Oelim :=
{XN , XN−1, . . . , X1}, i-bound, iteration limit M ,

Ensure: an upper bound of the MEU, Uvalue

Initialization Steps
1: Generate a mini-bucket tree decomposition TMBT = 〈T (C,S), χ, ψ〉 with i-bound
2: Allocate functions to mini-buckets {QXi |Xi ∈ X}, where QXi = {1, . . . , qXi}
3: Initialize weights of chance variables Xi ∈ X by uniform weights wXl,αXi

= 1
|{C|Xi∈χ(C)}| ,

4: Initialize weights of decision variables Di ∈ D by a constant close to zero, wXl,αDi
≈ 0

Interleave Variable Elimination and Reparameterization
5: for i← N to 1 do
6: for each mini-bucket α ∈ QXi do
7: Combine potentials at the α-th mini-bucket, Ψα(Xα)
8: for each Xk ∈ sc(Ψα) do
9: wXi,αXk

← wXi,αXk
+
∑

l>iw
Xl,αl
Xk

. sum up the weights of incoming messages
wXl,αlXk

to the pre-allocated wXi,αXk

Outer-loop of BCD
10: iter = 0, compute Uvalue by Eq. (3.55)
11: while iter < M or Uvalue is not converged do

Inner-loop of BCD
12: for each edge (α, α + 1) ∈ {(α, α + 1)|α, α + 1 ∈ QXi)} do
13: Uvalue ← min(Uvalue, Update-Costs(TMBT, (Xi, α, α + 1)) ) . Algorithm 3.7
14: Uvalue ← min(Uvalue, Update-Weights(TMBT, Xi))
15: for each mini-bucket α ∈ QXi do

16: ΨXi ←
∑w

Xi,α
Xi

Xi
Ψα(Xα) . Compute message at the α-th mini-bucket

17: Send message ΨXi downward to the destination mini-bucket
return Uvalue

cesses each variable Xi following the elimination order Oelim = {XN , XN−1, . . . , X1}. Before

executing BCD updates for reparameterizing mini-buckets QXi of bucket Xi, we combine all

the potentials assigned at the α-th mini-bucket to Ψα(Xα) (line 7). Recall that we initial-

ized the weights wXl,αXk
associated with variable Xk uniformly over all mini-buckets in the

mini-bucket tree T (C,S), which distributes the weight not only horizontally over a chain of

mini-buckets, but also vertically through downward message passing. The weight update

procedure in line 8 sums up all the weights wXl,αlXk
sent from the αl-th upstream mini-bucket

extracted from bucket Xk by wXi,αXk
+
∑

l>iw
Xl,αl
Xk

. This step ensures that the evaluation
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Algorithm 3.7 UPDATE-COST(TMBT, (Xi, α, α + 1)) – WMBE-ID
Require: a mini-bucket tree decomposition TMBT of an IDM = 〈X,D,ΨΨΨ,O〉, mini-buckets

α and α + 1 of bucket Xi

Ensure: an upper bound of the MEU, Uvalue

1: F (δα,α+1(Xi))← Uvalue(δα,α+1(Xi)) (Eq. (3.55)) . define objective function
2: Cvalue ← constraints for the value function Eq. (3.59)
3: Cprob ← constraints for the probability function Eq. (3.60)

Solve constrained optimization problem by defining the objective function F (δα,α+1(Xi)),
optimization parameters δα,α+1(Xi), and constraints Cvalue and Cprob by using off-the-
shelf solver SLSQP [Kraft, 1988]

4: Uvalue ← SLSQP(F (δα,α+1(Xi)), δα,α+1(Xi), Cvalue, Cprob)
5: return Uvalue

of the optimization objective Uvalue by Eq. (3.55) on the remaining subproblems would be

valid. The outer-loop of BCD begins by initializing the iteration counter and the minimum

upper bound Uvalue by Eq. (3.55). The inner-loop of BCD (line 11-13) alternates updating

the cost-shifting functions by UPDATE-COSTS(TMBT, (Xi, α, α + 1)) and the weight parame-

ters by UPDATE-WEIGHTS(TMBT, Xi) to be defined later. Since WMBE-ID uses the powered-

summation operation following Definition 3.1, which uses the absolute value of the value

function, the gradient based optimization methods may encounter difficulty when the value

function contains negative values [Boyd et al., 2004]. Therefore, we developed a constrained

optimization routine for updating the cost-shifting functions that addresses this difficulty

discussed in the following paragraph. We can use Algorithm 3.3 for updating the weight

parameters without any modification. After reaching the iteration limit or convergence, we

process each mini-bucket by computing the messages and sending them to their destinations

in the mini-bucket tree decomposition. Next, we will present a constrained optimization

routine for updating cost-shifting functions.

Updating Cost-shifting Functions The WMBE-ID bound uses the powered-summation

operation defined by Definition 3.1, which transforms a value function V (X) to |V (X)|

as shown in Eq. (3.2). Therefore, we constrain value functions be a non-negative func-

tion after the reparameterization by enforcing an additional constraints. Let ΨXn
α (Xα) =
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(λXnα (Xα), ηXnα (Xα)) be the potential at the α-th mini-bucket of bucketXn, and let δ(α,α+1)(Xn) =

(λ(α,α+1)(Xn), η(α,α+1)(Xn)) be the cost-shifting functions between the α-th and (α+ 1)-th

mini-buckets. Then, we can ensure the non-negativity of the value function following repa-

rameterization by enforcing the following constraints.

ηXnα (Xα)

λXnα (Xα)
−
η(α,α+1)(Xn)

λ(α,α+1)(Xn)
+
η(α−1,α)(Xn)

λ(α−1,α)(Xn)
≥ 0. (3.59)

In addition, the non-negativity of the probability components is ensured by enforcing

λ(α,α+1)(Xn) ≥ 0, ∀(α, α + 1) ∈ QXn . (3.60)

Equipped with the above constraints, any constrained optimization procedure can be applied

to reparameterize the mini-buckets when we posed the task as a constrained optimization

task. In our implementation, we used an off-the-shelf sequential least square programming

solver(SLSQP) solver [Kraft, 1988] to update the cost-shifting functions. Algorithm 3.7

outlines the procedure for updating the cost-shifting functions δ(α,α+1)(Xn) for the mini-

buckets α, α + 1 of bucket Xi. First, we define the objective function by assigning the

values of all the current optimization parameters except δ(α,α+1)(Xn), thus making Uvalue in

Eq. (3.55) a function over δ(α,α+1)(Xn) (line 1). Next, we define constraints for both the

probability and the value functions via Eq. (3.59) and (3.60) (line 2). Then, we call the off-

the-shelf solver SLSQP by passing the optimization problem and return the updated upper

bound Uvalue.

Complexity of WMBE-ID We will next discuss the complexity of our algorithm.

Theorem 3.3 (Complexity of AlgorithmWBME-ID). Given an IDM := 〈X,D,P,U,O〉

and a mini-bucket tree decomposition TMBT with an i-bound, the time complexity of WMBE-

ID is O
(
|X ∪ D| · |P ∪ U| · ·(ki+1 + M1 · (M2 · Gw · ki+1 + M3 · Gc · ki+1 + M3 · f(k)))

)
and the space complexity is O

(
2 · |P ∪U| · (ki+1 · k)

)
, where M1 is the iteration limit of the
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outer-loop of the BCD method, M2 is the iteration limit of the gradient descent algorithm for

updating the weight parameters, M3 is the iteration limit of SLSQP algorithm for updating

the cost-shifting functions, |P ∪ U| is the number of functions, |X ∪ D| is the number of

variables, k is the maximum domain size, and Gw is a constant that bounds the number of

factor operations for evaluating gradients for the weight parameters, Gc is a constant that

bounds the number of factor operations in SLSQP algorithm.

Proof. The time complexity of WMBE-ID can be captured by the inner-loop of the BCD

method for updating the cost-shifting functions using Algorithm 3.7 and for updating the

weight parameters using Algorithm 3.3. Algorithm 3.7 solves a constrained optimization

problem defined over two mini-buckets and the time complexity of a single call of SLSQP

can be bounded by O((Gc · ki+1 + f(k)) since evaluating the objective function involves

a constant number of factor operations over pseudo marginals at each mini-bucket. The

polynomial f(k) bounds the rest of the operations in SLSQP [Kraft, 1988] since the dimension

of the optimization parameter space is O(k). The overall time complexity for updating the

cost shifting functions is O
(
|X ∪D| · |P ∪U| ·M1 ·M3 · (Gc · ki+1 + f(k))

)
since we repeat

the SLSQP calls between two mini-buckets M3 times in Algorithm 3.7, M1 times over the

outer-loop iteration of the BCD methods, |X ∪D| times for all the layers of mini-buckets.

The number of mini-buckets extracted from a bucket can be bounded by |P ∪ U|, so we

repeat the SLSQP calls at most |P∪U| times. The time complexity for updating the weight

parameters for a single inner-loop BCD method can be bounded by O
(
|P∪U|·M2 ·Gw ·ki+1

)
.

The overall time complexity is the sum of the time complexity for updating optimization

parameters and for performing variable elimination O
(
|X∪D| ·|P∪U| ·ki+1

)
[Dechter, 2013],

which results in O
(
|X∪D| · |P∪U| · (ki+1 +M1 · (M2 ·Gw ·ki+1 +M3 ·Gc ·ki+1 +M3 ·f(k)))

)
.

For the space complexity, we store pseudo marginals for the probability component and the

value component at each mini-bucket and cost-shifting potentials between two mini-buckets,

which costs O
(
2 ·Q · ki+1

)
and O(2 ·Q · k) space, respectively.
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Summary We have presented a message-passing algorithm WMBE-ID for computing the

upper bound of the MEU in IDs using the weighted mini-bucket elimination algorithm

[Dechter, 2013, Liu, 2014]. WMBE-ID tightens the mini-bucket relaxation by optimizing

the cost-shifting functions and weight parameters on the fly. To formulate an optimization

problem over the mini-buckets extracted from a single bucket, we introduced a surrogate

optimization objective function to minimize the upper bounds, which relies on the decompo-

sition bounds for IDs introduced in Section 3.2.2.1. Under this formulation, the number of

optimization parameters reduces considerably compared with the algorithm JGD-ID. How-

ever, WMBE-ID doesn’t have a simple closed-form update equation, so we have defined a

constrained numerical optimization routine to find the cost-shifting functions emerging from

the powered-summation operation.

3.3 Bounding Scheme using Exponentiated Utility Functions

Now we move to the second approach for bounding the MEU, which relies on the idea of

exponentiating the utility functions, which is a well recognized approach in the control theory

[Kopp, 1962, Ekeland, 1974] and control as inference [Todorov, 2006, Kappen et al., 2012,

Botvinick and Toussaint, 2012]. Most of the earlier works in control as inference focused on

continuous domains and on generating lower bounds or on sampling based methods. In this

section, we develop a bounding schemes for the MEU using the Jensen’s inequality [Jensen

et al., 1906], which we apply to the expected utility. Here, we do not use the valuation

algebra.

3.3.1 Exponentiated IDs and Decomposition Bounds

We first define a notation for the IDs with exponentaited utility functions as follows.

Definition 3.4 (Exponentiated ID). Given an IDM := 〈X,D,P,U,O〉, we define expo-
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nentiated ID byMe := 〈X,D,P,Ue,O}, where Ue = {eUi |Ui ∈ U}. InMe, the combination

operation for the exponentiated utility functions in Ue is the multiplication operation.

Next, we state the exponentiated utility bounds for IDs, which bounds the MEU ofM by

the log-partition function (see Section 2.3.1) ofMe as follows.

Theorem 3.4 (Exponentiated Utility Bounds for IDs). Given an IDM := 〈X,D,P,U,O〉,

where X is a set of chance variables, D is a set of decision variables, P is a set of prob-

ability functions, U is a set of additive utility functions, and O is the constrained order-

ing, we can bound the MEU of M by the log-partition function of the exponentiated ID

Me := 〈X,D,P,Ue,O〉, where Ue is a set of multiplicative functions obtained by exponen-

tiating the utility functions in U. Namely,

MEU =
w∑
O

∏
Pi∈P

Pi(XPi) ·
( ∑
Ui∈U

Ui(XUi)
)
≤ log

w∑
O

[ ∏
Pi∈P

Pi(XPi) ·
∏
Fi∈Ue

Fi(XFi)
]
. (3.61)

Proof. The left-hand side of Eq. (3.61) is the MEU definition shown in Eq. (2.64) under the

perfect recall condition. We then rewrite the MEU in terms of an expectation over the utility

functions and we will subsequently introduce exponentiated utility functions in Eq. (3.63).

From Jensen’s inequality, we get Eq. (3.64) (see [Chandler, 1987]). We can rewrite the

upper bound by switching the order of the max operation and log operation and rewrite the

expectation using the functions in Me in Eq. (3.65). The right-hand side of Eq. (3.61) is

obtained by rewriting the upper bound using the powered-sum operation.

MEU =
w∑
O

( ∏
Pi∈P

Pi(XPi)
)
·
( ∑
Ui∈U

Ui(XUi)
)

(3.62)

We next stop using the powered-sum notation and will explicilty use max∆∆∆ notation, where
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∆∆∆ is the set of policy functions defined in Section 2.4.

= max
∆∆∆

E
[ ∑
Ui∈U

Ui(XUi)
]

= max
∆∆∆

E
[

log e
∑
Ui∈U

Ui(XUi
)
]

(3.63)

From Jensen’s inequality, we get:

≤ max
∆∆∆

logE
[
e
∑
Ui∈U

Ui(XUi
)
]

(3.64)

= log max
∆∆∆

E
[
e
∑
Ui∈U

Ui(XUi
)
]

= log max
∆∆∆

E
[ ∏
Fi∈Ue

Fi(XFi)
]

(3.65)

(3.66)

Note that Fi denotes an element of a set of exponentiated utility functions Ue. Namely,

Fi ∈ Ue and Fi(XFi) := eUi(XUi
). Therefore,

= log
w∑
O

[ ∏
Pi∈P

Pi(XPi) ·
∏
Fi∈Ue

Fi(XFi)
]

(3.67)

Next, we will use two bounding schemes for the mixed inference task to compute the log-

partition function ofMe yielding two bounding algorithms: (1) by extending GDD bounds

[Ping et al., 2015] over a join-graph decomposition ofMe, which we call JGD-EXP (Section

3.3.2), and (2) by extending WMBMM bounds [Ihler et al., 2012, Marinescu et al., 2014]

over a mini-bucket tree decomposition ofMe, which we call WMBMM-EXP (Section 3.3.3).

3.3.2 Join-graph Decomposition Bounds for Exponentiated IDs

Given the exponentiated IDMe := 〈X,D,P,Ue,O〉 ofM := 〈X,D,P,U,O〉, a join-graph

decomposition GJG := 〈G(C,S), χ, ψ〉 for Me can be obtained in the usual way using the

mini-bucket tree decomposition (see Example 3.1). Figure 3.5 and Example 3.5 show the
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Figure 3.5: Join-graph Decomposition of the Exponentiated ID.

changes to the join-graph decomposition due to the exponentiated IDMe.

Example 3.5. Figure 3.5 presents a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 of the

ID in Figure 3.1a. Here we do not use the valuation algebra over the Jensen’s potentials

as was shown in Figure 3.1b. The join-graph in Figure 3.5 treats probability functions and

exponentiated utility functions as unnormalized factors in a probabilistic graphical models.

Theorem 3.4, shows that the MEU of an IDM can be bounded by the log-partition function

of the exponentiated ID Me. Therefore, we can now apply any variational decomposition

bounds in the mixed inference task for bounding the log-partition function to yield bounds

to the MEU ofM. Namely, we bound the MEU by first applying Theorem 3.4 to obtainMe

fromM, and then by using variational decomposition bounds in the probabilistic graphical

models toMe.

3.3.2.1 Derivation of Upper Bounds

Given a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 of Me, we denote a cost-shifting

function over the separator (Ci, Cj) ∈ S by δCi,Cj(XCi,Cj). The upper bounds on the MEU

can be parameterized over GJG as described in the following proposition.
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Proposition 3.3. Given an ID M := 〈X,D,P,U,O〉, where U = {U1, . . . , Ul} and its

exponentiated ID Me := 〈X,D,P,Ue,O〉, Ue = {eU1 , . . . , eUl}, a total elimination order

Oelim := {X1, X2, . . . , XN} over the variables X ∪D, and given a join-graph decomposition

GJG := 〈G(C,S), χ, ψ〉 of Me, the upper bound on the MEU can be parameterized over GJG

as follows. UMEU denotes as usual an upper bound over the MEU. We claim that for a given

set of weights.

MEU ≤
∑
Ci∈C

log

wCXN∑
XC
N

· · ·
wCX1∑
XC

1

exp
(

logPCi(XCi) + UCi(XCi) +
∑

(Ci,Cj)∈S

δCi,Cj(XCi,Cj)
)
, (3.68)

and we denote the expression on the right hand side as UMEU where,

PCi(XCi) =
∏

Pi∈
(
ψ(Ci)∩P

)Pi(XPi), (3.69)

UCi(XCi) =
∑

Ui∈
(
ψ(Ci)∩U

)Ui(XUi), (3.70)

δCi,Cj(XCi,Cj) + δCj ,Ci(XCi,Cj) = 0 ∀(Ci, Cj) ∈ S, (3.71)∑
C∈C

wCXi = wXi , ∀Xi ∈ (X ∪D). (3.72)

PCi(XCi) ∈ P and UCi(XCi) ∈ U are the probability and utility functions assigned at the

cluster node Ci, δCi,Cj(XCi,Cj) and δCj ,Ci(XCj ,Ci) are the cost-shifting function over the sep-

arator (Ci, Cj) that cancels each other, and wCXk is the weight for the variable Xk assigned

at cluster C that satisfies wXk =
∑

C∈C w
C
Xk

.

Proof. We start our derivation from Eq. (3.61) in Theorem 3.4 bounding the MEU ofM by

the log-partition function ofMe repeated in Eq. (3.73). To get Eq. (3.74), we rearrange the

probability functions and exponentiated utility functions at each cluster Ci according to GJG,

and introduce cost-shifting functions over the separators, which cancel each other. Namely,
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δCi,Cj(XCi,Cj)δCj ,Ci(XCi,Cj) = 0(XCi,Cj) Next, to derive Eq. (3.75), we rewrite functions

in the log-space and replaces the exponentiated utility functions Fi(XFi) with the original

utility functions Ui(XUi) Subsequently, we switch the order of the multiplication operation

and the elimination operation using decomposition bounds on mini-buckets [Ping et al., 2015]

yielding Eq. (3.76), and obtain the desired expression by changing log product to sum log

and rewriting the powered-sum operation explicitly, yielding Eq. (3.77).

MEU =
w∑
O

∏
Pi∈P

Pi(XPi) ·
( ∑
Ui∈U

Ui(XUi)
)
≤ log

w∑
O

[ ∏
Pi∈P

Pi(XPi) ·
∏
Fi∈Ue

Fi(XFi)
]

(3.73)

= log
w∑
O

∏
Ci∈C

(∏
Pi∈
(
ψ(Ci)∩P

)Pi(XPi)×
∏

Fi∈
(
ψ(Ci)∩Ue

)Fi(XFi)
)
·
∏

Ci,Cj∈S

exp(δCi,Cj) (3.74)

= log
w∑
O

∏
Ci∈C

exp
(

logPCi(XCi) + UCi(XCi) +
∑

Ci,Cj∈S

δCi,Cj(XCi,Cj)
)

(3.75)

≤ log
∏
Ci∈C

wCi∑
O

exp
(

logPCi(XCi) + UCi(XCi) +
∑

Ci,Cj∈S

δCi,Cj(XCi,Cj)
)

(3.76)

=
∑
Ci∈C

log

wCXN∑
XC
N

· · ·
wCX1∑
XC

1

exp
(

logPCi(XCi) + UCi(XCi) +
∑

(Ci,Cj)∈S

δCi,Cj(XCi,Cj)
)
. (3.77)

Proposition 3.3 introduces two kinds of optimization parameters: (1) cost-shifting functions

δCi,Cj(XCi,Cj), and (2) weight parameters wCi that satisfies the following condition, wX =∑
Ci∈C w

Ci
X for all X ∈ χ(Ci). Compared with algorithm JGD-ID presented in Section 3.2.2,

algorithm JGD-EXP has only two types of optimization parameters because JGD-EXP does

not use the valuation algebra for IDs.
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Algorithm 3.8 Join-graph GDD of Exponentiated IDs (JGD-EXP)
Require: Exponentiated IDMe := 〈X,D,P,Ue,O〉 ofM := 〈X,D,P,U,O〉, weights wXi

associated with each variable Xi ∈ X, i-bound, iteration limit M for the outer-loop of
BCD.

Ensure: an upper bound of the MEU, UMEU

Initialization Steps
1: Generate a join-graph decomposition GJG = 〈G(C,S), χ, ψ〉 ofMe with given i-bound
2: Initialize weights for each chance variableXi ∈ X by uniform weights, wCXi = 1

|{C|Xi∈χ(C)}| ,
and for each decision variable Di ∈ D by a constant close to zero, wCDi ≈ 0.
Outer-loop of BCD

3: iter=0, UMEU = inf
4: while iter < M or Uvalue is not converged do

Inner-loop of BCD
5: for each variable Xi ∈ X do
6: UMEU ← min(UMEU, Update-Weights(GJG, Xi)) . use Algorithm 3.3 with the

gradient expression shown in Eq. (3.78)
7: for each edge (Ci, Cj) ∈ S do
8: UMEU ← min(UMEU, Update-Costs(GJG, (Ci, Cj))) . see Algorithm 3.9
9: iter = iter + 1
return UMEU

3.3.2.2 Optimizing the Paramterized Bounds

Next, we present algorithm JGD-EXP that solves a convex optimization problem for tighten-

ing the upper bound UMEU defined in Eq. (3.68) by optimizing over the cost-shifting functions

δCi,Cj(XCi,Cj) and the weight parameters wCXk parameterized over the join-graph G(C,S). As

we will see, we will need to modify algorithm JGD-ID shown in Algorithm 3.2 in order to

present JGD-EXP.

Message Passing Algorithm (JGD-EXP) Algorithm 3.8 outlines the overall procedure

of BCD updates in JGD-EXP. In the initialization step of JGD-EXP, we generate a join-

graph of Me and initialize its weights as usual (line 1-2), The inner-loop of JGD-EXP

alternates updating weights by UPDATE-WEIGHTS(GJG,Xi) and updating cost-shifting functions

by UPDATE-COSTS(GJG,(Ci,Cj)) (line 5-8). During the updating if the weight parameters, we

optimize a subset of weight parameters wX = {wCX |X ∈ χ(C)} for each variable X using
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Algorithm 3.3, which was also used for updating the weight parameters in JGD-ID. Yet,

we modify the gradient expression for the exponentiated utility bounds as will be shown in

Eq. (3.78). For updating the cost-shifting functions, we use Algorithm 3.9 to be presented

shortly which performs gradient descent updates for δCi,Cj(XCi,Cj) over the separators S.

Since both JGD-ID and JGD-EXP are based on GDD bounds [Ping et al., 2015], they are

quite similar. However, JGD-EXP does not involve the complicated non-convex optimization

problems for updating the parameters, and the derived gradient expressions are much simpler

than JGD-ID, as we will show in the following Section. The main difference between these

two bounding schemes is in how each handles the additive utility functions. In JGD-ID,

we generalize the powered-sum elimination for IDs and derived decomposition bounds by

Minkowski’s inequality and Hölder’s inequality. In JGD-EXP, we bound the MEU of M

by first using the exponentiated utility bound, which gives Me, and then by applying the

decomposition bounds to the log-partition function ofMe.

Next, we will present the optimization routines for optimzing the weight parametrs and the

cost-shifting functions.

Updating Weights The UPDATE-WEIGHTS routine in Algorithm 3.8 updates the weights

w
Cj
Xi

for each variable Xi over clusters {C|Xi ∈ χ(C)} like in algorithm JGD-ID. The only

modification required in Algorithm 3.3 to accommodate that is to provide the gradient

expression due to the new objective function UMEU defined in Eq. (3.68). Namely,

∂UMEU

∂wCXk
= HΛC(XC)(Xk|Xk+1:N) = −

∑
XC

ΛC(XC) log ΛC(Xk|Xk+1:N), (3.78)

where


ΛC(XC) =

(
ZN−1(XN )

ZN

)1/wN
· · ·
(
Z0(X1:N )
Z1(X2:N )

)1/w1

,

Z0(X1:N) =
∏

Pi∈(ψ(C)∩P) Pi(XPi) exp
(∑

Ui∈(ψ(C)∩U) Ui
)
.

(3.79)
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Algorithm 3.9 UPDATE-COSTS(GJG, (Ci, Cj))

Require: a join-graph decomposition GJG, Xi) of an exponentiated ID Me =
〈X,D,P,Ue,O〉 of M = 〈X,D,P,U,O〉, separator (Ci, Cj) iteration limit M for the
gradient descent

Ensure: an upper bound of the MEU, UMEU,
1: λCi ←

∑
Pi∈(P∩ψ(Ci))

logPi +
∑

Ui∈(U∩ψ(Ci))
Ui

2: λCj ←
∑

Pi∈(P∩ψ(Cj))
logPi +

∑
Ui∈(U∩ψ(Cj))

Ui
3: t=0
4: while t < M or UMEU is not converged do
5: δCi,Cj(XCi,Cj)← 0(XCi,Cj)
6: Compute gradient of UMEU with respect to the cost-shifting function by Eq. (3.80)
7: Find cost-shifting functions δCi,Cj(XCi,Cj) by Eq. (3.32).
8: λCi(XCi)← FCi(XCi)− δCi,Cj(XCi,Cj)
9: λCj(XCj)← FCj(XCj) + δCi,Cj(XCi,Cj)

10: Compute new UMEU using Eq. (3.68) with the updated λCi(XCi) and λCj(XCj)
11: t = t+ 1

Eq. (3.78) is a conditional entropy of the pseudo marginal at cluster C defined by Eq. (3.79).

For more details for deriving Eq. (3.78), see [Ping et al., 2015].

Updating Cost-shifting Functions We now derive the UPDATE-COSTS routine that is used

in Algorithm 3.8 to update the cost-shifting functions δCi,Cj(XCi,Cj) over separators (Ci, Cj) ∈

S. As usual, this is done via a gradient descent algorithm. We obtain a closed-form gradient

expression for the cost-shifting paramters by evaluating the partial derivatives of UMEU in

Eq. (3.68) with respect to δCi,Cj(XCi,Cj) as follows.

∂UMEU

∂δCi,Cj(XCi,Cj)
= −

∑
XCi
\XCj

ΛCi(XCi) +
∑

XCj
\XCi

ΛCj(XCj). (3.80)

For the derivation of the gradients, see [Ping et al., 2015].

Algorithm 3.9 presents the gradient descent algorithm for optimizing the cost-shifting func-

tions. Given a separator (Ci, Cj), we combine the probability functions and the utility

functions assigned at cluster Ci and Cj to λCi(XCi) and λCj(XCj), respectively (line 1-2).

Note that this algorithm performs factor operations in the log-scale. In each iteration, we
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set the cost-shifting function δCi,Cj(XCi,Cj) to a neutral factor 0(XCi,Cj). Then we compute

gradient using Eq. (3.80) and find the cost-shifting function by Eq. (3.32) (line 6-7), and

then we reparameterize λCi(XCi) and λCj(XCj) (line 8-9). We repeat this until we reach the

iteration limit M or until convergence.

Complexity of JGD-EXP We can analyze the time and space complexity of Algorithm 3.8

by following the same reasoning for analyzing the complexity of algorithm JGD-ID (Theorem

3.2).

Theorem 3.5. Given an ID M := 〈X,D,P,U,O〉, and its exponentiated ID Me :=

〈X,D,P,Ue,O〉, and given a join-graph decomposition GJG := 〈G(C,S), χ, ψ〉 ofMe with an

i-bound, the time complexity of JGD-EXP is O
(
M1·M2·(|X∪D|·|C|·Gw·ki+1+·|S|·Gc·ki+1+)

)
and the space complexity is O

(
(|C| · ki+1 + |S| · k|sep|)

)
, where M1 is the iteration limit of the

outer-loop of the BCD method, M2 is the iteration limit of the gradient descent algorithms

in the inner-loop of the BCD method, |X∪D| is the number of variables, k is the maximum

domain size, |C| and |S| are the number of clusters and separators in the join-graph decom-

position GJG, and |sep| is the separator width. Gw, and Gc are constants that bounds the

number of factor operations for evaluating gradients.

Summary Algorithm JGD-EXP generates upper bounds by adapting the GDD algorithm

over the join-graph decomposition after exponentiating the utility functions. This formu-

lation avoids the non-convexity issue in the previous algorithms JGD-ID and WMBE-ID.

However, the bounding scheme cannot recover the exact solution, even if the i bound ex-

ceeds the constrained induced width.
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3.3.3 Weighted Mini-bucket Moment Matching Bounds for Exponentiated

IDs

The WMBMM bound for the marginal MAP task [Marinescu et al., 2014] is a variant of

the weighted mini-bucket bounds shown in Proposition 2.3, which performs a simple fixed-

point moment matching message passing update only once between mini-buckets during the

weighted mini-bucket elimination (See Section 2.3.2). This simple method was shown to of-

ten outperforms other more complex bounding schemes when using higher i-bounds since the

iterative update on large number of parameters used by the more complex method is com-

putationally intensive . In Section 3.2.3, we present algorithm WMBE-ID that interleaves

the variable elimination and the reparameterization in a layer by layer manner over the

mini-bucket tree similar to the WMBMM bound. However, it solves non-convex constrained

optimization problems at every layer over a mini-bucket tree using surrogate objective func-

tions derived from decomposition bounds before processing messages. We now investigate

applying the WMBMM algorithm over the exponentiated IDs. GivenMe, we can generate

a weighted mini-bucket tree TMBT in the usual manner (see Example 3.3) as we show next.

Example 3.6. Figure 3.6 shows a weighted mini-bucket tree for Me, obtained by expo-

nentiating the utility functions of the ID in Figure 2.6a. We see that the structure of the

mini-bucket tree is the same as the tree shown in Figure 3.3. The only difference is that the

TMBT in Figure 3.6 uses probability and exponentiated utility functions directly rather than

converting the functions into Jensen’s potentials.

Message Passing Algorithm (WMBMM-EXP) GivenMe and a mini-bucket tree decom-

position TMBT, we can bound the MEU using the WMBMM bounds for the mixed inference

task as implied by Theorem 3.4. Algorithm 3.10 present the WMBMM algorithm, applied

to the exponentiated IDs. It is identical to the weighted mini-bucket elimination algorithm

shown in Algorithm 2.1 except that the moment matching steps with the uniformly dis-
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Figure 3.6: Weighted Mini-bucket Tree Decomposition of the Exponentiated ID.

tributed weights (line 8-16) is different. Specifically, when WMBMM-EXP partitions bucket

BXi to P mini-buckets {B1
Xi
, . . . ,BP

Xi
} (line 5), it combines functions at each mini-bucket

Bp
Xi

(line 7) and perform moment-matching by setting the weights uniformly wpXi = 1
P
if Xi

is a chance variable (line 9). The cost-shifting function is computed by taking the pseudo

marginals µp(Xi) from each mini-bucket (line 10, 14) and updating them by the geometrical

mean (line 12, 16). After this moment-matching phase, we generate and send messages from

each mini-bucket downstream as usual (line 17-21).

Complexity of WMBMM-EXP The complexity of algorithm WMBMM-EXP is the same

as the complexity of the mini-bucket elimination algorithm [Dechter and Rish, 2003] since

the only additional steps added to the naive mini-bucket elimination algorithm are moment-

matching procedures (line 7-15) in Algorithm 2.1. We can see that the moment-matching

steps only contain a finite number of operations that are bounded within each mini-bucket.
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Algorithm 3.10 WMBMM for Exponentiated IDs (WMBMM-EXP)
Require: Me = 〈X,D,F,O〉, total variable elimination ordering O, i-bound
Ensure: Upper bound of the MEU, UMEU

1: for each variable Xi ∈ O do
Collect and Combine Functions

2: BXi ← {Fi(XFi)|Xi ∈ sc(Fi), Fi ∈ F} . Collect functions to a bucket BXi

3: F← F \BXi . Remove the functions assigned to bucket
4: Partition BXi to mini-buckets {BX1

i
, . . .BXP

i
} such that maxp |sc(BXp

i
)| ≤ i+ 1

5: for each mini-bucket BXp
i
∈ {BX1

i
, . . .BXP

i
} do

6: FXi
p ←

∏
Fi∈BXp

i

(
Fi
)

Moment Matching
7: if Xi ∈ X then . Xi is a chance variable
8: wpXi = 1

P
. assign uniform weights

9: µp =
∑

sc(B
X
p
i

)\Xi

(
FXp

i

) 1

w
p
Xi . compute pseudo marginal over Xi from BXp

i

10: µ =
∏P

p=1 µ
wpXi
p . compute overall pseudo marginal

11: FXi
p ← FXi

p ·
(
µ
µp

)wpXi . moment matching update
12: else
13: µp = maxsc(B

X
p
i

)\Xi
(
FXi
p

)
. compute pseudo marginal over decision Xi

14: µ =
∏P

p=1 µ
1
P
p . compute overall pseudo marginal

15: FXi
p ← FXi

p ·
(
µ
µp

)
. moment matching update

Send Message Downwards
16: for each mini-bucket BXp

i
∈ {BX1

i
, . . .BXP

i
} do

17: if Xi ∈ X then
18: λX

p
i ←

∑wpXi
Xi

FXi
p . compute wmb message after moment matching

19: else
20: λX

p
i ← maxXi F

Xi
p . compute wmb message after moment matching

F← F ∪ {λX
p
i }

21: UMEU ←
∏

Fi∈F Fi
22: return UMEU

Theorem 3.6. Given an ID M := 〈X,D,P,U,O〉, and its exponentiated ID Me :=

〈X,D,P,Ue,O〉, and given a mini-bucket tree decomposition TMBT := 〈T (C,S), χ, ψ〉 of

Me with an i-bound, the time and space complexity of WMBMM-EXP is O
(
|X ∪D| · ki

)
,

where k is the maximum domain size of the variables.
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Summary of WMBMM-EXP We presented WMBMM-EXP algorithm for bounding the

MEU extending WMBMM algorithm for the marginal MAP task into the MEU task. In

contrast to other bounding schemes presented in this chapter, WMBMM-EXP is the only

non-iterative single-pass algorithm. Note that WMBE-ID presented in Section 3.2.3 also

parameterizes the weighted mini-bucket tree. However WMBE-ID iteratively optimizes the

cost-shifting functions using constrained optimization, and the weight parameters by expo-

nentiated gradient descent.

3.4 Conclusion

Join-graph Decomposition Mini-bucket Tree Decomposition

Decomposition Bounds JGD-ID WMBE-ID
for IDs Section 3.2.2 Section 3.2.3

Exponentiated Utility JGD-EX WMBMM-EXP
Bounds Section 3.3.2 Section 3.3.3

Table 3.1: Summary of Direct Decomposition Bounds for IDs

In this chapter, we developed new variational bounding schemes for the MEU task in IDs.

Table 3.1 summarize the overall algorithms. The first approach that extending decomposition

bounds for IDs generalizes the variational decomposition bounds to the valuation algebra

over the Jensen’s potential. Then, we extended generalized dual decomposition bounds

and the weighted mini-bucket bounds to join-graph GDD bounds for IDs (JGD-ID), and

weighted mini-bucket elimination bounds for IDs (WMBE-ID), respectively. This approach

provides the bounds over the potentials, which is a pair of probability and the expected

utility functions. Hence, both bounding schemes subsumes the upper bound for the MMAP

task.

The second approach develops the exponentiated utility bounds, and we also extended the

bounding schemes GDD and WMBMM to join-graph GDD bounds for exponentiated IDs
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(JGD-EXP), and WMBMM bounds for exponentiated IDs (WMBMM-EXP). This approach

bounds the MEU by first exponentiating the utility, and subsequently by bounding the log

partition function of the exponentiated IDs with the variational bounding schemes in the

mixed inference tasks.
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Chapter 4

Empirical Evaluation of Decomposition

Bounds for Influence Diagrams

This chapter presents empirical evaluation of our proposed algorithms JGD-ID, WMBE-ID,

JGD-EXP, and WMBMM-EXP presented in Chapter 3 and compares the performance of

algorithms for bounding the MEU task against earlier approaches. Section 4.1 presents the

empirical evaluation methodology, which specifies the evaluated algorithms, the measure of

performance, and benchmark domains. Section 4.2 presents the impact of reductions of

the MEU task to the MMAP or the mixed inference task [Mauá, 2016, Liu, 2014]. Then,

we present the empirical evaluation results from individual problem instances. Section 4.3

reports the performance of evaluated algorithms at varying time and memory bounds, and

Section 4.4 shows the convergence behaviors of iterative algorithms from representative prob-

lem instances. In Section 4.5, we present the average quality of upper bounds in each domain

and rank the algorithms in a competition setting. In Section 4.6, we present the result of

a case study that evaluates the upper bounds from algorithm WMBMM-EXP in realistic

and larger scale problem instances from probabilistic planning. We also compare the up-

per bounds from algorithm WMBMM-EXP and the lower bounds from the state-of-the-art

online probabilistic planners. We conclude this chapter in Section 4.7
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4.1 Methodology

In our experiments, we compared the upper bounds generated by the algorithms for the

MEU task. All algorithms were implemented in Python3 language, and the experiment was

conducted in Openlab cluster at University of California, Irvine. We next present the

algorithms evaluated, the performance measure for comparing the algorithms performance

in generating upper bounds and introduce the benchmark sets on which we evaluate the

algorithms.

4.1.1 Evaluated Algorithms

Table 4.1 shows the list of algorithms to be evaluated. Our direct bounding schemes JGD-ID,

WMBE-ID, JGD-EXP, and WMBMM-EXP were introduced in Chapter 3 as an extension

to existing decomposition bounds, namely, WMB [Liu and Ihler, 2011, 2012], GDD [Ping

et al., 2015], and WMBMM [Liu, 2014, Marinescu et al., 2014]. Our algorithms will be com-

pared against translation based approaches that generate BNs from input IDs by introducing

auxiliary variables and relations that allows bounding the MEU using mixed inference [Liu

and Ihler, 2012] or MMAP tasks [Mauá, 2016]. We evaluated two translation based algo-

rithms. GDD-MI translates the MEU task to the mixed inference task and applies a GDD

bounding algorithm [Ping et al., 2015], and WMBMM-MMAP translates the MEU task to

the MMAP task and applies the WMBMM bounding algorithm [Marinescu et al., 2014].

We also compare against MBE-ID, which is a non-variational bounding method that applies

MBE bound [Dechter and Rish, 2003] to the potentials for IDs [Jensen et al., 1994]. As we

explained in Chapter 3, direct decomposition bounds that are based on the GDD bounding

method decompose input IDs to a join-graph decomposition using a bounding parameter

i-bound, and they are all iterative algorithms which run until convergence or until iteration

limits. Other algorithms such as WMBMM and MBE are non-iterative in nature that use
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Algorithm Decomposition Methods Bounding Method Iteration Translation

JGD-ID Join-graph GDD over Potential Yes No
WMBE-ID Mini-bucket Tree WMB,GDD over Potential Yes No

JGD-EXP Join-graph GDD over Me Yes No
WMBMM-EXP Mini-bucket Tree WMBMM overMe No No

GDD-MI Join-graph GDD Yes Yes
WMBMM-MMAP Mini-bucket Tree WMBMM No Yes
MBE-ID Mini-bucket Tree MBE No No

Table 4.1: JGD-ID and WMBE-ID are the bounding schemes that are introduced in Section 3.2. JGD-
EXP and WMBMM-EXP are the bounding scheme that are introduced in Section 3.3. GDD-MI and WMBM-
MMAP are competing translation based approaches.

the mini-bucket tree decomposition with a bounding parameter i-bound.

4.1.2 Measure of Performance

Our target is to compare the quality of the upper bounds generated by algorithms listed in

Table 4.1. To compare the quality of upper bounds from both iterative and non-iterative

algorithms, we control the running time and report the upper bounds in an anytime manner.

Namely, we compare the best upper bounds from the evaluated algorithms at sampled time

points within the time interval between 10 seconds to 100,000 seconds under the varying

i-bounds ranging from 1 to 20 in Section 4.3. In addition to reporting the individual upper

bounds at sampled time points, we show the overall convergence behavior over the time

interval between 10 seconds to 100,000 seconds. in Section 4.4. We next summarize the

quality of upper bounds from each benchmark domain by averaging the ratio between the

best known upper bound and the upper bound from each algorithm, UBbest
UBalg

. The closer the

ratio 1.0, the better the quality. In the extreme, the ratio is 1.0 if the algorithm generated the

best upper bound, and is 0.0 when an algorithm returned the infinity as an upper bound.

We use the average quality of upper bounds to rank the evaluated algorithms under the

combinations of varying time bounds and the i bounds in Section 4.5.
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4.1.3 Benchmarks

We used four types of benchmark sets, each has ten instances of varying difficulty charac-

terized by the number of variables and the induced width of the DAG of input IDs.

• FH-MDP: The instances in this set are finite horizon factored Markov decision process

(MDP) problems [Boutilier et al., 1999] generated by first creating a two-stage random

Dynamic Bayesian Networks (DBN) [Dean and Kanazawa, 1989] and randomly select-

ing decision, chance variables from the nodes in the DBN and adding random utility

functions. Then, we replicated the two-stage model to desired time steps from 3 to 10.

The numbers shown next to the instance name encodes the number of chance variables

c at each time step, the maximum domain size k, the number of utility functions u at

each time step, and the number of time steps t replicated. For example, mdp1-4-2-2-5

is generated by parameters c=4, k=2, u=2, and t=5.

n c d f p u k s w

Min 25 20 3 30 20 10 2 4 5
Average 105.7 99.6 6.1 134.1 99.6 34.5 3.1 7.1 25.5
Max 170 160 10 240 160 80 5 9 43

mdp1-4-2-2-5 25 20 5 30 20 10 2 4 5
mdp2-8-3-4-5 45 40 5 60 40 20 3 5 41
mdp3-10-3-5-10 110 100 10 150 100 50 3 6 10
mdp4-10-3-5-10 110 100 10 150 100 50 3 6 13
mdp5-16-3-8-10 170 160 10 240 160 80 3 7 13
mdp6-20-5-5-5 105 100 5 125 100 25 5 9 21
mdp7-28-3-6-5 145 140 5 170 140 30 3 9 28
mdp8-28-3-6-4 116 112 4 136 112 24 3 9 40
mdp9-32-3-8-3 99 96 3 120 96 24 3 9 41
mdp10-32-3-8-4 132 128 4 160 128 32 3 7 43

Table 4.2: Problem Instance Statistics for FH-MDP domain. n is the number of variables, c
is the number of chance variables, d is the number of decision variables, f is the number of
functions p is the number of probability functions, u is the number of utility functions, k is
the maximum domain size, s is the maximum scope size, and w is the constrained induced
width from a constrained join tree computed by stochastic min-fill algorithm [Kask et al.,
2011].

• FH-POMDP: The instances in this set are finite horizon factored partially observable MDP
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(POMDP) problems [Boutilier et al., 1999] that are generated by the same method for

FH-MDP except for the partial observability. To obtain finite horizon POMDP instances,

We replicated a two-stage model to 3 to 5 horizons. For the observed variables, we

randomly divided the chance variables into observed chance variables and unobserved

chance variables in random. The numbers shown next to the instance name encodes

the number of unobserved chance variables at each time step, the number of observed

chance variables at each time step, the maximum domain size, the number of utility

functions at each time step, and the number of time steps replicated. For example,

pomdp1-4-2-2-2-3 is generated by replicating a two-stage model with 4 unobserved

chance variables, 2 observed chance variables and 2 utility functions to 3 time steps.

n c d f p u k s w

Min 15 12 3 18 12 6 2 3 10
Average 55.9 52.4 3.5 73.5 52.4 21.1 2.4 5.5 28
Max 96 92 5 140 92 48 3 9 46

pomdp1-4-2-2-2-3 21 18 3 24 18 6 2 4 11
pomdp2-2-2-2-2-3 15 12 3 18 12 6 2 3 10
pomdp3-4-4-2-2-3 27 24 3 30 24 6 2 4 16
pomdp4-4-4-2-2-5 45 40 5 50 40 10 2 4 27
pomdp5-6-4-3-5-3 33 30 3 45 30 15 3 5 17
pomdp6-12-6-2-6-3 57 54 3 72 54 18 2 9 28
pomdp7-20-10-2-10-3 93 90 3 120 90 30 2 9 44
pomdp8-14-9-3-12-4 96 92 4 140 92 48 3 6 46
pomdp9-14-8-3-10-4 92 88 4 128 88 40 3 6 43
pomdp10-12-7-3-8-4 80 76 4 108 76 32 3 5 38

Table 4.3: Problem Instance Statistics for FH-POMDP domain. For legend see Table 4.2.

• RAND: The instances in this set have a random graph structure that is generated by

creating a random DAG given the number the number of chance, decision, and value

nodes. The numbers shown next to the instance name encodes the parameters of

random influence diagram generator. For example, rand-c20d2o1-01 is an influence

diagram with 20 chance nodes, 2 decision nodes, and 1 immediate observed chance

node. Unlike FH-MDP and FH-POMDP instances, RAND instances do not have a repeated

structure over the time steps.
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n c d f p u k s w

Min 22 20 2 22 20 2 2 3 6
Average 56 47 9 56 47 9 2 3 17
Max 91 70 21 91 70 21 2 3 34

rand-c20d2o1-01 22 20 2 22 20 2 2 3 6
rand-c30d3o1-01 33 30 3 33 30 3 2 3 9
rand-c30d6o1-01 36 30 6 36 30 6 2 3 12
rand-c30d9o1-01 39 30 9 39 30 9 2 3 14
rand-c50d10o1-01 60 50 10 60 50 10 2 3 20
rand-c50d15o1-03 65 50 15 65 50 15 2 3 24
rand-c50d5o1-01 55 50 5 55 50 5 2 3 15
rand-c70d14o1-01 84 70 14 84 70 14 2 3 26
rand-c70d21o1-01 91 70 21 91 70 21 2 3 34
rand-c70d7o1-01 77 70 7 77 70 7 2 3 19

Table 4.4: Problem Instance Statistics for RAND domain. For legend see Table 4.2.

• BN: The instances in this set are modified from existing Bayesian networks by randomly

selecting decision variables and adding random utility functions. While generating the

benchmark instances, we took 3 BN instances, BN − 0, BN − 14, and BN − 78, from

the UAI-2006 probabilistic inference competitions. The decision nodes and value nodes

were randomly selected from non-leaf nodes and leaf nodes in the BN, respectively.

n c d f p u k s w

Min 54 48 3 54 48 3 2 6 12
Average 84 77 7 84 77 7 2 8 21
Max 115 109 12 115 109 12 2 10 42

BN-0-w28d6 100 94 6 100 94 6 2 6 23
BN-0-w29d6 100 94 6 100 94 6 2 6 17
BN-0-w32d11 100 89 11 100 89 11 2 6 24
BN-0-w33d11 100 89 11 100 89 11 2 6 27
BN-14w42d6 115 109 6 115 109 6 2 8 28
BN-14w57d12 115 103 12 115 103 12 2 8 42
BN-78-w18d3 54 51 3 54 51 3 2 10 12
BN-78-w19d3 54 51 3 54 51 3 2 10 14
BN-78-w23d6 54 48 6 54 48 6 2 10 13
BN-78-w24d6 54 48 6 54 48 6 2 10 18

Table 4.5: Problem Instance Statistics for BN domain. For legend see Table 4.2.
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4.2 Impact of Translations

In this section, we present the statistics of problem instances obtained by translating IDs

to BNs, and show the impact of translations. The translated instances are evaluated by

bounding schemes for mixed inference and MMAP tasks.

4.2.1 Translation to the Mixed Inference Task

The reduction to the mixed inference task by Liu and Ihler [2011] converts additive utility

functions in the MEU task into multiplicative functions by using the following equation

Eq. (4.1).

Given an IDM := 〈X,D,P,U,O〉, the translation uses the following equality,

∑
Ui∈U

Ui(XUi) =

|U|∑
Z=1

∏
U ′i∈U

U ′i(XUi , Z)F (Z) (4.1)


F (Z = z) = 1 for all z ∈ {1, 2, . . . , |U|},

U ′i(XUi , Z = z) = Ui(XUi) if z = i,

U ′i(XUi , Z = z) = 1 otherwise.

(4.2)

We can see that the reduction to the mixed inference task introduces an auxiliary unobserved

chance variable Z having domain size equals to the total number of utility functions, which

inflates the maximum domain size to the total number of utility functions. The reduction

also introduces directed arcs from the auxiliary node to all value nodes, modifying each

additive utility function from Ui to multiplicative utility function U ′i as shown in Eq. (4.2),

which extends the size of each utility function by a factor of the total number of utility

functions. The constant function F (Z) was introduced to define a valid directed graphical

model. For the details of the translation see [Liu and Ihler, 2012].
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n f k s w ρn ρk ρw

Min 26 30 10 4 15 1.04 5 3
Average 106 134 34 7 84 1.01 11.13 3.33
Max 171 240 80 9 160 1.01 16 3.72

mdp1-4-2-2-5 26 30 10 4 15 1.04 5 3
mdp2-8-3-4-5 46 60 20 5 25 1.02 6.67 0.61
mdp3-10-3-5-10 111 150 50 6 110 1.01 16.67 11
mdp4-10-3-5-10 111 150 50 6 100 1.01 16.67 7.69
mdp5-16-3-8-10 171 240 80 7 160 1.01 26.67 12.31
mdp6-20-5-5-5 106 125 25 9 70 1.01 5 3.33
mdp7-28-3-6-5 146 170 30 9 115 1.01 10 4.11
mdp8-28-3-6-4 117 136 24 9 88 1.01 8 2.2
mdp9-32-3-8-3 100 120 24 9 81 1.01 8 1.98
mdp10-32-3-8-4 133 160 32 7 84 1.01 10.67 1.95

pomdp1-4-2-2-2-3 22 24 6 4 12 1.05 3 1.09
pomdp2-2-2-2-2-3 16 18 6 3 10 1.07 3 1
pomdp3-4-4-2-2-3 28 30 6 4 16 1.04 3 1
pomdp4-4-4-2-2-5 46 50 10 4 27 1.02 5 1
pomdp5-6-4-3-5-3 34 45 15 6 17 1.03 5 1
pomdp6-12-6-2-6-3 58 72 18 9 29 1.02 9 1.04
pomdp7-20-10-2-10-3 94 120 30 9 46 1.01 15 1.05
pomdp8-14-9-3-12-4 97 140 48 6 48 1.01 16 1.04
pomdp9-14-8-3-10-4 93 128 40 6 44 1.01 13.33 1.02
pomdp10-12-7-3-8-4 81 108 32 5 38 1.01 10.67 1

rand-c20d2o1-01 23 22 2 4 6 1.05 1 1
rand-c30d3o1-01 34 33 3 4 10 1.03 1.5 1.11
rand-c30d6o1-01 37 36 6 4 14 1.03 3 1.17
rand-c30d9o1-01 40 39 9 4 18 1.03 4.5 1.29
rand-c50d10o1-01 61 60 10 4 24 1.02 5 1.2
rand-c50d15o1-03 66 65 15 4 33 1.02 7.5 1.38
rand-c50d5o1-01 56 55 5 4 17 1.02 2.5 1.13
rand-c70d14o1-01 85 84 14 4 33 1.01 7 1.27
rand-c70d21o1-01 92 91 21 4 42 1.01 10.5 1.24
rand-c70d7o1-01 78 77 7 4 22 1.01 3.5 1.16

BN-0-w28d6 101 100 6 7 29 1.01 3 1.26
BN-0-w29d6 101 100 6 6 30 1.01 3 1.76
BN-0-w32d11 101 100 11 7 33 1.01 5.5 1.38
BN-0-w33d11 101 100 11 7 34 1.01 5.5 1.26
BN-14w42d6 116 115 6 8 42 1.01 3 1.5
BN-14w57d12 116 115 12 9 46 1.01 6 1.1
BN-78-w18d3 55 54 3 10 19 1.02 1.5 1.58
BN-78-w19d3 55 54 3 11 20 1.02 1.5 1.43
BN-78-w23d6 55 54 6 10 23 1.02 3 1.77
BN-78-w24d6 55 54 6 10 25 1.02 3 1.39

Table 4.6: Problem Instance Statistics Translated to the Mixed Inference Task. n is the number of
variables, f is the number of functions, k is the maximum domain size, s is the maximum scope size, and
w is the constrained induced width. ρn = ntrans

nID
, ρk = ktrans

kID
, and ρw = wtrans

wID
are the ratio of the number

of variables, the maximum domain size, and the constrained induced width between the translated instance
denoted by the subscript trans and the original ID denoted by the subscript ID, respectively.
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Table 4.6 shows the problem statistics obtained from the translated instances. In FH-MDP

domain, we see that the maximum domain size k is increased on average by a factor of 11,

and the constrained induced width w is also increased on average by a factor of 3.33. In

FH-POMDP domain, we see that the maximum domain size k is increased on average by a

factor of 8. In RAND domain, we see that the maximum domain size k is increased on average

by a factor of 4.6. Since the number of variables and functions are relatively smaller than

in the FH-MDP and FH-POMDP domains, the average ratio of the constrained induced width is

close to 1.0. However, we can see the increase in the constrained induced width from 34 to

42 for rand-c70d21o1-01 instance. In BN domain, We see that the maximum domain size k

is increased on average by a factor of 3.5.

4.2.2 Translation to MMAP

The reduction to MMAP task by Mauá [2016] modifies the input IDs in two stages. The first

stage translates the additive utility functions to the multiplicative utility functions by the

reduction to the mixed inference task. The second stage converts the alternating summation

and maximization operations in the mixed inference task to the MMAP. For the detailed

procedures, see Mauá [2016]. Although the reduction scheme inflates the size of the input

problem in polynomial order [Mauá, 2016], many of the translated problem instances in the

benchmark sets become intractable due to the increase in the number of variables and the

induced width. Denoting a set of decision variables and a set of parent nodes of a decision

variable by D and pa(D) for D ∈ D, the reduction method introduces O(|D|·kpa(D)) decision

variables and unobserved chance variables.

Table 4.7 presents the problem instance statistics obtained from the translated MMAP in-

stances. In FH-POMDP domain, We see that the maximum domain size k is increased on

average by a factor of 8.3. The constrained induced width w is now inflated by a factor of

32.31 on average. In RAND domain, we see that the maximum domain size k is increased on
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n f k s w ρn ρk ρw

Min 28 31 6 4 14 1.62 3 1.27
Average 1385.7 1403.3 21.1 7.7 1334.4 16.31 8.3 32.31
Max 5277 5313 48 12 5192 57.36 16 120.74

pomdp1-4-2-2-2-3 34 37 6 4 14 1.62 3 1.27
pomdp2-2-2-2-2-3 28 31 6 4 14 1.87 3 1.4
pomdp3-4-4-2-2-3 76 79 6 6 52 2.81 3 3.25
pomdp4-4-4-2-2-5 126 131 10 6 84 2.8 5 3.11
pomdp5-6-4-3-5-3 82 94 15 6 52 2.48 5 3.06
pomdp6-12-6-2-6-3 250 265 18 9 198 4.39 9 7.07
pomdp7-20-10-2-10-3 3166 3193 30 12 3082 34.04 15 70.05
pomdp8-14-9-3-12-4 2145 2189 48 11 2057 22.34 16 44.72
pomdp9-14-8-3-10-4 5277 5313 40 10 5192 57.36 13.33 120.74
pomdp10-12-7-3-8-4 2673 2701 32 9 2599 33.41 10.67 68.39

rand-c20d2o1-01 29 29 2 4 8 1.32 1 1.33
rand-c30d3o1-01 42 42 3 4 11 1.27 1.5 1.22
rand-c30d6o1-01 53 53 6 4 19 1.47 3 1.58
rand-c30d9o1-01 60 60 9 4 28 1.54 4.5 2
rand-c50d10o1-01 87 87 10 4 29 1.45 5 1.45
rand-c50d15o1-03 104 104 15 4 49 1.6 7.5 2.04
rand-c50d5o1-01 72 72 5 4 18 1.31 2.5 1.2
rand-c70d14o1-01 121 121 14 4 45 1.44 7 1.73
rand-c70d21o1-01 142 142 21 4 58 1.56 10.5 1.71
rand-c70d7o1-01 98 98 7 4 23 1.27 3.5 1.21

Min 69 69 3 6 20 1.19 1.5 1.43
Average 122 122 7 8.5 43.1 1.45 3.5 2
Max 202 202 12 11 92 1.76 6 3.31

BN-0-w28d6 137 137 6 7 40 1.37 3 1.74
BN-0-w29d6 119 119 6 6 31 1.19 3 1.82
BN-0-w32d11 133 133 11 7 41 1.33 5.5 1.71
BN-0-w33d11 159 159 11 7 62 1.59 5.5 2.3
BN-14w42d6 150 150 6 8 46 1.3 3 1.64
BN-14w57d12 202 202 12 9 92 1.76 6 2.19
BN-78-w18d3 79 79 3 10 28 1.46 1.5 2.33
BN-78-w19d3 69 69 3 11 20 1.28 1.5 1.43
BN-78-w23d6 93 93 6 10 43 1.72 3 3.31
BN-78-w24d6 79 79 6 10 28 1.46 3 1.56

Table 4.7: Problem Instance Statistics Translated to MMAP Inference Task. in FH-POMDP domain. n is
the number of variables, f is the number of functions, k is the maximum domain size, s is the maximum scope
size, and w is the constrained induced width. ρn = ntrans

nID
, ρk = ktrans

kID
, and ρw = wtrans

wID
are the ratio of the

number of variables, the maximum domain size, and the constrained induced width between the translated
instance denoted by the subscript trans and the original ID denoted by the subscript ID, respectively.
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average by a factor of 4.6. Since the number of parent nodes of a decision variable is relatively

smaller than FH-POMDP domain, the average ratio of the number of variables and constrained

induced widht are closed to 1.0, in both cases. In BN domain, We see that the maximum

domain size k is increased on average by a factor of 3.5, and the constrained induced width is

also increased on average by a factor of 2. Due to this inflation of the problem size, we failed

to translate FH-MDP instances within 4 GB memory limit, except for the easiest instance

mdp1-4-2-2-5, yielding statistics the number of variables 106, the number of functions 111,

the maximum domain size 10, the maximum scope size 6, and the constrained induced width

84. Note that the constrained induced width of the mdp1-4-2-2-5 instance is only 5 in the

original ID, but it is inflated to 84 by the MMAP translation.

4.2.3 Summary of the Impact of Translation

From all the above statistics, we see that the translation based approach often converts the

IDs to intractable problems. This can have harsh consequence on inference. For example,

we can solve mdp1-4-2-2-5 instance exactly by using variable elimination since its induced

width is only 5 as shown in Table 4.2. However, the translation to MMAP task inflates the

induced width to 84. In summary, the translation into the mixed inference task inflates the

maximum domains size k to the total number of utility functions. On top of this inflation, the

subsequent translation into MMAP introduces new decision variables and chance variables

that are exponential in the size of the number of observed variables for each decision. All

these illustrate clearly why developing direct decomposition bounds for the MEU task is

desirable. In the next section, we will evaluate all our proposed algorithms that developed

directly over the MEU representation and compare the results with the earlier schemes.
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Iteration parameter JGD-ID WMBE-ID JGD-EXP GDD-MI

BCD outer-loop limit M 1000 5 1000 1000
BCD outer-loop convergence ε 1e−3 1e−3 1e−3 1e−3

Inner-loop optimizer gradient descent SLSQP gradient descent gradient descent
Inner-loop iteration limits 20 100 10 20

Table 4.8: Hyper Parameters Used for Iterative Algorithms

4.3 Upper Bounds from Individual Instances

In this section, we report the upper bounds generated by all algorithms shown in Table 4.1 at

individual instances over the time bounds 10, 100, 1000, 10,000, and 1,000,000 seconds, and

i-bounds 1, 5, 10, 15, and 20. The total memory limit was 4 GB for all cases, and when an

algorithm was terminated by the memory limit, we report the upper bound inf at all time

bounds. Algorithms JGD-ID, JGD-EXP, and GDD-MI are iterative algorithms that improve

the upper bounds when given more time until they reach convergence. Table 4.8 presents

the hyper-parameters related to the iteration limits. For the outer-loop of BCD updates,

M is the maximum iteration limit, and ε is the convergence parameter that terminates an

algorithm when the improvement of the upper bound is below ε. The outer-loop iteration

limit is set to 1,000. The iteration limit for the BCD outer-loop for algorithm WMBE-ID

was set to 5 at each layer of a mini-bucket tree. For details on the BCD updates, refer

back to Chapter 3. For inner-loop optimization, each algorithm uses different optimization

routines. Algorithms JGD-ID, JGD-EXP, and GDD-MI use gradient descent algorithms

with line search, where we set the iteration limit for the gradient descent update to 20 for

JGD-ID and GDD-MI, and to 10 for JGD-EXP. Algorithm WMBE-ID uses SLSQP where we

set the iteration limit parameter to 100. Note that algorithms WMBE-ID, WMBMM-EXP,

WMBMM-MMAP, and MBE-ID generate an upper bound when they terminate.
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4.3.1 FH-MDP Domain

We summarize the upper bounds for instances in the FH-MDP domain in Tables 4.9 to 4.13.

We first observe that algorithm MBE-ID generated orders of magnitude worse upper bounds

compared with the other algorithms. The translation based approach algorithm GDD-MI

generated upper bounds that are worse than the direct decomposition bounds, except for

the single case mdp8-28-3-6-5 with i-bound 1.

Comparing two approaches in the direct decomposition bounds, namely, the bounding schemes

using valuation algebra for IDs presented in Section 3.2 and the bounding schemes using ex-

ponentiated utility functions in Section 3.3, we observe that both generated similar upper

bounds when problem instances are easy. As problem instances have a higher constrained

induced width and a larger number of variables, algorithm JGD-EXP and WMBMM-EXP

started to dominate other algorithms in shorter time bounds, yet algorithm WMBE-ID was

able to provide the tightest upper bounds for all instances except for the mdp5-16-3-8-10

instance when it used i-bound 15 or 20. From mdp5-16-3-8-10 to mdp10-32-3-8-4, we see

that algorithm WMBMM-EXP generated the best upper bounds when time bounds is less

than 1,000 seconds, and algorithm JGD-EXP starts to generate tighter bounds than algo-

rithm WMBMM-EXP given more time when i-bound is 1 or 5. Algorithm JGD-ID often

provided high quality upper bounds at i-bound 1, but it generated very loose bounds when

it was given higher i-bounds. Overall, we see that direct decomposition bounds dominated

the earlier algorithms for generating upper bounds in the FH-MDP domain. In shorter time

bounds, the non-iterative algorithm WMBMM-EXP generated high quality upper bounds

quickly than other algorithms, and algorithm JGD-EXP often provided the tightest upper

bounds with lower i-bounds, 1 or 5 at time bounds after 1,000 seconds. Comparing algorithms

WMMM-EXP and WMBE-ID, WMBE-ID took much longer time than WMBMM-EXP, but

it produced better upper bounds when it was given higher i-bound, 15 or 20.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

mdp1-4-2-2-5 1 10E+1 8.959 inf 7.66 4.976 99.263 3.04E+04 509.555
n:25 f:30 10E+2 8.959 inf 7.66 4.976 99.263 3.04E+04 509.555
k:2 s:4 10E+3 4.568 4.389 4.176 4.976 4.45 3.04E+04 509.555
w:5 10E+4 4.187 4.389 4.176 4.976 4.308 3.04E+04 509.555

10E+6 4.187 4.389 4.176 4.976 4.308 3.04E+04 509.555

5 10E+1 4.312 inf inf 3.738 1681.511 1.20E+04 3.695
10E+2 4.312 inf inf 3.738 1681.511 1.20E+04 3.695
10E+3 3.695 3.695 4.089 3.738 4.867 1.20E+04 3.695
10E+4 3.695 3.695 4.07 3.738 4.217 1.20E+04 3.695
10E+6 3.695 3.695 4.07 3.738 4.2 1.20E+04 3.695

10 10E+1 4.312 inf inf 3.738 inf 1758.53 3.695
10E+2 4.312 inf inf 3.738 inf 1758.53 3.695
10E+3 3.695 3.695 4.07 3.738 5.001 1758.53 3.695
10E+4 3.695 3.695 4.07 3.738 4.236 1758.53 3.695
10E+6 3.695 3.695 4.07 3.738 4.186 1758.53 3.695

15 10E+1 4.312 3.695 inf 3.738 inf 343.19 3.695
10E+2 4.312 3.695 inf 3.738 inf 343.19 3.695
10E+3 3.695 3.695 4.076 3.738 9.011 343.19 3.695
10E+4 3.695 3.695 4.076 3.738 4.187 343.19 3.695
10E+6 3.695 3.695 4.076 3.738 4.117 343.19 3.695

20 10E+1 4.312 inf inf 3.738 inf 206.404 3.695
10E+2 4.312 inf inf 3.738 inf 206.404 3.695
10E+3 3.704 3.695 4.076 3.738 6.024 206.404 3.695
10E+4 3.704 3.695 4.076 3.738 4.687 206.404 3.695
10E+6 3.704 3.695 4.076 3.738 4.687 206.404 3.695

mdp2-8-3-4-5 1 10E+1 inf inf inf 17.401 1.51E+05 inf 1.02E+08
n:45 f:60 10E+2 inf inf inf 17.401 1.51E+05 inf 1.02E+08
k:3 s:5 10E+3 17.449 17.4 15.797 17.401 22.133 inf 1.02E+08
w:10 10E+4 15.451 17.4 13.858 17.401 16.51 inf 1.02E+08

10E+6 15.139 17.4 13.858 17.401 16.301 inf 1.02E+08

5 10E+1 inf inf inf 16.634 inf inf 1.81E+05
10E+2 inf inf inf 16.634 inf inf 1.81E+05
10E+3 1486.339 13.946 15.689 16.634 32.216 inf 1.81E+05
10E+4 22.402 13.946 13.326 16.634 18.967 inf 1.81E+05
10E+6 22.402 13.946 13.326 16.634 17.788 inf 1.81E+05

10 10E+1 inf inf inf 12.197 inf inf 11.85
10E+2 inf inf inf 12.197 inf inf 11.85
10E+3 12.314 11.85 20.192 12.197 2072.068 inf 11.85
10E+4 12.293 11.85 13.554 12.197 19.654 inf 11.85
10E+6 12.293 11.85 13.554 12.197 16.512 inf 11.85

15 10E+1 inf inf inf 12.197 inf inf 11.85
10E+2 inf inf inf 12.197 inf inf 11.85
10E+3 12.314 11.85 20.192 12.197 inf inf 11.85
10E+4 12.293 11.85 13.552 12.197 7.41E+06 inf 11.85
10E+6 12.296 11.85 13.552 12.197 708.896 inf 11.85

20 10E+1 inf inf inf 12.197 inf inf 11.85
10E+2 inf inf inf 12.197 inf inf 11.85
10E+3 12.296 11.85 19.592 12.197 inf inf 11.85
10E+4 12.296 11.85 13.552 12.197 inf inf 11.85
10E+6 12.296 11.85 13.552 12.197 inf inf 11.85

Table 4.9: Upper Bounds from mdp1-4-2-2-5 and mdp2-8-3-4-5 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

mdp3-10-3-5-10 1 10E+1 inf inf inf 53.828 inf inf 6.47E+23
n:110 f:150 10E+2 inf inf inf 53.828 inf inf 6.47E+23
k:3 s:6 10E+3 4763.942 inf 69.633 53.828 1.40E+06 inf 6.47E+23
w:14 10E+4 91.116 48.137 42.292 53.828 76.975 inf 6.47E+23

10E+6 49.434 48.137 41.641 53.828 49.257 inf 6.47E+23

5 10E+1 inf inf inf 48.686 inf inf 7.58E+19
10E+2 inf inf inf 48.686 inf inf 7.58E+19
10E+3 7.22E+12 inf 68.995 48.686 2.38E+10 inf 7.58E+19
10E+4 1.08E+07 44.828 40.256 48.686 105.823 inf 7.58E+19
10E+6 505.832 44.828 39.548 48.686 50.349 inf 7.58E+19

10 10E+1 inf inf inf 39.077 inf inf 7.96E+08
10E+2 inf inf inf 39.077 inf inf 7.96E+08
10E+3 1.36E+08 inf 66.699 39.077 2.83E+18 inf 7.96E+08
10E+4 3.20E+05 37.129 37.197 39.077 5.97E+07 inf 7.96E+08
10E+6 516.228 37.129 36.995 39.077 84.082 inf 7.96E+08

15 10E+1 inf inf inf 31.114 inf inf 29.732
10E+2 inf inf inf 31.114 inf inf 29.732
10E+3 inf inf inf 31.114 inf inf 29.732
10E+4 inf inf 68.688 31.114 inf inf 29.732
10E+6 30.022 29.732 39.545 31.114 2.54E+18 inf 29.732

20 10E+1 inf inf inf 31.114 inf inf 29.732
10E+2 inf inf inf 31.114 inf inf 29.732
10E+3 inf inf inf 31.114 inf inf 29.732
10E+4 inf inf 68.688 31.114 inf inf 29.732
10E+6 30.026 29.732 39.545 31.114 inf inf 29.732

mdp4-10-3-5-10 1 10E+1 inf inf inf 59.539 inf inf 1.55E+22
n:110 f:150 10E+2 inf inf inf 59.539 inf inf 1.55E+22
k:3 s:6 10E+3 1.26E+05 inf 73.848 59.539 2.28E+06 inf 1.55E+22
w:14 10E+4 371.913 47.164 45.715 59.539 88.937 inf 1.55E+22

10E+6 48.183 47.164 44.889 59.539 48.774 inf 1.55E+22

5 10E+1 inf inf inf 52.883 inf inf 1.64E+17
10E+2 inf inf inf 52.883 inf inf 1.64E+17
10E+3 5.38E+12 inf 66.508 52.883 2.86E+13 inf 1.64E+17
10E+4 4.37E+07 45.618 43.467 52.883 295.296 inf 1.64E+17
10E+6 2.96E+05 45.618 42.37 52.883 68.431 inf 1.64E+17

10 10E+1 inf inf inf 41.475 inf inf 4.51E+09
10E+2 inf inf inf 41.475 inf inf 4.51E+09
10E+3 2.36E+08 inf 64.352 41.475 4.11E+17 inf 4.51E+09
10E+4 1.74E+06 39.042 38.789 41.475 1.07E+05 inf 4.51E+09
10E+6 554.67 39.042 38.454 41.475 121.374 inf 4.51E+09

15 10E+1 inf inf inf 32.752 inf inf 31.148
10E+2 inf inf inf 32.752 inf inf 31.148
10E+3 inf inf 72.057 32.752 inf inf 31.148
10E+4 31.564 31.148 52.328 32.752 7.38E+19 inf 31.148
10E+6 31.584 31.148 39.961 32.752 1.07E+14 inf 31.148

20 10E+1 inf inf inf 32.752 inf inf 31.148
10E+2 inf inf inf 32.752 inf inf 31.148
10E+3 inf inf 70.494 32.752 inf inf 31.148
10E+4 31.584 31.148 50.388 32.752 inf inf 31.148
10E+6 31.584 31.148 39.952 32.752 inf inf 31.148

Table 4.10: Upper Bounds from mdp3-10-3-5-10 and mdp4-10-3-5-10 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

mdp5-16-3-8-10 1 10E+1 inf inf inf 93.178 inf inf 1.40E+38
n:170 f:240 10E+2 inf inf inf 93.178 inf inf 1.40E+38
k:3 s:7 10E+3 5.88E+07 inf 136.503 93.178 2.09E+17 inf 1.40E+38
w:22 10E+4 890.161 5.64E+11 100.564 93.178 1035.45 inf 1.40E+38

10E+6 78.722 5.64E+11 69.277 93.178 90.01 inf 1.40E+38

5 10E+1 inf inf inf 85.719 inf inf 2.92E+31
10E+2 inf inf inf 85.719 inf inf 2.92E+31
10E+3 2.38E+23 inf 127.47 85.719 8.81E+24 inf 2.92E+31
10E+4 6.00E+14 73.951 82.668 85.719 8.89E+04 inf 2.92E+31
10E+6 2.73E+08 73.951 69.95 85.719 117.693 inf 2.92E+31

10 10E+1 inf inf inf 79.597 inf inf 8.03E+24
10E+2 inf inf inf 79.597 inf inf 8.03E+24
10E+3 4.70E+23 inf 147.733 79.597 4.98E+32 inf 8.03E+24
10E+4 3.76E+17 68.956 123.112 79.597 8.22E+22 inf 8.03E+24
10E+6 3.97E+13 68.956 66.642 79.597 737.515 inf 8.03E+24

15 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 65.463 inf inf 4.31E+13
10E+4 inf inf inf 65.463 inf inf 4.31E+13
10E+6 79.724 60.028 inf 65.463 inf inf 4.31E+13

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 49.817 inf inf inf
10E+4 inf inf inf 49.817 inf inf inf
10E+6 inf inf inf 49.817 inf inf inf

mdp6-20-5-5-5 1 10E+1 inf inf inf 39.74 inf inf 1.30E+22
n:105 f:125 10E+2 inf inf inf 39.74 inf inf 1.30E+22
k:5 s:9 10E+3 5195.461 inf 57.82 39.74 2.25E+08 inf 1.30E+22
w:29 10E+4 40.691 inf 43.94 39.74 43.445 inf 1.30E+22

10E+6 24.538 24.237 23.859 39.74 24.148 inf 1.30E+22

5 10E+1 inf inf inf 36.996 inf inf 1.18E+18
10E+2 inf inf inf 36.996 inf inf 1.18E+18
10E+3 7.89E+09 inf 58.157 36.996 3.62E+10 inf 1.18E+18
10E+4 8.32E+04 inf 40.832 36.996 66.786 inf 1.18E+18
10E+6 29.062 23.698 23.892 36.996 24.249 inf 1.18E+18

10 10E+1 inf inf inf 31.842 inf inf 2.85E+14
10E+2 inf inf inf 31.842 inf inf 2.85E+14
10E+3 2.58E+13 inf 58.334 31.842 8.36E+13 inf 2.85E+14
10E+4 1.14E+09 23.017 43.35 31.842 3323.858 inf 2.85E+14
10E+6 2.25E+06 23.017 23.266 31.842 27.458 inf 2.85E+14

15 10E+1 inf inf inf 29.394 inf inf 3.57E+10
10E+2 inf inf inf 29.394 inf inf 3.57E+10
10E+3 inf inf 64.178 29.394 inf inf 3.57E+10
10E+4 6.06E+08 21.012 59.757 29.394 3.42E+14 inf 3.57E+10
10E+6 1.78E+07 21.012 25.22 29.394 8.08E+11 inf 3.57E+10

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 22.993 inf inf 1.39E+07
10E+4 inf inf inf 22.993 inf inf 1.39E+07
10E+6 inf 19.666 inf 22.993 inf inf 1.39E+07

Table 4.11: Upper Bounds from mdp5-16-3-8-10 and mdp6-20-5-5-5 Instances. The table shows the
best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

mdp7-28-3-6-5 1 10E+1 inf inf inf 51.671 inf inf 1.63E+32
n:145 f:170 10E+2 inf inf inf 51.671 inf inf 1.63E+32
k:3 s:9 10E+3 3.72E+04 inf 81.035 51.671 2.03E+13 inf 1.63E+32
w:40 10E+4 60.965 inf 61.143 51.671 136.154 inf 1.63E+32

10E+6 29.414 29.852 29.747 51.671 30.958 inf 1.63E+32

5 10E+1 inf inf inf 48.291 inf inf 2.66E+26
10E+2 inf inf inf 48.291 inf inf 2.66E+26
10E+3 8.67E+13 inf 78.287 48.291 3.04E+16 inf 2.66E+26
10E+4 3.77E+06 29.003 60.096 48.291 2272.862 inf 2.66E+26
10E+6 36.814 29.003 30.343 48.291 32.238 inf 2.66E+26

10 10E+1 inf inf inf 41.855 inf inf 1.06E+22
10E+2 inf inf inf 41.855 inf inf 1.06E+22
10E+3 2.25E+22 inf 83.847 41.855 9.23E+20 inf 1.06E+22
10E+4 1.52E+15 28.423 65.732 41.855 1.23E+10 inf 1.06E+22
10E+6 2.39E+09 28.423 32.051 41.855 40.234 inf 1.06E+22

15 10E+1 inf inf inf 41.843 inf inf 1.18E+19
10E+2 inf inf inf 41.843 inf inf 1.18E+19
10E+3 inf inf inf 41.843 inf inf 1.18E+19
10E+4 6.31E+17 inf 85.044 41.843 1.53E+20 inf 1.18E+19
10E+6 6.00E+12 27.628 44.361 41.843 2036.194 inf 1.18E+19

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 37.165 inf inf 4.46E+13
10E+4 inf inf inf 37.165 inf inf 4.46E+13
10E+6 inf 25.853 inf 37.165 inf inf 4.46E+13

mdp8-28-3-6-4 1 10E+1 inf inf inf 38.793 inf inf 5.14E+24
n:116 f:136 10E+2 inf inf inf 38.793 inf inf 5.14E+24
k:3 s:9 10E+3 3762.176 inf 61.281 38.793 1.11E+09 inf 5.14E+24
w:40 10E+4 37.121 inf 45.207 38.793 46.562 inf 5.14E+24

10E+6 24.715 23.411 22.9 38.793 22.715 inf 5.14E+24

5 10E+1 inf inf inf 36.596 inf inf 1.27E+20
10E+2 inf inf inf 36.596 inf inf 1.27E+20
10E+3 2.54E+08 inf 61.183 36.596 5.51E+11 inf 1.27E+20
10E+4 1.07E+04 inf 46.127 36.596 88.122 inf 1.27E+20
10E+6 29.626 22.872 23.444 36.596 23.192 inf 1.27E+20

10 10E+1 inf inf inf 32.162 inf inf 8.63E+16
10E+2 inf inf inf 32.162 inf inf 8.63E+16
10E+3 4.72E+13 inf 60.016 32.162 1.55E+15 inf 8.63E+16
10E+4 6.36E+08 inf 46.125 32.162 1.86E+05 inf 8.63E+16
10E+6 1.66E+05 22.408 23.703 32.162 24.555 inf 8.63E+16

15 10E+1 inf inf inf 29.761 inf inf 7.52E+13
10E+2 inf inf inf 29.761 inf inf 7.52E+13
10E+3 inf inf inf 29.761 2.66E+18 inf 7.52E+13
10E+4 7.36E+11 inf 60.223 29.761 4.24E+13 inf 7.52E+13
10E+6 3.50E+07 21.131 28.564 29.761 60.655 inf 7.52E+13

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 28.31 inf inf 1.21E+10
10E+4 inf inf 67.048 28.31 inf inf 1.21E+10
10E+6 inf 20.243 67.048 28.31 inf inf 1.21E+10

Table 4.12: Upper Bounds from mdp7-28-3-6-5 and mdp8-28-3-6-4 Instances. The table shows the
best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

mdp9-32-3-8-3 1 10E+1 inf inf inf 29.285 inf inf 2.41E+21
n:99 f:120 10E+2 inf inf inf 29.285 inf inf 2.41E+21
k:3 s:9 10E+3 648.758 inf 45.147 29.285 3.30E+04 inf 2.41E+21
w:43 10E+4 39.34 inf 28.888 29.285 28.362 inf 2.41E+21

10E+6 23.087 22.731 19.83 29.285 21.984 inf 2.41E+21

5 10E+1 inf inf inf 28.513 inf inf 4.32E+14
10E+2 inf inf inf 28.513 inf inf 4.32E+14
10E+3 3.23E+06 inf 42.747 28.513 5.40E+06 inf 4.32E+14
10E+4 2394.589 22.308 30.015 28.513 34.67 inf 4.32E+14
10E+6 27.36 22.308 20.795 28.513 22.275 inf 4.32E+14

10 10E+1 inf inf inf 27.292 inf inf 1.59E+12
10E+2 inf inf inf 27.292 inf inf 1.59E+12
10E+3 7.75E+10 inf 48.277 27.292 1.59E+09 inf 1.59E+12
10E+4 1.36E+07 inf 35.457 27.292 160.15 inf 1.59E+12
10E+6 6.05E+04 21.072 21.772 27.292 22.587 inf 1.59E+12

15 10E+1 inf inf inf 24.966 inf inf 1.74E+10
10E+2 inf inf inf 24.966 inf inf 1.74E+10
10E+3 inf inf 52.37 24.966 1.16E+14 inf 1.74E+10
10E+4 2.55E+08 inf 45.481 24.966 4.99E+08 inf 1.74E+10
10E+6 1.60E+05 20.352 24.554 24.966 38.468 inf 1.74E+10

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 23.371 inf inf 4.15E+07
10E+4 inf inf inf 23.371 inf inf 4.15E+07
10E+6 inf 19.243 inf 23.371 inf inf 4.15E+07

mdp10-32-3-8-4 1 10E+1 inf inf inf 44.327 inf inf 3.26E+25
n:132 f:160 10E+2 inf inf inf 44.327 inf inf 3.26E+25
k:3 s:7 10E+3 1824.415 inf 59.087 44.327 2.60E+07 inf 3.26E+25
w:42 10E+4 47.76 inf 38.992 44.327 51.928 inf 3.26E+25

10E+6 30.316 1.42E+12 27.565 44.327 30.361 inf 3.26E+25

5 10E+1 inf inf inf 41.004 inf inf 4.46E+19
10E+2 inf inf inf 41.004 inf inf 4.46E+19
10E+3 2.12E+11 inf 61.484 41.004 4.64E+11 inf 4.46E+19
10E+4 1.61E+05 inf 37.024 41.004 118.214 inf 4.46E+19
10E+6 38.601 3.80E+12 29.073 41.004 31.747 inf 4.46E+19

10 10E+1 inf inf inf 38.788 inf inf 6.21E+16
10E+2 inf inf inf 38.788 inf inf 6.21E+16
10E+3 1.07E+16 inf 71.321 38.788 7.55E+14 inf 6.21E+16
10E+4 1.25E+10 5.99E+12 53.748 38.788 2.92E+04 inf 6.21E+16
10E+6 7.01E+06 5.99E+12 30.912 38.788 36.787 inf 6.21E+16

15 10E+1 inf inf inf 37.556 inf inf 6.69E+12
10E+2 inf inf inf 37.556 inf inf 6.69E+12
10E+3 inf inf inf 37.556 inf inf 6.69E+12
10E+4 1.62E+12 inf 72.865 37.556 1.71E+15 inf 6.69E+12
10E+6 1.85E+09 27.941 37.073 37.556 464.69 inf 6.69E+12

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 35.536 inf inf 4.84E+10
10E+4 inf inf inf 35.536 inf inf 4.84E+10
10E+6 inf inf inf 35.536 inf inf 4.84E+10

Table 4.13: Upper Bounds from mdp9-32-3-8-3 and mdp10-32-3-8-4 Instances. The table shows the
best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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4.3.2 FH-POMDP Domain

We next look at instances from the FH-POMDP domain from Table 4.14 to Table 4.18. We

see immediately that algorithm MBE-ID generated loose upper bounds compared with other

algorithms. The translation based approaches, algorithms GDD-MI and WMBMM-MMAP

also generated orders of magnitude worse upper bounds than direct decomposition schemes,

except for the easiest problem instances pomdp1-4-2-2-2-3 and pomdp2-2-2-2-2-3.

Comparing the GDD based iterative algorithms, JGD-ID and JGD-EXP, we see that JGD-ID

with i-bound 1 or 5 generated tighter upper bounds than JGD-EXP for easy problems (from

pomdp3-4-4-2-2-3 to pomdp5-5-4-3-5-3). As the induced width grows beyond 30 (from

pomdp6-12-6-2-6-3 to pomdp10-12-7-3-8-4), JGD-EXP generated orders of magnitude

tighter upper bounds compared with JGD-ID. We also observe that both JGD-ID and JGD-

EXP reached the 4 GB memory limit for i-bound 20 at hard instances having constrained

induced width larger than 38. Comparing WMBE-ID and WMBMM-EXP, we observe that

WMBMM-EXP dominated WMBE-ID over all time bounds and i-bounds at every instance

except for the first two trivially easy instances.

Overall, we see that direct decomposition schemes dominated the earlier algorithms. When

problem instances have a smaller induced width less than 30, algorithm JGD-ID generated

best upper bounds given i-bounds 1 or 5 and given time bounds greater than 1,000 seconds.

However, JGD-EXP could generate tighter upper bounds than JGD-ID at harder problem

instances. Algorithm WMBMM-EXP performed well when the time bound is less than 1,000

seconds because both JGD-ID and JGD-EXP couldn’t generate the first upper bound within

such a short time bound. When the i-bound increases up to 20, algorithm WMBMM-EXP

generated the best upper bounds at problem instances having the constrained induced width

larger than 30.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

pomdp1-4-2-2-2-3 1 10E+1 113.875 inf 7.842 6.46 90.747 370.259 5431.621
n:21 f:24 10E+2 113.875 inf 7.842 6.46 90.747 370.259 5431.621
k:2 s:4 10E+3 51.579 95.378 6.715 6.46 33.035 370.259 5431.621
w:10 10E+4 4.813 95.378 6.715 6.46 32.352 370.259 5431.621

10E+6 4.813 95.378 6.715 6.46 32.352 370.259 5431.621

5 10E+1 inf inf inf 5.469 67.981 78.489 95.493
10E+2 inf inf inf 5.469 67.981 78.489 95.493
10E+3 5.591 22.312 5.852 5.469 22.386 78.489 95.493
10E+4 5.591 22.312 5.852 5.469 17.974 78.489 95.493
10E+6 5.591 22.312 5.852 5.469 17.517 78.489 95.493

10 10E+1 inf inf inf 4.099 93.129 11.701 4.007
10E+2 inf inf inf 4.099 93.129 11.701 4.007
10E+3 4.01 4.007 5.773 4.099 15.245 11.701 4.007
10E+4 4.009 4.007 5.769 4.099 13.228 11.701 4.007
10E+6 4.009 4.007 5.769 4.099 12.784 11.701 4.007

15 10E+1 inf inf inf 4.099 inf 4.005 4.007
10E+2 inf inf inf 4.099 inf 4.005 4.007
10E+3 4.01 4.007 5.792 4.099 14.705 4.005 4.007
10E+4 4.009 4.007 5.769 4.099 13.132 4.005 4.007
10E+6 4.009 4.007 5.769 4.099 12.81 4.005 4.007

20 10E+1 inf inf inf 4.099 inf 4.005 4.007
10E+2 inf inf inf 4.099 inf 4.005 4.007
10E+3 4.01 4.007 5.771 4.099 15.746 4.005 4.007
10E+4 4.01 4.007 5.769 4.099 15.346 4.005 4.007
10E+6 4.01 4.007 5.769 4.099 15.346 4.005 4.007

pomdp2-2-2-2-2-3 1 10E+1 61.441 inf 6.483 6.533 48.742 295.74 255.23
n:15 f:18 10E+2 61.441 inf 6.483 6.533 48.742 295.74 255.23
k:2 s:3 10E+3 6.051 51.379 6.398 6.533 27.338 295.74 255.23
w:10 10E+4 5.771 51.379 6.398 6.533 26.888 295.74 255.23

10E+6 5.771 51.379 6.398 6.533 26.888 295.74 255.23

5 10E+1 26.54 inf 5.591 5.272 21.846 74.229 11.142
10E+2 26.54 inf 5.591 5.272 21.846 74.229 11.142
10E+3 6.904 6.688 5.022 5.272 9.145 74.229 11.142
10E+4 6.796 6.688 5.022 5.272 8.464 74.229 11.142
10E+6 6.795 6.688 5.022 5.272 8.464 74.229 11.142

10 10E+1 5.152 inf 5.675 4.421 24.017 10.393 4.235
10E+2 5.152 inf 5.675 4.421 24.017 10.393 4.235
10E+3 4.242 4.235 4.856 4.421 8.613 10.393 4.235
10E+4 4.239 4.235 4.856 4.421 8.309 10.393 4.235
10E+6 4.239 4.235 4.856 4.421 8.309 10.393 4.235

15 10E+1 5.152 inf 5.675 4.421 24.017 4.233 4.235
10E+2 5.152 inf 5.675 4.421 24.017 4.233 4.235
10E+3 4.242 4.235 4.856 4.421 8.614 4.233 4.235
10E+4 4.259 4.235 4.856 4.421 8.992 4.233 4.235
10E+6 4.259 4.235 4.856 4.421 8.992 4.233 4.235

20 10E+1 5.145 inf 5.675 4.421 28.162 4.233 4.235
10E+2 5.145 inf 5.675 4.421 28.162 4.233 4.235
10E+3 4.259 4.235 4.856 4.421 8.992 4.233 4.235
10E+4 4.259 4.235 4.856 4.421 8.992 4.233 4.235
10E+6 4.259 4.235 4.856 4.421 8.992 4.233 4.235

Table 4.14: Upper Bounds from pomdp1-4-2-2-2-3 and pomdp2-2-2-2-2-3 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

pomdp3-4-4-2-2-3 1 10E+1 inf inf 9.587 6.902 367.034 931.408 2.73E+04
n:27 f:30 10E+2 inf inf 9.587 6.902 367.034 931.408 2.73E+04
k:2 s:4 10E+3 96.288 inf 8.065 6.902 81.228 931.408 2.73E+04
w:16 10E+4 4.442 201.746 8.065 6.902 77.243 931.408 2.73E+04

10E+6 4.442 201.746 8.065 6.902 77.243 931.408 2.73E+04

5 10E+1 inf inf inf 5.442 587.364 164.775 130.195
10E+2 inf inf inf 5.442 587.364 164.775 130.195
10E+3 4.539 25.951 5.526 5.442 48.26 164.775 130.195
10E+4 4.539 25.951 5.526 5.442 38.355 164.775 130.195
10E+6 4.539 25.951 5.526 5.442 36.594 164.775 130.195

10 10E+1 inf inf inf 4.515 inf 56.606 15.455
10E+2 inf inf inf 4.515 inf 56.606 15.455
10E+3 4.514 9.378 4.881 4.515 57.804 56.606 15.455
10E+4 4.483 9.378 4.834 4.515 40.983 56.606 15.455
10E+6 4.471 9.378 4.834 4.515 36.704 56.606 15.455

15 10E+1 inf inf inf 3.929 inf 18.195 8.783
10E+2 inf inf inf 3.929 inf 18.195 8.783
10E+3 4.524 5.834 5.871 3.929 106.26 18.195 8.783
10E+4 4.496 5.834 5.421 3.929 36.818 18.195 8.783
10E+6 4.472 5.834 5.421 3.929 23.896 18.195 8.783

20 10E+1 inf inf inf 3.538 inf 11.406 3.51
10E+2 inf inf inf 3.538 inf 11.406 3.51
10E+3 3.626 3.51 6.077 3.538 65.155 11.406 3.51
10E+4 3.626 3.51 5.527 3.538 36.347 11.406 3.51
10E+6 3.626 3.51 5.527 3.538 33.403 11.406 3.51

pomdp4-4-4-2-2-5 1 10E+1 inf inf inf 13.413 8.61E+05 9.56E+05 2.24E+08
n:45 f:50 10E+2 inf inf inf 13.413 8.61E+05 9.56E+05 2.24E+08
k:2 s:4 10E+3 6295.509 inf 12.528 13.413 2473.81 9.56E+05 2.24E+08
w:26 10E+4 6.329 3.15E+04 12.37 13.413 2126.838 9.56E+05 2.24E+08

10E+6 6.329 3.15E+04 12.37 13.413 2114.334 9.56E+05 2.24E+08

5 10E+1 inf inf inf 10.6 inf 6.15E+04 1.46E+05
10E+2 inf inf inf 10.6 inf 6.15E+04 1.46E+05
10E+3 2722.204 inf 11.018 10.6 1436.118 6.15E+04 1.46E+05
10E+4 7.959 1899.055 10.443 10.6 844.58 6.15E+04 1.46E+05
10E+6 7.959 1899.055 10.443 10.6 720.228 6.15E+04 1.46E+05

10 10E+1 inf inf inf 8.288 inf 2566.97 358.656
10E+2 inf inf inf 8.288 inf 2566.97 358.656
10E+3 200.966 54.167 10.876 8.288 1401.642 2566.97 358.656
10E+4 8.676 54.167 9.357 8.288 524.148 2566.97 358.656
10E+6 8.644 54.167 9.357 8.288 404.372 2566.97 358.656

15 10E+1 inf inf inf 6.778 inf 276.211 48.725
10E+2 inf inf inf 6.778 inf 276.211 48.725
10E+3 141.056 inf 10.502 6.778 3962.652 276.211 48.725
10E+4 10.034 14.655 9.022 6.778 708.826 276.211 48.725
10E+6 9.872 14.655 9.022 6.778 458.13 276.211 48.725

20 10E+1 inf inf inf 6.164 inf 104.431 22.784
10E+2 inf inf inf 6.164 inf 104.431 22.784
10E+3 inf inf 12.576 6.164 inf 104.431 22.784
10E+4 8.238 inf 9.846 6.164 4.96E+04 104.431 22.784
10E+6 8.187 9.963 9.065 6.164 6041.114 104.431 22.784

Table 4.15: Upper Bounds from pomdp3-4-4-2-2-3 and pomdp4-4-4-2-2-5 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

pomdp5-6-4-3-5-3 1 10E+1 inf inf inf 15.261 1.22E+05 2.02E+05 2.36E+07
n:33 f:45 10E+2 inf inf inf 15.261 1.22E+05 2.02E+05 2.36E+07
k:3 s:5 10E+3 1314.349 inf 15.82 15.261 734.544 2.02E+05 2.36E+07
w:17 10E+4 14.244 2773.993 15.328 15.261 565.204 2.02E+05 2.36E+07

10E+6 14.244 2773.993 15.328 15.261 528.172 2.02E+05 2.36E+07

5 10E+1 inf inf inf 13.517 inf 2.50E+04 1.36E+04
10E+2 inf inf inf 13.517 inf 2.50E+04 1.36E+04
10E+3 4449.24 inf 14.174 13.517 988.707 2.50E+04 1.36E+04
10E+4 21.901 507.057 13.389 13.517 481.527 2.50E+04 1.36E+04
10E+6 21.901 507.057 13.389 13.517 400.441 2.50E+04 1.36E+04

10 10E+1 inf inf inf 11.287 inf 1578.03 741.242
10E+2 inf inf inf 11.287 inf 1578.03 741.242
10E+3 239.586 62.828 12.683 11.287 1914.186 1578.03 741.242
10E+4 24.112 62.828 12.164 11.287 511.874 1578.03 741.242
10E+6 23.28 62.828 12.164 11.287 405.597 1578.03 741.242

15 10E+1 inf inf inf 9.763 inf 118.961 23.852
10E+2 inf inf inf 9.763 inf 118.961 23.852
10E+3 19.966 15.059 14.143 9.763 6795.026 118.961 23.852
10E+4 18.99 15.059 12.344 9.763 878.623 118.961 23.852
10E+6 20.901 15.059 12.344 9.763 279.246 118.961 23.852

20 10E+1 inf inf inf 9.116 inf inf 8.664
10E+2 inf inf inf 9.116 inf inf 8.664
10E+3 8.675 inf 16.971 9.116 2.05E+04 57.139 8.664
10E+4 8.668 8.664 13.857 9.116 3094.258 57.139 8.664
10E+6 8.668 8.664 12.947 9.116 977.258 57.139 8.664

pomdp6-12-6-2-6-3 1 10E+1 inf inf inf 26.516 inf 1.97E+08 6.47E+14
n:57 f:72 10E+2 inf inf inf 26.516 inf 1.97E+08 6.47E+14
k:2 s:9 10E+3 3.05E+06 inf 32.021 26.516 2.35E+05 1.97E+08 6.47E+14
w:28 10E+4 3.85E+05 3.77E+07 24.891 26.516 5.08E+04 1.97E+08 6.47E+14

10E+6 1097.621 3.77E+07 23.388 26.516 4.12E+04 1.97E+08 6.47E+14

5 10E+1 inf inf inf 25.077 inf 5.23E+07 2.70E+11
10E+2 inf inf inf 25.077 inf 5.23E+07 2.70E+11
10E+3 2.64E+08 inf 30.783 25.077 1.69E+06 5.23E+07 2.70E+11
10E+4 9.55E+05 8.83E+06 24.238 25.077 1.13E+05 5.23E+07 2.70E+11
10E+6 7.60E+05 8.83E+06 24.238 25.077 6.62E+04 5.23E+07 2.70E+11

10 10E+1 inf inf inf 19.937 inf 1.31E+06 1.10E+08
10E+2 inf inf inf 19.937 inf 1.31E+06 1.10E+08
10E+3 2.25E+08 inf 30.096 19.937 1.54E+07 1.31E+06 1.10E+08
10E+4 2.28E+06 inf 22.217 19.937 1.19E+05 1.31E+06 1.10E+08
10E+6 8145.456 1.45E+05 22.217 19.937 3.33E+04 1.31E+06 1.10E+08

15 10E+1 inf inf inf 17.23 inf 4.44E+04 1.46E+06
10E+2 inf inf inf 17.23 inf 4.44E+04 1.46E+06
10E+3 inf inf 35.031 17.23 inf 4.44E+04 1.46E+06
10E+4 6.68E+06 5844.706 28.544 17.23 2.68E+07 4.44E+04 1.46E+06
10E+6 547.373 5844.706 22.598 17.23 4.68E+05 4.44E+04 1.46E+06

20 10E+1 inf inf inf inf inf inf 3666.166
10E+2 inf inf inf inf inf inf 3666.166
10E+3 inf inf inf 13.857 inf 2832.55 3666.166
10E+4 inf inf 27.063 13.857 inf 2832.55 3666.166
10E+6 inf 226.2 19.375 13.857 inf 2832.55 3666.166

Table 4.16: Upper Bounds from pomdp5-6-4-3-5-3 and pomdp6-12-6-2-6-3 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

pomdp7-20-10-2-10-3 1 10E+1 inf inf inf 45.636 inf inf 1.61E+24
n:93 f:120 10E+2 inf inf inf 45.636 inf inf 1.61E+24
k:2 s:9 10E+3 3.26E+10 inf 57.456 45.636 3.56E+10 inf 1.61E+24
w:45 10E+4 8.17E+08 9.74E+11 47.028 45.636 2.34E+08 1.91E+13 1.61E+24

10E+6 1.18E+08 9.74E+11 42.09 45.636 1.05E+08 1.91E+13 1.61E+24

5 10E+1 inf inf inf 43.971 inf inf 4.96E+19
10E+2 inf inf inf 43.971 inf inf 4.96E+19
10E+3 7.29E+13 inf 59.793 43.971 5.81E+11 inf 4.96E+19
10E+4 4.29E+10 1.56E+11 47.158 43.971 5.50E+08 3.12E+12 4.96E+19
10E+6 2.45E+09 1.56E+11 41.83 43.971 1.52E+08 3.12E+12 4.96E+19

10 10E+1 inf inf inf 38.825 inf inf 7.34E+16
10E+2 inf inf inf 38.825 inf inf 7.34E+16
10E+3 2.17E+15 inf 61.293 38.825 1.26E+14 inf 7.34E+16
10E+4 1.58E+12 5.90E+09 50.401 38.825 1.49E+09 inf 7.34E+16
10E+6 1.40E+10 5.90E+09 40.564 38.825 6.32E+07 inf 7.34E+16

15 10E+1 inf inf inf 36.723 inf inf 8.56E+12
10E+2 inf inf inf 36.723 inf inf 8.56E+12
10E+3 inf inf 65.436 36.723 inf inf 8.56E+12
10E+4 6.95E+12 inf 59.407 36.723 2.32E+14 4.68E+09 8.56E+12
10E+6 1.19E+10 9.94E+09 44.867 36.723 3.27E+09 4.68E+09 8.56E+12

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 32.811 inf inf 2.13E+10
10E+4 inf inf inf 32.811 inf 2.40E+08 2.13E+10
10E+6 inf 8.47E+06 inf 32.811 inf 2.40E+08 2.13E+10

pomdp8-14-9-3-12-4 1 10E+1 inf inf inf 56.01 inf inf 1.94E+22
n:96 f:140 10E+2 inf inf inf 56.01 inf inf 1.94E+22
k:3 s:6 10E+3 2.31E+10 inf 68.31 56.01 1.34E+10 4.19E+14 1.94E+22
w:47 10E+4 4.70E+09 2.32E+12 57.581 56.01 8.45E+07 4.19E+14 1.94E+22

10E+6 4.50E+08 2.32E+12 57.138 56.01 5.09E+07 4.19E+14 1.94E+22

5 10E+1 inf inf inf 53.079 inf inf 2.58E+18
10E+2 inf inf inf 53.079 inf inf 2.58E+18
10E+3 4.55E+14 inf 65.339 53.079 1.25E+12 3.10E+13 2.58E+18
10E+4 1.99E+11 3.14E+11 54.43 53.079 2.36E+08 3.10E+13 2.58E+18
10E+6 4.06E+09 3.14E+11 52.865 53.079 3.97E+07 3.10E+13 2.58E+18

10 10E+1 inf inf inf 47.86 inf inf 1.45E+15
10E+2 inf inf inf 47.86 inf inf 1.45E+15
10E+3 6.30E+13 inf 67.988 47.86 1.19E+15 3.60E+11 1.45E+15
10E+4 1.32E+11 2.23E+09 54.017 47.86 1.42E+10 3.60E+11 1.45E+15
10E+6 1.95E+09 2.23E+09 50.76 47.86 4.11E+07 3.60E+11 1.45E+15

15 10E+1 inf inf inf 43.878 inf inf 7.40E+12
10E+2 inf inf inf 43.878 inf inf 7.40E+12
10E+3 inf inf 76.321 43.878 inf inf 7.40E+12
10E+4 7.49E+12 inf 68.17 43.878 5.82E+16 inf 7.40E+12
10E+6 5.83E+09 6.72E+07 52.082 43.878 7.43E+14 inf 7.40E+12

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 39.958 inf inf 1.44E+10
10E+4 inf inf inf 39.958 inf inf 1.44E+10
10E+6 inf 3.62E+06 inf 39.958 inf inf 1.44E+10

Table 4.17: Upper Bounds from pomdp7-20-10-2-10-3 and pomdp8-14-9-3-12-4 Instances. The table
shows the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds
and i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum
domains size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

pomdp9-14-8-3-10-4 1 10E+1 inf inf inf 49.939 inf inf 1.15E+28
n:92 f:128 10E+2 inf inf inf 49.939 inf inf 1.15E+28
k:3 s:6 10E+3 1.32E+10 inf 59.792 49.939 3.51E+10 inf 1.15E+28
w:43 10E+4 7.96E+08 6.41E+11 46.329 49.939 1.78E+09 inf 1.15E+28

10E+6 1.95E+08 6.41E+11 45.994 49.939 1.11E+09 inf 1.15E+28

5 10E+1 inf inf inf 46.207 inf inf 1.83E+18
10E+2 inf inf inf 46.207 inf inf 1.83E+18
10E+3 1.14E+14 inf 61.176 46.207 1.91E+12 inf 1.83E+18
10E+4 6.64E+10 1.90E+10 46.831 46.207 2.98E+09 inf 1.83E+18
10E+6 2.54E+09 1.90E+10 44.14 46.207 9.86E+08 inf 1.83E+18

10 10E+1 inf inf inf 42.85 inf inf 1.41E+16
10E+2 inf inf inf 42.85 inf inf 1.41E+16
10E+3 3.14E+15 inf 70.958 42.85 2.06E+16 inf 1.41E+16
10E+4 8.16E+12 4.47E+08 56.431 42.85 1.36E+13 inf 1.41E+16
10E+6 1.01E+11 4.47E+08 45.098 42.85 3.09E+09 inf 1.41E+16

15 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 39.545 inf inf 9.07E+11
10E+4 inf inf 73.755 39.545 inf inf 9.07E+11
10E+6 7.17E+10 9.54E+06 46.823 39.545 inf inf 9.07E+11

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf inf inf inf inf
10E+4 inf inf inf 34.138 inf inf inf
10E+6 inf inf inf 34.138 inf inf inf

pomdp10-12-7-3-8-4 1 10E+1 inf inf inf 38.242 inf inf 1.22E+18
n:80 f:108 10E+2 inf inf inf 38.242 inf inf 1.22E+18
k:3 s:5 10E+3 2.75E+07 inf 38.535 38.242 1.33E+07 inf 1.22E+18
w:38 10E+4 2.17E+06 2.74E+09 35.348 38.242 3.83E+06 2.24E+11 1.22E+18

10E+6 1.46E+06 2.74E+09 35.348 38.242 3.30E+06 2.24E+11 1.22E+18

5 10E+1 inf inf inf 33.62 inf inf 4.68E+12
10E+2 inf inf inf 33.62 inf inf 4.68E+12
10E+3 1.24E+09 inf 38.703 33.62 5.31E+07 inf 4.68E+12
10E+4 2.65E+06 2.98E+07 34.616 33.62 1.09E+06 8.46E+09 4.68E+12
10E+6 2.56E+06 2.98E+07 34.616 33.62 5.48E+05 8.46E+09 4.68E+12

10 10E+1 inf inf inf 29.464 inf inf 1.69E+10
10E+2 inf inf inf 29.464 inf inf 1.69E+10
10E+3 4.23E+09 inf 38.497 29.464 8.26E+11 inf 1.69E+10
10E+4 9.69E+06 5.53E+05 31.889 29.464 5.05E+08 inf 1.69E+10
10E+6 9.32E+06 5.53E+05 31.889 29.464 6.92E+06 inf 1.69E+10

15 10E+1 inf inf inf inf inf inf 1.58E+07
10E+2 inf inf inf inf inf inf 1.58E+07
10E+3 inf inf inf 26.152 inf inf 1.58E+07
10E+4 1.69E+08 inf 48.273 26.152 inf inf 1.58E+07
10E+6 4.66E+05 3.74E+04 34.503 26.152 3.10E+11 inf 1.58E+07

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 23.726 inf inf 2.74E+05
10E+4 inf inf inf 23.726 inf inf 2.74E+05
10E+6 inf inf inf 23.726 inf inf 2.74E+05

Table 4.18: Upper Bounds from pomdp9-14-8-3-10-4 and pomdp10-12-7-3-8-4 Instances. The table
shows the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds
and i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum
domains size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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4.3.3 RAND Domain

In this section, we summarize the upper bounds at instances in RAND domain from Table 4.19

to Table 4.23. Overall, we see that WMBMM-EXP is the best performing algorithm given

i-bound larger than 10, or given time bounds shorter than 1,000 seconds. JGD-EXP often

generated competitive upper bounds. For example, both JGD-EXP and WBMMM-EXP

generated upper bounds that are close to each other at rand-c50d10o1-01 instance and

rand-c50d15o1-03 over all i-bounds and time bounds longer than 1,000 seconds, as shown

in Table 4.22. We observe a common trend that algorithm JGD-EXP generates tighter

upper bounds than algorithm WMBMM-EXP when i-bound is 1 or 5 at time bounds longer

than 1,000 seconds. On the other hand, algorithm WMBMM-EXP generates tighter upper

bounds when i-bound is greater than 10, or given time bound is shorter than 1,000 seconds.

In contrast with the previous benchmarks of FH-MDP and FH-POMDP, JGID-ID and WBME-

ID were not competitive except for the instances having low induced-width, (w = 6, 10, 13),

which are close to the input i-bounds. We see that the translation based approaches and

MBE-ID were completely incompetitive, yielding orders of magnitude worse bounds.

Note that the first six instances presented in Table 4.19 to Table 4.21 are easy problem in-

stances having the constrained induced width less than or equal to 20. In those easy instances,

algorithms WMBE-ID and MBE-ID that are based on the mini-bucket tree decomposition

generated the exact MEU if they were given i-bounds greater than the constrained induced

width. The translation based approach WMBMM-MMAP generated the exact MEU if the

constrained induced width of the translated BN is still less than i-bounds. However, JGD-ID

and GDD-MI often failed to generate the exact MEU when they are given i-bounds larger

than 10. JGD-EXP and WMBMM-EXP couldn’t generate the exact MEU on easy problem

instances because they apply two bounding inequalities, the exponenitated utility bounds

and the decomposition bounds, in stages.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand-c20d2o1-01 1 10E+1 675.722 inf 172.68 171.484 446.857 1521.32 2546.296
n:22 f:22 10E+2 675.722 inf 172.68 171.484 446.857 1521.32 2546.296
k:2 s:3 10E+3 166.846 429.578 171.326 171.484 235.868 1521.32 2546.296
w:6 10E+4 165.463 429.578 171.326 171.484 234.028 1521.32 2546.296

10E+6 165.1 429.578 171.326 171.484 234.028 1521.32 2546.296

5 10E+1 135.356 inf inf 170.632 869.981 289.132 112.748
10E+2 135.356 inf inf 170.632 869.981 289.132 112.748
10E+3 124.57 112.765 170.728 170.632 143.159 289.132 112.748
10E+4 124.548 112.765 170.728 170.632 129.196 289.132 112.748
10E+6 124.531 112.765 170.728 170.632 129.196 289.132 112.748

10 10E+1 137.169 inf 173.609 170.632 1041.224 107.764 112.665
10E+2 137.169 inf 173.609 170.632 1041.224 107.764 112.665
10E+3 116.724 112.665 170.724 170.632 138.607 107.764 112.665
10E+4 116.722 112.665 170.724 170.632 128.137 107.764 112.665
10E+6 116.721 112.665 170.724 170.632 128.137 107.764 112.665

15 10E+1 137.169 inf 173.609 170.632 1041.224 107.764 112.665
10E+2 137.169 inf 173.609 170.632 1041.224 107.764 112.665
10E+3 116.723 112.665 170.724 170.632 138.312 107.764 112.665
10E+4 116.722 112.665 170.724 170.632 147.213 107.764 112.665
10E+6 120.217 112.665 170.724 170.632 147.213 107.764 112.665

20 10E+1 137.122 inf inf 170.632 2025.2 107.764 112.665
10E+2 137.122 inf inf 170.632 2025.2 107.764 112.665
10E+3 120.217 112.665 170.726 170.632 147.213 107.764 112.665
10E+4 120.217 112.665 170.726 170.632 147.213 107.764 112.665
10E+6 120.217 112.665 170.726 170.632 147.213 107.764 112.665

rand-c30d3o1-01 1 10E+1 inf inf 276.487 279.111 4.24E+04 1.02E+04 1.40E+05
n:33 f:33 10E+2 inf inf 276.487 279.111 4.24E+04 1.02E+04 1.40E+05
k:2 s:3 10E+3 1929.77 2433.593 274.262 279.111 1242.861 1.02E+04 1.40E+05
w:10 10E+4 276.001 2433.593 274.262 279.111 1217.778 1.02E+04 1.40E+05

10E+6 276.001 2433.593 274.262 279.111 1217.778 1.02E+04 1.40E+05

5 10E+1 inf inf inf 273.382 9.51E+05 1359.92 3073.149
10E+2 inf inf inf 273.382 9.51E+05 1359.92 3073.149
10E+3 343.794 667.032 273.671 273.382 577.872 1359.92 3073.149
10E+4 305.353 667.032 273.523 273.382 452.904 1359.92 3073.149
10E+6 299.716 667.032 273.523 273.382 438.399 1359.92 3073.149

10 10E+1 inf inf inf 272.711 inf 417.181 222.005
10E+2 inf inf inf 272.711 inf 417.181 222.005
10E+3 226.178 222.005 280.544 272.711 597.673 417.181 222.005
10E+4 224.837 222.005 280.302 272.711 347.633 417.181 222.005
10E+6 224.837 222.005 280.302 272.711 336.834 417.181 222.005

15 10E+1 inf inf inf 272.711 inf 222.006 222.005
10E+2 inf inf inf 272.711 inf 222.006 222.005
10E+3 226.178 222.005 280.76 272.711 1116.989 222.006 222.005
10E+4 224.869 222.005 280.564 272.711 349.126 222.006 222.005
10E+6 224.869 222.005 280.564 272.711 441.774 222.006 222.005

20 10E+1 inf inf inf 272.711 inf 222.006 222.005
10E+2 inf inf inf 272.711 inf 222.006 222.005
10E+3 224.925 222.005 280.599 272.711 2069.952 222.006 222.005
10E+4 224.869 222.005 280.302 272.711 440.361 222.006 222.005
10E+6 224.869 222.005 280.302 272.711 440.361 222.006 222.005

Table 4.19: Upper Bounds from rand-c20d2o1-01 and rand-c30d3o1-01 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand-c30d6o1-01 1 10E+1 inf inf inf 536.596 1.81E+06 1.90E+05 7.29E+05
n:36 f:36 10E+2 inf inf inf 536.596 1.81E+06 1.90E+05 7.29E+05
k:2 s:3 10E+3 3521.833 5165.121 535.743 536.596 2258.084 1.90E+05 7.29E+05
w:13 10E+4 552.87 5165.121 535.743 536.596 1773.476 1.90E+05 7.29E+05

10E+6 552.415 5165.121 535.743 536.596 1773.476 1.90E+05 7.29E+05

5 10E+1 inf inf inf 535.437 1.77E+13 1.76E+04 3850.815
10E+2 inf inf inf 535.437 1.77E+13 1.76E+04 3850.815
10E+3 648.628 773.618 536.524 535.437 3.80E+07 1.76E+04 3850.815
10E+4 624.624 773.618 536.431 535.437 5.54E+06 1.76E+04 3850.815
10E+6 622.095 773.618 536.431 535.437 3.18E+06 1.76E+04 3850.815

10 10E+1 inf inf inf 535.113 inf 2163.31 805.127
10E+2 inf inf inf 535.113 inf 2163.31 805.127
10E+3 562.568 433.766 540.861 535.113 5.19E+08 2163.31 805.127
10E+4 510.224 433.766 540.462 535.113 2.39E+07 2163.31 805.127
10E+6 465.052 433.766 540.462 535.113 1.61E+07 2163.31 805.127

15 10E+1 inf inf inf 534.979 inf 783.184 377.614
10E+2 inf inf inf 534.979 inf 783.184 377.614
10E+3 441.265 377.614 542.671 534.979 9.66E+09 783.184 377.614
10E+4 418.715 377.614 541.969 534.979 2.11E+09 783.184 377.614
10E+6 398.917 377.614 541.969 534.979 2.33E+09 783.184 377.614

20 10E+1 inf inf inf 534.979 inf 377.085 377.614
10E+2 inf inf inf 534.979 inf 377.085 377.614
10E+3 412.851 377.614 542.713 534.979 1.43E+11 377.085 377.614
10E+4 398.917 377.614 541.969 534.979 2.48E+09 377.085 377.614
10E+6 398.917 377.614 541.969 534.979 2.33E+09 377.085 377.614

rand-c30d9o1-01 1 10E+1 inf inf inf 742.014 1.69E+08 5.50E+06 1.84E+06
n:39 f:39 10E+2 inf inf inf 742.014 1.69E+08 5.50E+06 1.84E+06
k:2 s:3 10E+3 7528.335 8798.054 742.287 742.014 1.56E+04 5.50E+06 1.84E+06
w:16 10E+4 766.687 8798.054 742.287 742.014 1.08E+04 5.50E+06 1.84E+06

10E+6 766.687 8798.054 742.287 742.014 1.08E+04 5.50E+06 1.84E+06

5 10E+1 inf inf inf 739.365 6.73E+17 2.05E+05 2.23E+04
10E+2 inf inf inf 739.365 6.73E+17 2.05E+05 2.23E+04
10E+3 806.441 2979.69 781.955 739.365 2.70E+10 2.05E+05 2.23E+04
10E+4 793.615 2979.69 781.629 739.365 8.11E+06 2.05E+05 2.23E+04
10E+6 793.615 2979.69 781.629 739.365 2.23E+06 2.05E+05 2.23E+04

10 10E+1 inf inf inf 732.835 inf 8986.47 1327.517
10E+2 inf inf inf 732.835 inf 8986.47 1327.517
10E+3 1156.275 893.895 795.067 732.835 1.16E+11 8986.47 1327.517
10E+4 830.039 893.895 794.406 732.835 1.25E+09 8986.47 1327.517
10E+6 820.118 893.895 794.406 732.835 1.10E+09 8986.47 1327.517

15 10E+1 inf inf inf 730.436 inf 2320.76 1409.596
10E+2 inf inf inf 730.436 inf 2320.76 1409.596
10E+3 960.234 790.751 794.757 730.436 1.60E+13 2320.76 1409.596
10E+4 914.462 790.751 793.797 730.436 6.25E+09 2320.76 1409.596
10E+6 763.819 790.751 793.797 730.436 6.22E+08 2320.76 1409.596

20 10E+1 inf inf inf 729.753 inf 1189.79 594.803
10E+2 inf inf inf 729.753 inf 1189.79 594.803
10E+3 635.236 594.803 798.569 729.753 5.02E+13 1189.79 594.803
10E+4 616.856 594.803 793.726 729.753 3.83E+12 1189.79 594.803
10E+6 616.856 594.803 793.674 729.753 9.58E+11 1189.79 594.803

Table 4.20: Upper Bounds from rand-c30d6o1-01 and rand-c30d9o1-01 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand-c50d5o1-01 1 10E+1 inf inf inf 433.91 1.81E+12 7.90E+05 8.14E+07
n:55 f:55 10E+2 inf inf inf 433.91 1.81E+12 7.90E+05 8.14E+07
k:2 s:3 10E+3 9186.728 2.23E+04 430.007 433.91 5546.015 7.90E+05 8.14E+07
w:17 10E+4 450.84 2.23E+04 429.997 433.91 5220.345 7.90E+05 8.14E+07

10E+6 450.84 2.23E+04 429.997 433.91 5215.389 7.90E+05 8.14E+07

5 10E+1 inf inf inf 430.406 inf 2.55E+04 2.33E+04
10E+2 inf inf inf 430.406 inf 2.55E+04 2.33E+04
10E+3 1881.42 974.431 430.438 430.406 4.37E+06 2.55E+04 2.33E+04
10E+4 532.138 974.431 429.947 430.406 7654.414 2.55E+04 2.33E+04
10E+6 529.672 974.431 429.947 430.406 1941.346 2.55E+04 2.33E+04

10 10E+1 inf inf inf 429.001 inf 1556.72 2340.09
10E+2 inf inf inf 429.001 inf 1556.72 2340.09
10E+3 686.227 inf 432.641 429.001 7.59E+06 1556.72 2340.09
10E+4 467.486 410.307 431.306 429.001 1.23E+05 1556.72 2340.09
10E+6 451.151 410.307 431.306 429.001 1.65E+04 1556.72 2340.09

15 10E+1 inf inf inf 428.851 inf 692.522 645.601
10E+2 inf inf inf 428.851 inf 692.522 645.601
10E+3 517.937 298.621 434.683 428.851 6.85E+10 692.522 645.601
10E+4 446.34 298.621 431.329 428.851 1.76E+08 692.522 645.601
10E+6 416.142 298.621 431.329 428.851 2.67E+07 692.522 645.601

20 10E+1 inf inf inf 428.375 inf 272.002 274.844
10E+2 inf inf inf 428.375 inf 272.002 274.844
10E+3 331.212 274.844 438.026 428.375 2.78E+11 272.002 274.844
10E+4 289.712 274.844 432.042 428.375 5.21E+10 272.002 274.844
10E+6 288.835 274.844 431.697 428.375 4.14E+09 272.002 274.844

rand-c70d7o1-01 1 10E+1 inf inf inf 661.574 2.51E+17 1.38E+07 2.69E+09
n:77 f:77 10E+2 inf inf inf 661.574 2.51E+17 1.38E+07 2.69E+09
k:2 s:3 10E+3 4.63E+04 3.70E+06 660.847 661.574 3.55E+04 1.38E+07 2.69E+09
w:20 10E+4 682.828 3.70E+06 660.633 661.574 2.42E+04 1.38E+07 2.69E+09

10E+6 682.828 3.70E+06 660.633 661.574 2.39E+04 1.38E+07 2.69E+09

5 10E+1 inf inf inf 658.306 inf 1.58E+05 4.46E+05
10E+2 inf inf inf 658.306 inf 1.58E+05 4.46E+05
10E+3 1.00E+04 2567.806 658.94 658.306 7.43E+09 1.58E+05 4.46E+05
10E+4 725.743 2567.806 657.36 658.306 1.80E+08 1.58E+05 4.46E+05
10E+6 722.234 2567.806 657.36 658.306 1.20E+07 1.58E+05 4.46E+05

10 10E+1 inf inf inf 657.373 inf 1.09E+04 4937.762
10E+2 inf inf inf 657.373 inf 1.09E+04 4937.762
10E+3 2400.926 inf 662.015 657.373 7.61E+10 1.09E+04 4937.762
10E+4 807.648 1105.79 658.246 657.373 1.10E+09 1.09E+04 4937.762
10E+6 797.011 1105.79 658.246 657.373 5.51E+07 1.09E+04 4937.762

15 10E+1 inf inf inf 656.94 inf 4980.38 7027.926
10E+2 inf inf inf 656.94 inf 4980.38 7027.926
10E+3 3580.138 inf 663.208 656.94 8.49E+14 4980.38 7027.926
10E+4 1622.918 1078.383 657.773 656.94 3.72E+11 4980.38 7027.926
10E+6 784.91 1078.383 657.773 656.94 4.40E+08 4980.38 7027.926

20 10E+1 inf inf inf 655.954 inf 1290.27 499.672
10E+2 inf inf inf 655.954 inf 1290.27 499.672
10E+3 inf inf inf 655.954 inf 1290.27 499.672
10E+4 inf 499.672 664.757 655.954 3.84E+15 1290.27 499.672
10E+6 684.288 499.672 658.631 655.954 2.91E+13 1290.27 499.672

Table 4.21: Upper Bounds from rand-c50d5o1-01 and rand-c70d7o1-01 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand-c50d10o1-01 1 10E+1 inf inf inf 869.844 9.90E+21 6.06E+07 4.19E+08
n:60 f:60 10E+2 inf inf inf 869.844 9.90E+21 6.06E+07 4.19E+08
k:2 s:3 10E+3 4.27E+04 1.47E+05 871.617 869.844 7.59E+04 6.06E+07 4.19E+08
w:23 10E+4 1024.213 1.47E+05 871.608 869.844 4.03E+04 6.06E+07 4.19E+08

10E+6 1024.213 1.47E+05 871.608 869.844 3.50E+04 6.06E+07 4.19E+08

5 10E+1 inf inf inf 866.954 inf 1.45E+06 1.67E+05
10E+2 inf inf inf 866.954 inf 1.45E+06 1.67E+05
10E+3 1.26E+04 1.87E+04 864.796 866.954 1.23E+14 1.45E+06 1.67E+05
10E+4 1162.645 1.87E+04 863.936 866.954 4.20E+10 1.45E+06 1.67E+05
10E+6 1161.323 1.87E+04 863.936 866.954 1.49E+09 1.45E+06 1.67E+05

10 10E+1 inf inf inf 862.789 inf 5.53E+04 4.09E+04
10E+2 inf inf inf 862.789 inf 5.53E+04 4.09E+04
10E+3 6771.519 2941.724 874.981 862.789 3.00E+15 5.53E+04 4.09E+04
10E+4 1226.88 2941.724 870.313 862.789 1.00E+14 5.53E+04 4.09E+04
10E+6 1205.696 2941.724 870.313 862.789 1.06E+13 5.53E+04 4.09E+04

15 10E+1 inf inf inf 862.416 inf 8083.62 3995.708
10E+2 inf inf inf 862.416 inf 8083.62 3995.708
10E+3 5494.297 inf 875.264 862.416 1.19E+17 8083.62 3995.708
10E+4 1313.536 1427.498 869.415 862.416 2.38E+12 8083.62 3995.708
10E+6 1282.425 1427.498 869.415 862.416 8.63E+14 8083.62 3995.708

20 10E+1 inf inf inf 862.106 inf 4638.09 7181.774
10E+2 inf inf inf 862.106 inf 4638.09 7181.774
10E+3 inf inf 879.615 862.106 inf 4638.09 7181.774
10E+4 inf 1000.242 875.892 862.106 9.52E+19 4638.09 7181.774
10E+6 1701.032 1000.242 870.946 862.106 2.56E+18 4638.09 7181.774

rand-c50d15o1-03 1 10E+1 inf inf inf 1247.159 1.40E+31 2.60E+10 2.59E+08
n:65 f:65 10E+2 inf inf inf 1247.159 1.40E+31 2.60E+10 2.59E+08
k:2 s:3 10E+3 5.38E+04 3.51E+05 1243.126 1247.159 1.91E+05 2.60E+10 2.59E+08
w:27 10E+4 1314.326 3.51E+05 1243.103 1247.159 5.08E+04 2.60E+10 2.59E+08

10E+6 1314.326 3.51E+05 1243.103 1247.159 4.81E+04 2.60E+10 2.59E+08

5 10E+1 inf inf inf 1242.412 inf 1.65E+08 3.78E+05
10E+2 inf inf inf 1242.412 inf 1.65E+08 3.78E+05
10E+3 1.75E+04 9520.664 1254.971 1242.412 1.47E+12 1.65E+08 3.78E+05
10E+4 1641.52 9520.664 1252.041 1242.412 2.27E+07 1.65E+08 3.78E+05
10E+6 1638.078 9520.664 1252.041 1242.412 1.03E+06 1.65E+08 3.78E+05

10 10E+1 inf inf inf 1240.688 inf 1.36E+06 1.03E+04
10E+2 inf inf inf 1240.688 inf 1.36E+06 1.03E+04
10E+3 4650.63 2636.03 1271.436 1240.688 3.02E+15 1.36E+06 1.03E+04
10E+4 1749.403 2636.03 1265.567 1240.688 2.67E+10 1.36E+06 1.03E+04
10E+6 1729.083 2636.03 1265.567 1240.688 3.77E+08 1.36E+06 1.03E+04

15 10E+1 inf inf inf 1240.61 inf 9.92E+04 2443.418
10E+2 inf inf inf 1240.61 inf 9.92E+04 2443.418
10E+3 1979.445 inf 1275.254 1240.61 2.56E+24 9.92E+04 2443.418
10E+4 1536.418 1388.087 1269.382 1240.61 9.93E+17 9.92E+04 2443.418
10E+6 1494.398 1388.087 1269.382 1240.61 5.55E+14 9.92E+04 2443.418

20 10E+1 inf inf inf 1240.386 inf 3.82E+04 1470.648
10E+2 inf inf inf 1240.386 inf 3.82E+04 1470.648
10E+3 inf inf 1280.266 1240.386 inf 3.82E+04 1470.648
10E+4 1545.091 1156.419 1274.473 1240.386 inf 3.82E+04 1470.648
10E+6 1507.513 1156.419 1270.888 1240.386 inf 3.82E+04 1470.648

Table 4.22: Upper Bounds from rand-c50d10o1-01 and rand-c50d15o1-03 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand-c70d14o1-01 1 10E+1 inf inf inf 1198.294 1.14E+31 1.74E+10 4.71E+10
n:84 f:84 10E+2 inf inf inf 1198.294 1.14E+31 1.74E+10 4.71E+10
k:2 s:3 10E+3 1.12E+05 inf 1202.883 1198.294 2.28E+05 1.74E+10 4.71E+10
w:31 10E+4 1262.402 4.88E+05 1202.357 1198.294 1.40E+05 1.74E+10 4.71E+10

10E+6 1262.402 4.88E+05 1202.357 1198.294 1.33E+05 1.74E+10 4.71E+10

5 10E+1 inf inf inf 1193.495 inf 1.15E+08 6.39E+06
10E+2 inf inf inf 1193.495 inf 1.15E+08 6.39E+06
10E+3 7.33E+04 1.59E+04 1209.691 1193.495 3.08E+17 1.15E+08 6.39E+06
10E+4 1627.243 1.59E+04 1207.103 1193.495 1.15E+15 1.15E+08 6.39E+06
10E+6 1621.947 1.59E+04 1207.103 1193.495 2.10E+14 1.15E+08 6.39E+06

10 10E+1 inf inf inf 1192.697 inf 9.59E+05 5.27E+04
10E+2 inf inf inf 1192.697 inf 9.59E+05 5.27E+04
10E+3 3.83E+04 inf 1210.847 1192.697 1.39E+21 9.59E+05 5.27E+04
10E+4 1639.658 4306.811 1205.152 1192.697 9.10E+14 9.59E+05 5.27E+04
10E+6 1636.008 4306.811 1205.152 1192.697 2.55E+12 9.59E+05 5.27E+04

15 10E+1 inf inf inf 1187.204 inf 2.03E+05 8.17E+04
10E+2 inf inf inf 1187.204 inf 2.03E+05 8.17E+04
10E+3 4.98E+04 inf 1221.018 1187.204 1.49E+28 2.03E+05 8.17E+04
10E+4 3903.284 1.76E+04 1209.388 1187.204 1.25E+20 2.03E+05 8.17E+04
10E+6 1796.338 1.76E+04 1208.337 1187.204 3.07E+16 2.03E+05 8.17E+04

20 10E+1 inf inf inf inf inf inf 1.24E+04
10E+2 inf inf inf inf inf inf 1.24E+04
10E+3 inf inf inf 1191.487 inf 2.23E+05 1.24E+04
10E+4 inf inf 1221.307 1191.487 inf 2.23E+05 1.24E+04
10E+6 inf 2316.468 1207.994 1191.487 inf 2.23E+05 1.24E+04

rand-c70d21o1-01 1 10E+1 inf inf inf 1755.734 inf 3.20E+12 2.08E+10
n:91 f:91 10E+2 inf inf inf 1755.734 inf 3.20E+12 2.08E+10
k:2 s:3 10E+3 2.15E+05 1.34E+06 1744.182 1755.734 9.05E+05 3.20E+12 2.08E+10
w:41 10E+4 2081.899 1.34E+06 1743.842 1755.734 1.20E+05 3.20E+12 2.08E+10

10E+6 2081.899 1.34E+06 1743.842 1755.734 1.08E+05 3.20E+12 2.08E+10

5 10E+1 inf inf inf 1745.283 inf 7.74E+09 6.33E+06
10E+2 inf inf inf 1745.283 inf 7.74E+09 6.33E+06
10E+3 1.02E+05 4.01E+04 1782.238 1745.283 4.22E+25 7.74E+09 6.33E+06
10E+4 2208.186 4.01E+04 1769.453 1745.283 1.06E+18 7.74E+09 6.33E+06
10E+6 2208.186 4.01E+04 1769.453 1745.283 9.76E+15 7.74E+09 6.33E+06

10 10E+1 inf inf inf 1743.724 inf 1.24E+07 7.77E+05
10E+2 inf inf inf 1743.724 inf 1.24E+07 7.77E+05
10E+3 5.12E+04 8270.178 1788.697 1743.724 7.11E+28 1.24E+07 7.77E+05
10E+4 2560.783 8270.178 1783.18 1743.724 1.37E+19 1.24E+07 7.77E+05
10E+6 2552.807 8270.178 1783.18 1743.724 7.73E+14 1.24E+07 7.77E+05

15 10E+1 inf inf inf 1734.844 inf 7.87E+05 4.83E+04
10E+2 inf inf inf 1734.844 inf 7.87E+05 4.83E+04
10E+3 3.07E+04 inf 1801.88 1734.844 1.59E+41 7.87E+05 4.83E+04
10E+4 6295.232 5264.345 1790.876 1734.844 3.16E+31 7.87E+05 4.83E+04
10E+6 2717.454 5264.345 1790.621 1734.844 7.78E+21 7.87E+05 4.83E+04

20 10E+1 inf inf inf 1741.385 inf inf 1.89E+04
10E+2 inf inf inf 1741.385 inf inf 1.89E+04
10E+3 inf inf 1807.97 1741.385 inf 2.04E+05 1.89E+04
10E+4 inf inf 1802.177 1741.385 inf 2.04E+05 1.89E+04
10E+6 5637.314 2712.705 1791.691 1741.385 inf 2.04E+05 1.89E+04

Table 4.23: Upper Bounds from rand-c70d14o1-01 and rand-c70d21o1-01 Instances. The table shows
the best upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and
i-bounds from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains
size s is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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4.3.4 BN Domain

In this section, we summarize the upper bounds at instances in BN domain from Table 4.24

to Table 4.28. As in the previous benchmark domains, we can observe that the earlier ap-

proaches generated orders of magnitude worse upper bounds than directed decomposition

bounds. Comparing the bounding schemes based on the valuation algebra and the bounding

schemes based on the exponentiated utility bounds, we observe that both approaches gen-

erated comparable upper bounds, yet algorithms JGD-EXP and WMBMM-EXP generated

overall tighter upper bounds at all problem instances. Problem instance BN-14-w42d6 shown

in Table 4.28 has the largest constrained induced width 41, which is the second largest in BN

domain. At BN-14-w42d6 instance, we observe that algorithm JGD-ID generated very loose

upper bound (21,400 with i-bound 1) at a shorter time bound 1,000 seconds and it improved

the upper bound (50.343 with i-bound 1) at the next time bound 10,000 seconds. On the

other hand, JGD-EXP generated a relatively tighter upper bound (53.131 with i-bound 1) at

1,000 second time bound. We can observe similar trend that algorithm JGD-EXP generates

higher quality upper bounds an order of magnitude faster than JGD-ID.

Overall, we see that direct decomposition schemes generated upper bounds that are orders of

magnitude tighter than earlier algorithms. Comparing two iterative algorithms JGD-ID and

JGD-EXP, both generate high quality upper bounds at all instances, yet the upper bounds

from JGD-EXP is tighter than JGD-ID. In addition, JGD-EXP can generate upper bounds

an order of mangnitude faster than JGD-ID. Algorithm WMBE-ID also generated relatively

good upper bounds, but it was dominated by other direct bounding schemes in most of

the cases. As in the previous benchmarks, algorithm JGD-EXP generated the best upper

bounds when it was given i-bound 1 or 5, and given time bounds longer than 1,000 seconds.

Algorithm WMBMM-EXP starts to dominate algorithm JGD-EXP when they are given

shorter time bounds less than 1,000 seconds, or WMBMM-EXP was given higher i-bounds

larger than 10.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

BN-78-w18d3 1 10E+1 inf inf inf 25.885 8052.847 383.224 3.05E+05
n:54 f:54 10E+2 inf inf inf 25.885 8052.847 383.224 3.05E+05
k:2 s:10 10E+3 85.273 161.048 24.799 25.885 48.477 383.224 3.05E+05
w:18 10E+4 29.429 161.048 24.728 25.885 45.056 383.224 3.05E+05

10E+6 29.429 161.048 24.728 25.885 44.888 383.224 3.05E+05

5 10E+1 inf inf inf 25.358 inf 217.126 2315.456
10E+2 inf inf inf 25.358 inf 217.126 2315.456
10E+3 129.854 109.384 25.145 25.358 49.883 217.126 2315.456
10E+4 33.297 109.384 24.523 25.358 37.551 217.126 2315.456
10E+6 33.287 109.384 24.523 25.358 36.176 217.126 2315.456

10 10E+1 inf inf inf 24.287 inf 87.766 88.086
10E+2 inf inf inf 24.287 inf 87.766 88.086
10E+3 61.834 28.862 24.205 24.287 148.953 87.766 88.086
10E+4 35.731 28.862 23.864 24.287 74.772 87.766 88.086
10E+6 35.03 28.862 23.864 24.287 65.901 87.766 88.086

15 10E+1 inf inf inf 23.375 inf 37.104 22.328
10E+2 inf inf inf 23.375 inf 37.104 22.328
10E+3 inf 18.439 26.849 23.375 1681.759 37.104 22.328
10E+4 27.407 18.439 24.454 23.375 106.849 37.104 22.328
10E+6 27.076 18.439 24.454 23.375 103.211 37.104 22.328

20 10E+1 inf inf inf 22.798 inf 25.006 15.953
10E+2 inf inf inf 22.798 inf 25.006 15.953
10E+3 inf inf 28.493 22.798 7067.541 25.006 15.953
10E+4 22.418 15.953 25.316 22.798 752.169 25.006 15.953
10E+6 22.241 15.953 24.838 22.798 123.33 25.006 15.953

BN-78-w23d6 1 10E+1 inf inf inf 50.042 2.23E+06 5449.14 3.92E+05
n:54 f:54 10E+2 inf inf inf 50.042 2.23E+06 5449.14 3.92E+05
k:2 s:10 10E+3 143.06 inf 50.133 50.042 90.357 5449.14 3.92E+05
w:22 10E+4 52.941 292.299 49.88 50.042 80.933 5449.14 3.92E+05

10E+6 52.931 292.299 49.88 50.042 80.566 5449.14 3.92E+05

5 10E+1 inf inf inf 48.853 inf 1789.0 3572.358
10E+2 inf inf inf 48.853 inf 1789.0 3572.358
10E+3 181.978 inf 48.265 48.853 510.227 1789.0 3572.358
10E+4 69.909 127.377 48.084 48.853 147.663 1789.0 3572.358
10E+6 68.512 127.377 48.084 48.853 110.716 1789.0 3572.358

10 10E+1 inf inf inf 47.266 inf 336.531 438.383
10E+2 inf inf inf 47.266 inf 336.531 438.383
10E+3 189.313 79.834 48.882 47.266 1.27E+05 336.531 438.383
10E+4 86.5 79.834 48.095 47.266 1.23E+04 336.531 438.383
10E+6 85.31 79.834 48.095 47.266 3311.865 336.531 438.383

15 10E+1 inf inf inf 46.466 inf 134.759 251.559
10E+2 inf inf inf 46.466 inf 134.759 251.559
10E+3 223.989 inf 53.871 46.466 1.94E+07 134.759 251.559
10E+4 92.957 61.503 49.158 46.466 4.03E+05 134.759 251.559
10E+6 96.344 61.503 48.8 46.466 1.36E+04 134.759 251.559

20 10E+1 inf inf inf 45.958 inf 89.703 89.197
10E+2 inf inf inf 45.958 inf 89.703 89.197
10E+3 inf inf 53.829 45.958 inf 89.703 89.197
10E+4 inf 44.487 51.977 45.958 2.62E+07 89.703 89.197
10E+6 73.049 44.487 48.49 45.958 3.68E+06 89.703 89.197

Table 4.24: Upper Bounds from BN-78-w18d3 and BN-78-w23d6 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

BN-78-w19d3 1 10E+1 inf inf inf 26.099 inf 656.807 3.14E+05
n:54 f:54 10E+2 inf inf inf 26.099 inf 656.807 3.14E+05
k:2 s:10 10E+3 74.825 159.81 26.48 26.099 59.696 656.807 3.14E+05
w:19 10E+4 26.963 159.81 25.498 26.099 54.236 656.807 3.14E+05

10E+6 26.9 159.81 25.498 26.099 54.033 656.807 3.14E+05

5 10E+1 inf inf inf 25.566 inf 237.886 2957.77
10E+2 inf inf inf 25.566 inf 237.886 2957.77
10E+3 178.157 77.889 27.165 25.566 121.056 237.886 2957.77
10E+4 35.761 77.889 25.386 25.566 56.917 237.886 2957.77
10E+6 35.656 77.889 25.386 25.566 50.888 237.886 2957.77

10 10E+1 inf inf inf 24.349 inf 65.644 113.178
10E+2 inf inf inf 24.349 inf 65.644 113.178
10E+3 76.111 41.707 25.863 24.349 1042.103 65.644 113.178
10E+4 42.769 41.707 24.878 24.349 388.272 65.644 113.178
10E+6 41.78 41.707 24.878 24.349 341.115 65.644 113.178

15 10E+1 inf inf inf 23.801 inf 27.633 37.386
10E+2 inf inf inf 23.801 inf 27.633 37.386
10E+3 inf 26.084 26.79 23.801 2.78E+04 27.633 37.386
10E+4 36.846 26.084 24.926 23.801 961.642 27.633 37.386
10E+6 41.335 26.084 24.926 23.801 270.253 27.633 37.386

20 10E+1 inf inf inf 23.28 inf 17.719 17.569
10E+2 inf inf inf 23.28 inf 17.719 17.569
10E+3 inf inf 29.446 23.28 inf 17.719 17.569
10E+4 25.637 17.569 27.45 23.28 2.14E+04 17.719 17.569
10E+6 23.78 17.569 25.355 23.28 1370.839 17.719 17.569

BN-0-w29d6 1 10E+1 inf inf inf 53.195 inf 6.28E+05 3.86E+11
n:100 f:100 10E+2 inf inf inf 53.195 inf 6.28E+05 3.86E+11
k:2 s:6 10E+3 1504.091 inf 52.55 53.195 1063.753 6.28E+05 3.86E+11
w:29 10E+4 53.531 8199.355 52.085 53.195 831.807 6.28E+05 3.86E+11

10E+6 53.531 8199.355 52.085 53.195 821.859 6.28E+05 3.86E+11

5 10E+1 inf inf inf 50.305 inf 2.08E+04 1.48E+06
10E+2 inf inf inf 50.305 inf 2.08E+04 1.48E+06
10E+3 1204.438 5393.312 52.005 50.305 1084.763 2.08E+04 1.48E+06
10E+4 72.623 5393.312 48.809 50.305 327.087 2.08E+04 1.48E+06
10E+6 72.602 5393.312 48.809 50.305 282.977 2.08E+04 1.48E+06

10 10E+1 inf inf inf 48.609 inf 2713.49 3624.298
10E+2 inf inf inf 48.609 inf 2713.49 3624.298
10E+3 407.066 inf 55.745 48.609 9.28E+05 2713.49 3624.298
10E+4 89.492 86.675 49.416 48.609 2322.398 2713.49 3624.298
10E+6 87.79 86.675 49.416 48.609 347.933 2713.49 3624.298

15 10E+1 inf inf inf 47.596 inf 410.212 1261.268
10E+2 inf inf inf 47.596 inf 410.212 1261.268
10E+3 437.082 inf 58.137 47.596 5.46E+08 410.212 1261.268
10E+4 93.204 50.222 49.628 47.596 1.35E+05 410.212 1261.268
10E+6 88.286 50.222 48.955 47.596 5.42E+04 410.212 1261.268

20 10E+1 inf inf inf 45.979 inf 93.36 397.648
10E+2 inf inf inf 45.979 inf 93.36 397.648
10E+3 inf inf inf 45.979 inf 93.36 397.648
10E+4 inf inf 59.857 45.979 5.02E+09 93.36 397.648
10E+6 103.309 54.302 49.738 45.979 3.00E+06 93.36 397.648

Table 4.25: Upper Bounds from BN-78-w19d3 and BN-0-w29d6 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

BN-78-w24d6 1 10E+1 inf inf inf 51.57 inf 7165.85 5.11E+06
n:54 f:54 10E+2 inf inf inf 51.57 inf 7165.85 5.11E+06
k:2 s:10 10E+3 184.082 inf 51.251 51.57 124.009 7165.85 5.11E+06
w:24 10E+4 54.145 2.70E+04 50.183 51.57 106.906 7165.85 5.11E+06

10E+6 54.145 2.70E+04 50.183 51.57 106.275 7165.85 5.11E+06

5 10E+1 inf inf inf 50.688 inf 2864.95 2.32E+04
10E+2 inf inf inf 50.688 inf 2864.95 2.32E+04
10E+3 391.873 inf 53.882 50.688 197.46 2864.95 2.32E+04
10E+4 67.004 153.358 49.995 50.688 102.148 2864.95 2.32E+04
10E+6 66.389 153.358 49.995 50.688 94.873 2864.95 2.32E+04

10 10E+1 inf inf inf 48.718 inf 983.923 838.249
10E+2 inf inf inf 48.718 inf 983.923 838.249
10E+3 427.257 inf 54.362 48.718 1.28E+05 983.923 838.249
10E+4 96.062 185.054 50.035 48.718 1272.374 983.923 838.249
10E+6 95.592 185.054 50.035 48.718 640.569 983.923 838.249

15 10E+1 inf inf inf 47.763 inf 272.525 219.028
10E+2 inf inf inf 47.763 inf 272.525 219.028
10E+3 inf inf 54.609 47.763 1.64E+07 272.525 219.028
10E+4 102.218 58.84 49.333 47.763 1.49E+05 272.525 219.028
10E+6 98.031 58.84 49.202 47.763 2.10E+05 272.525 219.028

20 10E+1 inf inf inf 45.378 inf 73.706 44.35
10E+2 inf inf inf 45.378 inf 73.706 44.35
10E+3 inf inf inf 45.378 inf 73.706 44.35
10E+4 inf inf 54.4 45.378 8.33E+06 73.706 44.35
10E+6 92.981 37.654 49.843 45.378 7.48E+05 73.706 44.35

BN-0-w28d6 1 10E+1 inf inf inf 49.841 1.38E+09 7.99E+05 3.84E+10
n:100 f:100 10E+2 inf inf inf 49.841 1.38E+09 7.99E+05 3.84E+10
k:2 s:6 10E+3 1237.808 inf 46.998 49.841 1477.756 7.99E+05 3.84E+10
w:28 10E+4 53.546 2.10E+05 46.788 49.841 1219.724 7.99E+05 3.84E+10

10E+6 53.546 2.10E+05 46.788 49.841 1208.315 7.99E+05 3.84E+10

5 10E+1 inf inf inf 47.135 inf 2.93E+04 2.94E+05
10E+2 inf inf inf 47.135 inf 2.93E+04 2.94E+05
10E+3 752.778 508.212 47.238 47.135 7132.465 2.93E+04 2.94E+05
10E+4 60.418 508.212 45.817 47.135 952.185 2.93E+04 2.94E+05
10E+6 60.418 508.212 45.817 47.135 369.481 2.93E+04 2.94E+05

10 10E+1 inf inf inf 44.674 inf 2207.28 2953.99
10E+2 inf inf inf 44.674 inf 2207.28 2953.99
10E+3 350.148 145.678 50.973 44.674 1.70E+05 2207.28 2953.99
10E+4 74.306 145.678 45.899 44.674 5255.066 2207.28 2953.99
10E+6 72.33 145.678 45.899 44.674 2036.703 2207.28 2953.99

15 10E+1 inf inf inf 44.118 inf 1102.53 794.475
10E+2 inf inf inf 44.118 inf 1102.53 794.475
10E+3 217.447 inf 53.197 44.118 3.86E+07 1102.53 794.475
10E+4 74.044 113.181 46.594 44.118 3.70E+04 1102.53 794.475
10E+6 76.149 113.181 46.152 44.118 1.04E+04 1102.53 794.475

20 10E+1 inf inf inf 43.577 inf 306.13 242.712
10E+2 inf inf inf 43.577 inf 306.13 242.712
10E+3 inf inf inf 43.577 inf 306.13 242.712
10E+4 inf inf 53.038 43.577 6.94E+08 306.13 242.712
10E+6 76.948 72.787 46.255 43.577 1.17E+07 306.13 242.712

Table 4.26: Upper Bounds from BN-78-w24d6 and BN-0-w28d6 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

BN-0-w32d11 1 10E+1 inf inf inf 89.287 inf 1.83E+08 1.01E+12
n:100 f:100 10E+2 inf inf inf 89.287 inf 1.83E+08 1.01E+12
k:2 s:6 10E+3 4796.115 inf 85.93 89.287 4279.11 1.83E+08 1.01E+12
w:33 10E+4 97.977 3.22E+04 85.234 89.287 2952.051 1.83E+08 1.01E+12

10E+6 97.977 3.22E+04 85.234 89.287 2869.502 1.83E+08 1.01E+12

5 10E+1 inf inf inf 86.421 inf 2.37E+06 6.53E+06
10E+2 inf inf inf 86.421 inf 2.37E+06 6.53E+06
10E+3 9510.201 inf 87.183 86.421 1.38E+08 2.37E+06 6.53E+06
10E+4 144.384 2889.173 83.467 86.421 2.72E+05 2.37E+06 6.53E+06
10E+6 144.384 2889.173 83.467 86.421 4.15E+04 2.37E+06 6.53E+06

10 10E+1 inf inf inf 83.46 inf 3.73E+04 4.88E+04
10E+2 inf inf inf 83.46 inf 3.73E+04 4.88E+04
10E+3 2724.513 449.163 94.645 83.46 4.48E+09 3.73E+04 4.88E+04
10E+4 150.604 449.163 85.926 83.46 9.00E+06 3.73E+04 4.88E+04
10E+6 149.646 449.163 85.926 83.46 1.17E+06 3.73E+04 4.88E+04

15 10E+1 inf inf inf 82.277 inf 4833.2 1781.583
10E+2 inf inf inf 82.277 inf 4833.2 1781.583
10E+3 3657.637 inf 98.03 82.277 1.55E+13 4833.2 1781.583
10E+4 178.251 175.244 88.596 82.277 2.78E+08 4833.2 1781.583
10E+6 164.008 175.244 86.428 82.277 9.91E+07 4833.2 1781.583

20 10E+1 inf inf inf inf inf 2019.77 2578.749
10E+2 inf inf inf inf inf 2019.77 2578.749
10E+3 inf inf inf 80.796 inf 2019.77 2578.749
10E+4 inf inf 99.281 80.796 3.03E+15 2019.77 2578.749
10E+6 inf 234.636 87.043 80.796 1.29E+13 2019.77 2578.749

BN-0-w33d11 1 10E+1 inf inf inf 92.152 inf 4.72E+08 6.80E+11
n:100 f:100 10E+2 inf inf inf 92.152 inf 4.72E+08 6.80E+11
k:2 s:6 10E+3 1860.308 inf 89.604 92.152 2134.821 4.72E+08 6.80E+11
w:33 10E+4 98.71 7953.525 88.914 92.152 1487.654 4.72E+08 6.80E+11

10E+6 98.71 7953.525 88.914 92.152 1466.044 4.72E+08 6.80E+11

5 10E+1 inf inf inf 89.245 inf 2.89E+06 1.18E+06
10E+2 inf inf inf 89.245 inf 2.89E+06 1.18E+06
10E+3 2549.993 1248.837 91.365 89.245 1.17E+05 2.89E+06 1.18E+06
10E+4 118.856 1248.837 87.986 89.245 3677.37 2.89E+06 1.18E+06
10E+6 118.856 1248.837 87.986 89.245 1213.3 2.89E+06 1.18E+06

10 10E+1 inf inf inf 87.222 inf 8.80E+04 1.93E+04
10E+2 inf inf inf 87.222 inf 8.80E+04 1.93E+04
10E+3 1224.124 278.203 91.106 87.222 4.94E+08 8.80E+04 1.93E+04
10E+4 114.591 278.203 87.057 87.222 1.00E+05 8.80E+04 1.93E+04
10E+6 114.591 278.203 87.057 87.222 1.95E+04 8.80E+04 1.93E+04

15 10E+1 inf inf inf 86.647 inf 1.68E+04 4824.571
10E+2 inf inf inf 86.647 inf 1.68E+04 4824.571
10E+3 2512.24 inf 101.036 86.647 1.51E+15 1.68E+04 4824.571
10E+4 153.255 219.76 91.637 86.647 2.42E+12 1.68E+04 4824.571
10E+6 151.531 219.76 88.925 86.647 8.50E+04 1.68E+04 4824.571

20 10E+1 inf inf inf 86.359 inf 5372.39 731.853
10E+2 inf inf inf 86.359 inf 5372.39 731.853
10E+3 inf inf inf 86.359 inf 5372.39 731.853
10E+4 inf inf 98.153 86.359 inf 5372.39 731.853
10E+6 inf 173.278 88.108 86.359 inf 5372.39 731.853

Table 4.27: Upper Bounds from BN-0-w32d11 and BN-0-w33d11 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

BN-14w42d6 1 10E+1 inf inf inf 52.827 inf 4.13E+07 4.10E+14
n:115 f:115 10E+2 inf inf inf 52.827 inf 4.13E+07 4.10E+14
k:2 s:8 10E+3 2.14E+04 3.63E+06 53.131 52.827 1.97E+04 4.13E+07 4.10E+14
w:41 10E+4 50.343 3.63E+06 48.692 52.827 1.11E+04 4.13E+07 4.10E+14

10E+6 50.343 3.63E+06 48.692 52.827 1.05E+04 4.13E+07 4.10E+14

5 10E+1 inf inf inf 50.342 inf 8.89E+05 1.43E+09
10E+2 inf inf inf 50.342 inf 8.89E+05 1.43E+09
10E+3 1.23E+05 inf 51.108 50.342 2.91E+05 8.89E+05 1.43E+09
10E+4 71.99 2.00E+04 46.484 50.342 5679.025 8.89E+05 1.43E+09
10E+6 71.99 2.00E+04 46.484 50.342 2729.66 8.89E+05 1.43E+09

10 10E+1 inf inf inf 47.697 inf 6.53E+04 3.49E+06
10E+2 inf inf inf 47.697 inf 6.53E+04 3.49E+06
10E+3 7.72E+04 inf 61.266 47.697 1.47E+08 6.53E+04 3.49E+06
10E+4 79.66 1535.094 49.503 47.697 1.67E+05 6.53E+04 3.49E+06
10E+6 79.66 1535.094 47.848 47.697 3.92E+04 6.53E+04 3.49E+06

15 10E+1 inf inf inf 45.27 inf 5477.65 1.81E+05
10E+2 inf inf inf 45.27 inf 5477.65 1.81E+05
10E+3 inf inf 66.573 45.27 7.05E+10 5477.65 1.81E+05
10E+4 406.989 4.37E+05 56.533 45.27 2.58E+06 5477.65 1.81E+05
10E+6 96.929 4.37E+05 49.784 45.27 2.78E+05 5477.65 1.81E+05

20 10E+1 inf inf inf inf inf 2261.68 3480.875
10E+2 inf inf inf inf inf 2261.68 3480.875
10E+3 inf inf inf 43.722 inf 2261.68 3480.875
10E+4 inf inf 66.883 43.722 2.45E+13 2261.68 3480.875
10E+6 inf 301.453 50.356 43.722 6.03E+10 2261.68 3480.875

BN-14w57d12 1 10E+1 inf inf inf 101.915 inf 1.58E+10 3.04E+16
n:115 f:115 10E+2 inf inf inf 101.915 inf 1.58E+10 3.04E+16
k:2 s:8 10E+3 8.04E+04 inf 103.701 101.915 8.39E+04 1.58E+10 3.04E+16
w:45 10E+4 1417.997 1.36E+08 98.538 101.915 4.18E+04 1.58E+10 3.04E+16

10E+6 1417.997 1.36E+08 98.538 101.915 3.98E+04 1.58E+10 3.04E+16

5 10E+1 inf inf inf 98.305 inf 1.95E+08 4.85E+10
10E+2 inf inf inf 98.305 inf 1.95E+08 4.85E+10
10E+3 2.01E+05 inf 106.332 98.305 6.72E+06 1.95E+08 4.85E+10
10E+4 146.286 8.39E+04 97.311 98.305 8.64E+04 1.95E+08 4.85E+10
10E+6 146.286 8.39E+04 97.174 98.305 1.69E+04 1.95E+08 4.85E+10

10 10E+1 inf inf inf 94.669 inf 4.60E+06 2.65E+06
10E+2 inf inf inf 94.669 inf 4.60E+06 2.65E+06
10E+3 1.24E+05 inf 111.21 94.669 2.45E+11 4.60E+06 2.65E+06
10E+4 170.58 5250.491 98.417 94.669 1.27E+07 4.60E+06 2.65E+06
10E+6 170.58 5250.491 97.176 94.669 1.28E+06 4.60E+06 2.65E+06

15 10E+1 inf inf inf 93.452 inf 2.93E+05 2.85E+05
10E+2 inf inf inf 93.452 inf 2.93E+05 2.85E+05
10E+3 2.11E+05 inf 115.103 93.452 1.04E+16 2.93E+05 2.85E+05
10E+4 1510.737 1372.088 103.94 93.452 3.13E+11 2.93E+05 2.85E+05
10E+6 192.74 1372.088 97.454 93.452 1.09E+09 2.93E+05 2.85E+05

20 10E+1 inf inf inf inf inf inf inf
10E+2 inf inf inf inf inf inf inf
10E+3 inf inf inf 92.062 inf 6.45E+04 2.78E+04
10E+4 inf inf 116.813 92.062 1.92E+18 6.45E+04 2.78E+04
10E+6 inf 772.404 99.368 92.062 1.77E+15 6.45E+04 2.78E+04

Table 4.28: Upper Bounds from BN-14w42d6 and BN-14w57d12 Instances. The table shows the best
upper bound generated within the varying time bounds from 10 seconds to 100,000 seconds and i-bounds
from 1 to 20. n is the number of variables, f is the number of functions, k is the maximum domains size s
is the maximum scop e size, w is the constrained induced width, and i-bd is the i-bound.
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4.3.5 Summary

Given all the results tabulated above a clear picture emerges.

• JGD-EXP and WMBMM-EXP are overall the best performing algorithm.

• JGD-EXP outperformed WMBMM-EXP when they use a low i-bounds and are given

sufficient time (longer than 1,000 seconds in our experiments). Otherwise WMBMM-

EXP generated tighter upper bounds. (Namely, when given less than 1,000 seconds,

or for i-bounds larger than 10.)

• JGD-ID and WMBE-ID generated relatively good upper bounds when the problem

instances were easy. Their strength is that if given an i-bound higher than the induced-

width they generate the exact answer while JGD-EXP and WMBMM-EXP do not.

• The translation based approaches and MBE-ID didn’t generate good upper bounds in

most of the cases.
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4.4 Convergence Behavior for Iterative Algorithms

In this section, we report the convergence behavior of the iterative algorithms, JGD-ID,

WMBE-ID, JGD-EXP, and GDD-MI. Note that WMBE-ID and WMBM-EXP generate the

upper bound only once when they terminate. Therefore, we report the upper bound from

WMBE-ID and WMBMM-EXP when they terminate.

4.4.1 FH-MDP Domain

Figure 4.1 and 4.2 report upper bounds as a function of time at mdp8-28-3-6-4 and

mdp9-32-3-8-3 instances. The plots on the left hand side show the upper bounds from

all algorithms in log scale with varying i-bounds from 1 to 15. The plots on the right hand

side focus on the expected utility close to the best upper bounds in linear scale. JGD-ID

and GDD-MI showed slower speed of convergence especially when the i-bound is larger. The

results from WMBE-ID are tighter than the bounds from JGD-EXP and WMBMM-EXP as

was also shown in Table 4.12 and 4.13.

4.4.2 FH-POMDP Domain

Figure 4.3 and 4.4 report upper bounds at pomdp5-6-4-3-5-3 and pomdp10-12-7-3-8-4 in-

stances. We first see that the quality of upper bounds from JGD-EXP and WMBMM-EXP

are order of magnitude tighter than other algorithms, and WMBE-ID showed clear improve-

ments in the upper bounds given higher i-bounds. Comparing the convergence behavior, we

see that JGD-EXP and GDD-MI improved upper bounds smoothly over time, while JGD-

ID showed step-wise improvements. At pomdp5-6-4-3-5-3, we can observe that the upper

bounds from JGD-EXP is tighter than WBMMM-EXP after time bounds 1,000 seconds

when they were given i-bounds 1 or 5. As we increase i-bound to 10 and 15, WBMMM-EXP

produced tighter upper bound than JGD-EXP.
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4.4.3 RAND Domain

Figure 4.5 and 4.6 report upper bounds at rand-c50d1501 and rand-c70d21o1 instances. As

in the previous domains, we observe similar convergence behavior at both instances. Namely,

WBMMM-EXP terminated and generated the upper bound earlier than other algorithms,

and JGD-EXP converged to tighter i-bound in shorter time bounds than other iterative

algorithms JGD-ID and GDD-MI. Algorithm WMBE-ID improved the quality of upper

bounds when it was given higher i-bounds.

4.4.4 BN Domain

Figure 4.7 and 4.8 report upper bounds at BN-14w57d12 and BN-78-w24d6 instances. From

both instances, we observe the transition of the best performing algorithms due to increased

i-bounds. Namely, we see that the upper bounds from JGD-EXP is tighter than WBMMM-

EXP when they were given i-bounds 1 or 5. However, WBMMM-EXP started to generate

tighter upper bounds than JGD-EXP when it was given i-bound greater than 10.

4.4.5 Summary

In this section, we presented the convergence behavior of our bounding algorithms. Among

iterative algorithms, we see that algorithm JGD-EXP and WMBMM-EXP generated the

tightest upper bounds that are order of magnitude tighter than other algorithms at shorter

time bounds. Comparing JGD-ID and GDD-MI, We see that the JGD-ID showed step-

wise improvement behavior until convergence, when GDD-MI showed smoother curves. We

see that WMBE-ID greatly improved the upper bounds given higher i-bounds when other

iterative algorithms often generated worse upper bounds or minor improvements. As we also

observed in the tabular results earlier, WMBMM-EXP generated tighter upper bounds than

JGD-EXP with higher i-bounds or when both have time bounds shorter than 1,000 seconds.
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(a) mdp8-28-3-6-4 i=1 (b) mdp8-28-3-6-4 i=1

(c) mdp8-28-3-6-4 i=5 (d) mdp8-28-3-6-4 i=5

(e) mdp8-28-3-6-4 i=10 (f) mdp8-28-3-6-4 i=10

(g) mdp8-28-3-6-4 i=15 (h) mdp8-28-3-6-4 i=15

Figure 4.1: Convergence Behavior over Varying i-bounds at mdp8-28-3-6-4. The x-axis of is the time in
log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) mdp9-32-3-8-3 i=1 (b) mdp9-32-3-8-3 i=1

(c) mdp9-32-3-8-3 i=5 (d) mdp9-32-3-8-3 i=5

(e) mdp9-32-3-8-3 i=10 (f) mdp9-32-3-8-3 i=10

(g) mdp9-32-3-8-3 i=15 (h) mdp9-32-3-8-3 i=15

Figure 4.2: Convergence Behavior over Varying i-bounds at mdp9-32-3-8-3. The x-axis of is the time in
log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) pomdp5-6-4-3-5-3 i=1 (b) pomdp5-6-4-3-5-3 i=1

(c) pomdp5-6-4-3-5-3 i=5 (d) pomdp5-6-4-3-5-3 i=5

(e) pomdp5-6-4-3-5-3 i=10 (f) pomdp5-6-4-3-5-3 i=10

(g) pomdp5-6-4-3-5-3 i=15 (h) pomdp5-6-4-3-5-3 i=15

Figure 4.3: Convergence Behavior over Varying i-bounds at pomdp5-6-4-3-5-3. The x-axis of is the time
in log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) pomdp10-12-7-3-8-4 i=1 (b) pomdp10-12-7-3-8-4 i=1

(c) pomdp10-12-7-3-8-4 i=5 (d) pomdp10-12-7-3-8-4 i=5

(e) pomdp10-12-7-3-8-4 i=10 (f) pomdp10-12-7-3-8-4 i=10

(g) pomdp10-12-7-3-8-4 i=15 (h) pomdp10-12-7-3-8-4 i=15

Figure 4.4: Convergence Behavior over Varying i-bounds at pomdp10-12-7-3-8-4. The x-axis of is the
time in log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right
hand side shows the expected utility in the linear scale in a focused region.

141



(a) rand-c50d15o1-03 i=1 (b) rand-c50d15o1-03 i=1

(c) rand-c50d15o1-03 i=5 (d) rand-c50d15o1-03 i=5

(e) rand-c50d15o1-03 i=10 (f) rand-c50d15o1-03 i=10

(g) rand-c50d15o1-03 i=15 (h) rand-c50d15o1-03 i=15

Figure 4.5: Convergence Behavior over Varying i-bounds at rand-c50d15o1-03. The x-axis of is the time
in log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) rand-c70d21o1-01 i=1 (b) rand-c70d21o1-01 i=1

(c) rand-c70d21o1-01 i=5 (d) rand-c70d21o1-01 i=5

(e) rand-c70d21o1-01 i=10 (f) rand-c70d21o1-01 i=10

(g) rand-c70d21o1-01 i=15 (h) rand-c70d21o1-01 i=15

Figure 4.6: Convergence Behavior over Varying i-bounds at rand-c70d21o1-01. The x-axis of is the time
in log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) BN-14w57d12 i=1 (b) BN-14w57d12 i=1

(c) BN-14w57d12 i=5 (d) BN-14w57d12 i=5

(e) BN-14w57d12 i=10 (f) BN-14w57d12 i=10

(g) BN-14w57d12 i=15 (h) BN-14w57d12 i=15

Figure 4.7: Convergence Behavior over Varying i-bounds at BN-14w57d12. The x-axis of is the time in
log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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(a) BN-78-w24d6 i=1 (b) BN-78-w24d6 i=1

(c) BN-78-w24d6 i=5 (d) BN-78-w24d6 i=5

(e) BN-78-w24d6 i=10 (f) BN-78-w24d6 i=10

(g) BN-78-w24d6 i=15 (h) BN-78-w24d6 i=15

Figure 4.8: Convergence Behavior over Varying i-bounds at BN-78-w24d6. The x-axis of is the time in
log scale. Figures on the left hand side shows the expected utility in the log scale, and on the right hand
side shows the expected utility in the linear scale in a focused region.
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Domain i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

All 1 10E+1 0.017 0.0 0.086 0.708 0.011 0.005 0.002
n:75.6 f:87.1 10E+2 0.048 0.006 0.504 0.708 0.055 0.005 0.002
k:2.4 s:5.9 10E+3 0.112 0.059 0.67 0.708 0.105 0.005 0.002

w:25.9 10E+4 0.584 0.096 0.73 0.708 0.195 0.005 0.002
10E+6 0.663 0.181 0.786 0.708 0.272 0.005 0.002

5 10E+1 0.045 0.0 0.019 0.753 0.01 0.022 0.066
10E+2 0.078 0.065 0.457 0.753 0.036 0.022 0.066
10E+3 0.175 0.152 0.686 0.753 0.095 0.022 0.066
10E+4 0.449 0.262 0.759 0.753 0.176 0.022 0.066
10E+6 0.539 0.305 0.808 0.753 0.288 0.022 0.066

10 10E+1 0.062 0.0 0.034 0.818 0.008 0.087 0.2
10E+2 0.151 0.099 0.449 0.818 0.027 0.087 0.2
10E+3 0.252 0.284 0.67 0.818 0.071 0.087 0.2
10E+4 0.46 0.441 0.749 0.818 0.108 0.087 0.2
10E+6 0.468 0.486 0.816 0.818 0.226 0.087 0.2

15 10E+1 0.062 0.025 0.034 0.798 0.007 0.184 0.33
10E+2 0.147 0.099 0.227 0.861 0.025 0.184 0.33
10E+3 0.266 0.283 0.574 0.861 0.055 0.184 0.33
10E+4 0.433 0.489 0.682 0.861 0.083 0.184 0.33
10E+6 0.525 0.631 0.77 0.861 0.106 0.184 0.33

20 10E+1 0.062 0.0 0.019 0.557 0.005 0.271 0.478
10E+2 0.184 0.124 0.137 0.829 0.02 0.271 0.478
10E+3 0.262 0.249 0.335 0.879 0.056 0.275 0.478
10E+4 0.363 0.445 0.568 0.904 0.072 0.275 0.478
10E+6 0.479 0.705 0.614 0.904 0.075 0.275 0.478

Table 4.29: Average Quality of Upper Bounds Over All Domains. Table shows the average quality (closer
to 1.0, higher the quality) of each algorithm at varying i-bounds and time bounds. i-bd is the i-bound, time
is the time bound in seconds, n is the average number of variables, f is the average number of functions, k
is the average of the maximum domains size, s is the average of the maximum scope size, w is the average
of the constrained induced width.

4.5 Average Quality of Upper Bounds

We next summarize the performance of our upper bounding schemes by reporting average

quality at varying time bounds and i-bounds. Namely, we compute
1

Ndomain

∑Ndomain
k=1

ub∗k
ubk

,

where Ndomain is the total number of instances in a domain, ub∗k is the best known upper

bound of the k-th problem instance, and ubk is the upper bound of the k-th problem instance

generated by each algorithm.

Table 4.29 shows the average quality of upper bounds over all domains. Consistent with our

earlier tables and plots we see that JGD-EXP was the best performing algorithm when it was

given i-bound 1 or 5 and time bound longer than 1,000 seconds. When allowed higher memory
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resources, that correspond to higher i-bounds WMBMM-EXP generated superior bounds

than others. For i-bound=10, both JGD-EXP and WMBMM-EXP computed comparable

upper bounds with similar relative distance from the average quality, 0.816 from JGD-EXP

and 0.818 from WMBMM-EXP. Among all possible combinations of i-bounds and time

bounds, algorithm WMBMM-EXP with i-bound 20 and time bound 10,000 seconds was

the best performing configuration, and the same algorithm with i-bound 15 and 10 are the

second and third best configurations. Then, JGD-EXP with i-bound 10, 5, and 1 with the

time bound 1,000,000 seconds follow.

Table 4.30 shows the average quality in FH-MDP and FH-POMDP domains. In FH-MDP domain,

we see a similar trend, but the best configuration was WMBE-ID with i-bound 15 and a time

bound 1,000,000 seconds. We clearly observe that JGD-EXP was the overall best in terms

of average quality of upper bounds when we limit the i-bound to 1 and 5, and WMBMM-

EXP gradually takes over as we allow higher i-bounds. We see the same trend in FH-POMDP

domain. We presents average quality of upper bounds in RAND and BN domains in Table 4.31,

which shows the same trends.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

fh-mdp 1 10E+1 0.041 0.0 0.048 0.583 0.004 0.0 0.001
n:105.7 f:134.1 10E+2 0.084 0.0 0.122 0.583 0.048 0.0 0.001

k:3.1 s:7.1 10E+3 0.155 0.152 0.473 0.583 0.137 0.0 0.001
w:25.9 10E+4 0.463 0.28 0.631 0.583 0.465 0.0 0.001

10E+6 0.779 0.619 0.841 0.583 0.77 0.0 0.001

5 10E+1 0.086 0.0 0.0 0.645 0.0 0.0 0.1
10E+2 0.1 0.1 0.113 0.645 0.016 0.0 0.1
10E+3 0.101 0.185 0.485 0.645 0.113 0.0 0.1
10E+4 0.154 0.562 0.659 0.645 0.321 0.0 0.1
10E+6 0.507 0.734 0.841 0.645 0.723 0.0 0.1

10 10E+1 0.086 0.0 0.0 0.738 0.0 0.0 0.2
10E+2 0.1 0.1 0.073 0.738 0.006 0.0 0.2
10E+3 0.196 0.2 0.453 0.738 0.074 0.0 0.2
10E+4 0.196 0.609 0.613 0.738 0.16 0.0 0.2
10E+6 0.208 0.79 0.842 0.738 0.606 0.0 0.2

15 10E+1 0.086 0.1 0.0 0.734 0.0 0.001 0.4
10E+2 0.1 0.1 0.07 0.81 0.003 0.001 0.4
10E+3 0.196 0.2 0.26 0.81 0.041 0.001 0.4
10E+4 0.295 0.394 0.458 0.81 0.088 0.001 0.4
10E+6 0.457 0.959 0.691 0.81 0.182 0.001 0.4

20 10E+1 0.086 0.0 0.0 0.387 0.0 0.002 0.4
10E+2 0.1 0.1 0.07 0.773 0.004 0.002 0.4
10E+3 0.196 0.2 0.195 0.873 0.061 0.002 0.4
10E+4 0.295 0.3 0.313 0.873 0.079 0.002 0.4
10E+6 0.394 0.8 0.361 0.873 0.079 0.002 0.4

fh-pomdp 1 10E+1 0.01 0.0 0.153 0.606 0.014 0.003 0.002
n:55.9 f:73.5 10E+2 0.024 0.0 0.302 0.606 0.028 0.003 0.002
k:2.4 s:5.5 10E+3 0.082 0.012 0.551 0.606 0.033 0.003 0.002

w:28.0 10E+4 0.394 0.015 0.611 0.606 0.035 0.003 0.002
10E+6 0.395 0.015 0.624 0.606 0.035 0.003 0.002

5 10E+1 0.016 0.0 0.076 0.69 0.026 0.013 0.045
10E+2 0.076 0.063 0.299 0.69 0.056 0.013 0.045
10E+3 0.211 0.095 0.611 0.69 0.073 0.013 0.045
10E+4 0.328 0.097 0.682 0.69 0.084 0.013 0.045
10E+6 0.328 0.097 0.697 0.69 0.086 0.013 0.045

10 10E+1 0.082 0.0 0.075 0.82 0.022 0.082 0.225
10E+2 0.224 0.2 0.331 0.82 0.055 0.082 0.225
10E+3 0.284 0.262 0.622 0.82 0.082 0.082 0.225
10E+4 0.385 0.262 0.703 0.82 0.093 0.082 0.225
10E+6 0.387 0.263 0.738 0.82 0.096 0.082 0.225

15 10E+1 0.082 0.0 0.075 0.723 0.018 0.229 0.289
10E+2 0.237 0.2 0.287 0.9 0.051 0.229 0.289
10E+3 0.325 0.318 0.478 0.9 0.08 0.229 0.289
10E+4 0.384 0.36 0.618 0.9 0.089 0.229 0.289
10E+6 0.384 0.36 0.713 0.9 0.097 0.229 0.289

20 10E+1 0.082 0.0 0.075 0.488 0.015 0.237 0.427
10E+2 0.289 0.2 0.193 0.788 0.045 0.237 0.427
10E+3 0.396 0.3 0.314 0.888 0.078 0.252 0.427
10E+4 0.471 0.4 0.396 0.988 0.083 0.252 0.427
10E+6 0.471 0.468 0.427 0.988 0.085 0.252 0.427

Table 4.30: Average Quality of Upper Bounds in FH-MDP and FH-POMDP Domains. Table shows the
average quality (closer to 1.0, higher the quality) of each algorithm at varying i-bounds and time bounds.
i-bd is the i-bound, time is the time bound in seconds, n is the average number of variables, f is the average
number of functions, k is the average of the maximum domains size, s is the average of the maximum scope
size, w is the average of the constrained induced width.
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Instance i-bd time JGD WMBE JGD WMBMM GDD WMBMM MBE
(sec) -ID -ID -EXP -EXP -MI -MMAP -ID

rand 1 10E+1 0.016 0.0 0.143 0.821 0.025 0.01 0.004
n:56.2 f:56.2 10E+2 0.048 0.025 0.82 0.821 0.064 0.01 0.004
k:2.0 s:3.0 10E+3 0.105 0.051 0.823 0.821 0.093 0.01 0.004

w:20.4 10E+4 0.774 0.051 0.823 0.821 0.105 0.01 0.004
10E+6 0.775 0.051 0.823 0.821 0.106 0.01 0.004

5 10E+1 0.08 0.0 0.0 0.826 0.012 0.057 0.117
10E+2 0.121 0.096 0.808 0.826 0.057 0.057 0.117
10E+3 0.319 0.273 0.817 0.826 0.114 0.057 0.117
10E+4 0.711 0.273 0.819 0.826 0.136 0.057 0.117
10E+6 0.713 0.273 0.819 0.826 0.148 0.057 0.117

10 10E+1 0.079 0.0 0.062 0.828 0.01 0.201 0.325
10E+2 0.281 0.096 0.803 0.828 0.045 0.201 0.325
10E+3 0.413 0.443 0.81 0.828 0.115 0.201 0.325
10E+4 0.733 0.582 0.812 0.828 0.148 0.201 0.325
10E+6 0.747 0.582 0.812 0.828 0.152 0.201 0.325

15 10E+1 0.079 0.0 0.062 0.829 0.01 0.336 0.461
10E+2 0.252 0.096 0.437 0.829 0.045 0.336 0.461
10E+3 0.487 0.462 0.807 0.829 0.098 0.336 0.461
10E+4 0.637 0.692 0.811 0.829 0.137 0.336 0.461
10E+6 0.764 0.692 0.811 0.829 0.123 0.336 0.461

20 10E+1 0.079 0.0 0.0 0.729 0.005 0.51 0.704
10E+2 0.347 0.196 0.284 0.829 0.03 0.512 0.704
10E+3 0.455 0.494 0.633 0.829 0.084 0.512 0.704
10E+4 0.548 0.781 0.808 0.829 0.124 0.512 0.704
10E+6 0.705 0.896 0.811 0.829 0.124 0.512 0.704

BN 1 10E+1 0.0 0.0 0.0 0.822 0.0 0.008 0.0
n:84.6 f:84.6 10E+2 0.037 0.0 0.771 0.822 0.082 0.008 0.0
k:2.0 s:8.0 10E+3 0.107 0.021 0.835 0.822 0.155 0.008 0.0

w:29.2 10E+4 0.704 0.038 0.854 0.822 0.176 0.008 0.0
10E+6 0.704 0.038 0.854 0.822 0.177 0.008 0.0

5 10E+1 0.0 0.0 0.0 0.852 0.0 0.019 0.003
10E+2 0.015 0.0 0.607 0.852 0.015 0.019 0.003
10E+3 0.07 0.053 0.83 0.852 0.079 0.019 0.003
10E+4 0.605 0.116 0.875 0.852 0.162 0.019 0.003
10E+6 0.607 0.116 0.875 0.852 0.196 0.019 0.003

10 10E+1 0.0 0.0 0.0 0.886 0.0 0.066 0.052
10E+2 0.0 0.0 0.59 0.886 0.001 0.066 0.052
10E+3 0.115 0.232 0.796 0.886 0.012 0.066 0.052
10E+4 0.524 0.31 0.868 0.886 0.032 0.066 0.052
10E+6 0.53 0.31 0.873 0.886 0.053 0.066 0.052

15 10E+1 0.0 0.0 0.0 0.905 0.0 0.172 0.169
10E+2 0.0 0.0 0.115 0.905 0.0 0.172 0.169
10E+3 0.056 0.154 0.751 0.905 0.001 0.172 0.169
10E+4 0.417 0.512 0.84 0.905 0.017 0.172 0.169
10E+6 0.494 0.512 0.865 0.905 0.023 0.172 0.169

20 10E+1 0.0 0.0 0.0 0.625 0.0 0.335 0.38
10E+2 0.0 0.0 0.0 0.925 0.0 0.335 0.381
10E+3 0.0 0.0 0.198 0.925 0.0 0.335 0.381
10E+4 0.14 0.3 0.754 0.925 0.002 0.335 0.381
10E+6 0.348 0.655 0.858 0.925 0.014 0.335 0.381

Table 4.31: Average Quality of Upper Bounds in RAND and BN Domains. Table shows the average
quality (closer to 1.0, higher the quality) of each algorithm at varying i-bounds and time bounds. i-bd is the
i-bound, time is the time bound in seconds, n is the average number of variables, f is the average number of
functions, k is the average of the maximum domains size, s is the average of the maximum scope size, w is
the average of the constrained induced width.
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4.6 Case Study on SysAdmin Planning Domain

We next present results from a case study on bounding the MEU task that solves probabilistic

planning domain problems. The problem domain we experimented is SysAdmin MDP and

POMDP instances introduced by Guestrin et al. [2003].

The Sysadmin domain asks for finding the MEU and the optimal policy of the problem is

as follows. A system administrator maintains a network of s computers. In this network,

each machine is is connected to a subset of other machines. The network topology defines

a Sysadmin problem instance. we model the behavior of each machine as either working

or not working by binary random variables Xi, where i ranges over all the machines. The

system administrator receives a certain amount of reward for each working machine. The

task of the system administrator is to decide which machine to reboot in order to maximize

the total sum of rewards. If a machine is rebooted, it will be working with a high probability

at the next time step. Every machine has a small probability of failure at each time step.

However, if a neighboring machine fails, this probability increases dramatically. These failure

probabilities define the transition probability P (Xt+1|Xt, a), where Xt is the set of binary

random variables at time step t, a is the choice of machine to reboot, andXt+1 is the resulting

state of the machines in the next time step.

The SysAdmin problem domain was also used in the ICAPS 2011 international planning

competition [Sanner et al., 2011]. These probabilistic planning problems are defined in

Relational Dynamic Influence Diagram (RDDL) language [Sanner, 2010]. We translated the

problem into influence diagrams to allow applying our bounding algorithm.
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4.6.1 Experiment Setting

We experimented with 10 SysAdmin MDP and POMDP instances that are used in the ICAPS

2011 international planning competition [Sanner et al., 2011]. Since the original SysAdmin

domain by Guestrin et al. [2003] defines finite horizon MDP instances, the finite horizon

POMDP instances are generated by modifying a SysAdmin MDP domain by introducing

additional variables to capture the observation state of the servers.

Translation to Influence Diagrams We can model finite horizon MDP/POMDP instances

in influence diagrams given a fixed time horizon. In our case study, we varied the time

horizon from 3 to 10 steps for all problem instances and altogether solved 80 instances in

SysAdmin-MDP and SysAdmin-POMDP instances.

Algorithms In Sections 4.5, we concluded that WMBMM-EXP with i-bound 20 is the

overall best algorithm that can quickly generate high quality upper bounds compared with

other direct decomposition bounding algorithms. Therefore, we used WBMMM-EXP to

generate the upper bounds of the MEU for all SysAdmin the translated instances. We

evaluated the sampling based online planning algorithms SOGBOFA [Cui and Khardon,

2016] and SNAP [Cui and Khardon, 2019] for both SysAdmin-MDP and SysAdmin-POMDP.

For both online planners, we ran each problem instance 40 times and computed the average

of the accumulated rewards over 40 runs. We gave 2 second time limit for each stage of

decision making, in each run, for both MDP and POMDP using the same parameter used in

[Cui and Khardon, 2019]. Note that this case study does not attempt to solve online planning

problems as done by online planning algorithms, which have different objectives. The upper

bounds generated by algorithm WMBMM-EXP can be viewed as a heuristic upper bounds

of the finite horizon offline planning problems. However, the sampling-based online planners

compute Monte-Carlo estimates of the lower bounds of the MEU that can be generated by

the optimal online-policy functions.
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Performance Measure We measure the performance of the upper bounds (UB) computed

by algorithm WMBMM-EXP by the gap between the lower bounds (LB) computed by

the online planners, namely, gap = 1 − LB
UB . The closer the value to 0.0, the better the

performance. In the extreme, if both lower bound LB and upper bound UB are the same

(e.g., because we found the optimal MEU), the gap is zero. On the other hand, if the upper

bound UB is infinity or the lower bound LB is zero, the gap is one.

4.6.2 Case Study Results

Tables 4.32 and 4.33 report the results of evaluating WMBMM-EXP against the online

planner SOGBOFA [Cui and Khardon, 2016] for solving factored MDP problems. We see that

the problem instances translated to IDs have 79 variables and the constrained induced is 24

for the mdp1-s10-t3 instance, which is the easiest one in the benchmark. The total number

of variables and the constrained induced width are 1,100 and 113 at for the most challenging

instance mdp10-s50-t10. We see that the induced width increases as the SysAdmin-MDP

instances introduce more variables by modeling a large number of machines, yet the increased

time horizon doesn’t influence the constrained induced width. We used the online planner

results as a proxy for the MEU. We observe that the gap between the upper and lower

bounds ranges between 4 percent and 34 percent. for the same instance, as the increased

time horizon induced larger gaps.

Table 4.34 and 4.35 report the results of evaluating WMBMM-EXP against the online

planner SNAP [Cui and Khardon, 2019] for solving factored POMDP problems. Solving

a POMDP domain is considered more difficult than solving MDP due to the partial observ-

ability. We can see that the problem statistics translated to IDs reflect such difficulties in

the constrained induced width, where the value ranges between 60 to 1,000. Although both

SysAdmin-MDP and SysAdmin-POMDP model the same number of machines, SysAdmin-POMDP

problem instances have a larger number of variables, ranging between 119 to 1620.
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Instance c d p u k s w utime ub ltime lb gap
(sec) wmbmm (sec) sogbofa (ub−lb

ub )

mdp1-s10-t3 49 30 49 60 3 6 24 23 30.021 240 28.488 5%
mdp1-s10-t4 62 40 62 80 3 6 24 27 39.552 320 37.775 4%
mdp1-s10-t5 75 50 75 100 3 6 24 42 48.764 400 46.106 5%
mdp1-s10-t6 88 60 88 120 3 6 25 45 58.783 480 55.856 5%
mdp1-s10-t7 101 70 101 140 3 6 24 48 69.343 560 64.625 7%
mdp1-s10-t8 114 80 114 160 3 6 23 65 78.575 640 74.138 6%
mdp1-s10-t9 127 90 127 180 3 6 25 56 89.386 720 81.856 8%
mdp1-s10-t10 140 100 140 200 3 6 23 73 97.365 800 90.806 7%

mdp2-s10-t3 49 30 49 60 3 7 25 29 30.489 240 28.513 6%
mdp2-s10-t4 62 40 62 80 3 7 26 38 39.947 320 37.650 6%
mdp2-s10-t5 75 50 75 100 3 7 27 49 50.541 400 46.063 9%
mdp2-s10-t6 88 60 88 120 3 7 26 51 60.090 480 54.938 9%
mdp2-s10-t7 101 70 101 140 3 7 26 67 69.737 560 63.506 9%
mdp2-s10-t8 114 80 114 160 3 7 27 79 80.100 640 70.919 11%
mdp2-s10-t9 127 90 127 180 3 7 26 89 89.539 720 80.306 10%
mdp2-s10-t10 140 100 140 200 3 7 26 92 100.190 800 87.000 13%

mdp3-s20-t3 92 60 92 120 3 8 44 89 62.963 240 57.388 9%
mdp3-s20-t4 116 80 116 160 3 8 45 93 84.298 320 75.275 11%
mdp3-s20-t5 140 100 140 200 3 8 44 125 105.231 400 91.450 13%
mdp3-s20-t6 164 120 164 240 3 8 44 150 126.496 480 109.213 14%
mdp3-s20-t7 188 140 188 280 3 8 45 168 145.925 560 123.306 16%
mdp3-s20-t8 212 160 212 320 3 8 45 204 168.171 640 139.856 17%
mdp3-s20-t9 236 180 236 360 3 8 45 255 188.524 720 157.019 17%
mdp3-s20-t10 260 200 260 400 3 8 45 225 210.388 800 168.225 20%

mdp4-s20-t3 92 60 92 120 3 10 50 55 63.812 240 57.313 10%
mdp4-s20-t4 116 80 116 160 3 10 46 84 83.977 320 75.375 10%
mdp4-s20-t5 140 100 140 200 3 10 46 121 105.736 400 91.231 14%
mdp4-s20-t6 164 120 164 240 3 10 47 152 126.122 480 108.475 14%
mdp4-s20-t7 188 140 188 280 3 10 47 211 147.848 560 122.369 17%
mdp4-s20-t8 212 160 212 320 3 10 47 175 167.536 640 138.169 18%
mdp4-s20-t9 236 180 236 360 3 10 47 228 190.204 720 151.563 20%
mdp4-s20-t10 260 200 260 400 3 10 47 247 211.048 800 167.750 21%

mdp5-s30-t3 138 90 138 180 3 7 67 115 96.756 240 86.069 11%
mdp5-s30-t4 174 120 174 240 3 7 67 128 130.025 320 110.956 15%
mdp5-s30-t5 210 150 210 300 3 7 67 196 160.059 400 134.563 16%
mdp5-s30-t6 246 180 246 360 3 7 67 211 193.490 480 158.538 18%
mdp5-s30-t7 282 210 282 420 3 7 67 256 226.253 560 181.450 20%
mdp5-s30-t8 318 240 318 480 3 7 67 334 256.302 640 205.013 20%
mdp5-s30-t9 354 270 354 540 3 7 67 217 289.938 720 225.119 22%
mdp5-s30-t10 390 300 390 600 3 7 67 417 322.090 800 240.981 25%

Table 4.32: Case Study Results from SysAdmin-MDP Domains 1. Table shows the upper bound gener-
ated by algorithm WMBMM-EXP(20), and the lower bound generated by online planner SOGBOFA [Cui
and Khardon, 2016]. c is the number of chance variables, d is the number of decision variables, p is the
number of probability functions, u is the number of utility functions, k is the maximum domain size, s is the
maximum scope size, w is the constrained induced width, utime is the time in seconds for generating upper
bounds, and ltime is the time in seconds for generating lower bounds.
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Instance c d p u k s w utime ub ltime lb gap
(sec) wmbmm (sec) sogbofa (ub−lb

ub )

mdp6-s30-t3 135 90 135 180 3 10 67 105 97.103 240 85.919 12%
mdp6-s30-t4 170 120 170 240 3 10 67 136 130.633 320 110.513 15%
mdp6-s30-t5 205 150 205 300 3 10 67 105 163.202 400 134.075 18%
mdp6-s30-t6 240 180 240 360 3 10 68 184 196.229 480 156.488 20%
mdp6-s30-t7 275 210 275 420 3 10 68 242 228.402 560 179.719 21%
mdp6-s30-t8 310 240 310 480 3 10 68 291 261.418 640 202.200 23%
mdp6-s30-t9 345 270 345 540 3 10 68 304 294.124 720 221.438 25%
mdp6-s30-t10 380 300 380 600 3 10 68 361 328.251 800 239.000 27%

mdp7-s40-t3 181 120 181 240 3 8 87 134 128.957 240 113.619 12%
mdp7-s40-t4 228 160 228 320 3 8 88 179 172.620 320 147.944 14%
mdp7-s40-t5 275 200 275 400 3 8 88 213 215.441 400 180.113 16%
mdp7-s40-t6 322 240 322 480 3 8 88 262 260.180 480 209.581 19%
mdp7-s40-t7 369 280 369 560 3 8 88 293 303.037 560 238.450 21%
mdp7-s40-t8 416 320 416 640 3 8 88 367 345.449 640 265.875 23%
mdp7-s40-t9 463 360 463 720 3 8 88 238 389.022 720 287.938 26%
mdp7-s40-t10 510 400 510 800 3 8 88 273 433.281 800 312.813 28%

mdp8-s40-t3 178 120 178 240 3 9 90 183 130.898 240 113.594 13%
mdp8-s40-t4 224 160 224 320 3 9 91 236 174.219 320 146.619 16%
mdp8-s40-t5 270 200 270 400 3 9 91 276 218.239 400 178.906 18%
mdp8-s40-t6 316 240 316 480 3 9 91 354 262.556 480 207.025 21%
mdp8-s40-t7 362 280 362 560 3 9 91 372 307.060 560 234.281 24%
mdp8-s40-t8 408 320 408 640 3 9 91 475 352.263 640 256.281 27%
mdp8-s40-t9 454 360 454 720 3 9 91 342 396.280 720 282.231 29%
mdp8-s40-t10 500 400 500 800 3 9 92 622 439.447 800 300.056 32%

mdp9-s50-t3 227 150 227 300 3 8 107 217 161.292 240 142.931 11%
mdp9-s50-t4 286 200 286 400 3 8 108 241 218.210 320 184.250 16%
mdp9-s50-t5 345 250 345 500 3 8 109 298 274.907 400 222.925 19%
mdp9-s50-t6 404 300 404 600 3 8 109 353 329.248 480 261.319 21%
mdp9-s50-t7 463 350 463 700 3 8 109 49406 383.290 560 296.269 23%
mdp9-s50-t8 522 400 522 800 3 8 109 530 438.786 640 328.550 25%
mdp9-s50-t9 581 450 581 900 3 8 108 370 496.466 720 355.263 28%
mdp9-s50-t10 640 500 640 1000 3 8 109 129 547.757 800 385.263 30%

mdp10-s50-t3 218 150 218 300 3 11 112 149 162.368 240 142.731 12%
mdp10-s50-t4 274 200 274 400 3 11 112 184 217.515 320 183.650 16%
mdp10-s50-t5 330 250 330 500 3 11 113 257 273.332 400 221.450 19%
mdp10-s50-t6 386 300 386 600 3 11 113 19741 327.268 480 257.394 21%
mdp10-s50-t7 442 350 442 700 3 11 113 28013 383.312 560 291.988 24%
mdp10-s50-t8 498 400 498 800 3 11 113 41748 439.826 640 316.600 28%
mdp10-s50-t9 554 450 554 900 3 11 113 34739 494.662 720 345.844 30%
mdp10-s50-t10 610 500 610 1000 3 11 113 58270 549.867 800 364.569 34%

Table 4.33: Case Study Results from SysAdmin-MDP Domains 2. Table shows the upper bound gener-
ated by algorithm WMBMM-EXP(20), and the lower bound generated by online planner SOGBOFA [Cui
and Khardon, 2016]. c is the number of chance variables, d is the number of decision variables, p is the
number of probability functions, u is the number of utility functions, k is the maximum domain size, s is the
maximum scope size, w is the constrained induced width, utime is the time in seconds for generating upper
bounds, and ltime is the time in seconds for generating lower bounds.
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Instance c d p u k s w utime ub ltime lb gap
(sec) wmbmm (sec) snap (ub−lb

ub )

pomdp1-s10-t3 79 30 79 60 3 6 140 25 34.527 240 28.300 18%
pomdp1-s10-t4 102 40 102 80 3 6 160 58 47.723 320 37.125 22%
pomdp1-s10-t5 125 50 125 100 3 6 180 107 61.946 400 46.375 25%
pomdp1-s10-t6 148 60 148 120 3 6 200 168 74.433 480 55.175 26%
pomdp1-s10-t7 171 70 171 140 3 6 60 221 88.583 560 63.125 29%
pomdp1-s10-t8 194 80 194 160 3 6 80 293 104.376 640 71.000 32%
pomdp1-s10-t9 217 90 217 180 3 6 100 439 113.964 720 81.575 28%
pomdp1-s10-t10 240 100 240 200 3 6 120 680 127.463 800 90.200 29%

pomdp2-s10-t3 79 30 79 60 3 7 140 39 34.858 240 28.625 18%
pomdp2-s10-t4 102 40 102 80 3 7 160 64 48.901 320 37.600 23%
pomdp2-s10-t5 125 50 125 100 3 7 180 123 62.902 400 46.300 26%
pomdp2-s10-t6 148 60 148 120 3 7 401 180 77.965 480 55.850 28%
pomdp2-s10-t7 171 70 171 140 3 7 120 289 92.126 560 63.625 31%
pomdp2-s10-t8 194 80 194 160 3 7 160 390 105.696 640 71.725 32%
pomdp2-s10-t9 217 90 217 180 3 7 200 541 119.560 720 81.250 32%
pomdp2-s10-t10 240 100 240 200 3 7 120 716 135.210 800 89.250 34%

pomdp3-s20-t3 155 60 155 120 3 7 281 196 68.619 240 57.375 16%
pomdp3-s20-t4 200 80 200 160 3 7 320 335 96.697 320 74.025 23%
pomdp3-s20-t5 245 100 245 200 3 7 360 1205 124.742 400 92.125 26%
pomdp3-s20-t6 290 120 290 240 3 7 400 2104 152.390 480 107.650 29%
pomdp3-s20-t7 335 140 335 280 3 7 120 2372 176.213 560 122.075 31%
pomdp3-s20-t8 380 160 380 320 3 7 160 3516 204.288 640 137.025 33%
pomdp3-s20-t9 425 180 425 360 3 7 200 9539 231.791 720 151.500 35%
pomdp3-s20-t10 470 200 470 400 3 7 240 7900 256.678 800 168.725 34%

pomdp4-s20-t3 152 60 152 120 3 8 280 274 72.953 240 56.675 22%
pomdp4-s20-t4 196 80 196 160 3 8 320 603 101.970 320 74.625 27%
pomdp4-s20-t5 240 100 240 200 3 8 360 1096 131.511 400 90.375 31%
pomdp4-s20-t6 284 120 284 240 3 8 601 2410 161.957 480 108.750 33%
pomdp4-s20-t7 328 140 328 280 3 8 180 3223 191.321 560 122.850 36%
pomdp4-s20-t8 372 160 372 320 3 8 241 4170 219.081 640 138.550 37%
pomdp4-s20-t9 416 180 416 360 3 8 301 5662 253.065 720 152.625 40%
pomdp4-s20-t10 460 200 460 400 3 8 240 7502 280.402 800 164.978 41%

pomdp5-s30-t3 225 90 225 180 3 10 421 947 106.395 240 85.900 19%
pomdp5-s30-t4 290 120 290 240 3 10 481 2388 144.423 320 111.425 23%
pomdp5-s30-t5 355 150 355 300 3 10 541 2857 185.908 400 136.050 27%
pomdp5-s30-t6 420 180 420 360 3 10 600 6992 229.701 480 159.750 30%
pomdp5-s30-t7 485 210 485 420 3 10 180 10074 273.717 560 182.975 33%
pomdp5-s30-t8 550 240 550 480 3 10 240 14616 311.690 640 199.825 36%
pomdp5-s30-t9 615 270 615 540 3 10 300 33306 354.370 720 221.150 38%
pomdp5-s30-t10 680 300 680 600 3 10 361 34181 395.413 800 235.050 41%

Table 4.34: Case Study Results from SysAdmin-MDP Domains 1. Table shows the upper bound gen-
erated by algorithm WMBMM-EXP(20), and the lower bound generated by online planner SNAP [Cui and
Khardon, 2019]. c is the number of chance variables, d is the number of decision variables, p is the number of
probability functions, u is the number of utility functions, k is the maximum domain size, s is the maximum
scope size, w is the constrained induced width, utime is the time in seconds for generating upper bounds,
and ltime is the time in seconds for generating lower bounds.
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Instance c d p u k s w utime ub ltime lb gap
(sec) wmbmm (sec) snap (ub−lb

ub )

pomdp6-s30-t3 225 90 225 180 3 9 420 1297 110.580 240 85.475 23%
pomdp6-s30-t4 290 120 290 240 3 9 480 1820 155.242 320 110.550 29%
pomdp6-s30-t5 355 150 355 300 3 9 540 5622 198.051 400 136.350 31%
pomdp6-s30-t6 420 180 420 360 3 9 801 7690 244.680 480 156.625 36%
pomdp6-s30-t7 485 210 485 420 3 9 240 13814 288.301 560 178.975 38%
pomdp6-s30-t8 550 240 550 480 3 9 320 18621 331.830 640 197.100 41%
pomdp6-s30-t9 615 270 615 540 3 9 400 25551 382.746 720 214.725 44%
pomdp6-s30-t10 680 300 680 600 3 9 360 44681 420.173 800 229.125 45%

pomdp7-s40-t3 301 120 301 240 3 8 561 2122 137.679 240 114.125 17%
pomdp7-s40-t4 388 160 388 320 3 8 640 6278 195.345 320 147.500 24%
pomdp7-s40-t5 475 200 475 400 3 8 721 10556 247.624 400 180.625 27%
pomdp7-s40-t6 562 240 562 480 3 8 800 20195 304.780 480 208.225 32%
pomdp7-s40-t7 649 280 649 560 3 8 240 25459 361.472 560 235.250 35%
pomdp7-s40-t8 736 320 736 640 3 8 320 64929 414.487 640 263.550 36%
pomdp7-s40-t9 823 360 823 720 3 8 400 67101 473.587 720 287.725 39%
pomdp7-s40-t10 910 400 910 800 3 8 480 101257 526.012 800 304.575 42%

pomdp8-s40-t3 295 120 295 240 3 11 560 2927 145.588 240 113.850 22%
pomdp8-s40-t4 380 160 380 320 3 11 640 12636 207.960 320 147.900 29%
pomdp8-s40-t5 465 200 465 400 3 11 720 15902 267.996 400 179.475 33%
pomdp8-s40-t6 550 240 550 480 3 11 300 27842 327.941 480 204.675 38%
pomdp8-s40-t7 635 280 635 560 3 11 400 71118 387.330 560 233.100 40%
pomdp8-s40-t8 720 320 720 640 3 11 501 50991 447.594 640 261.150 42%
pomdp8-s40-t9 805 360 805 720 3 11 600 68209 508.135 720 280.800 45%
pomdp8-s40-t10 890 400 890 800 3 11 480 88919 568.487 800 298.825 47%

pomdp9-s50-t3 371 150 371 300 3 10 300 7660 177.597 240 141.575 20%
pomdp9-s50-t4 478 200 478 400 3 10 400 20747 244.415 320 182.775 25%
pomdp9-s50-t5 585 250 585 500 3 10 501 27369 315.351 400 223.000 29%
pomdp9-s50-t6 692 300 692 600 3 10 600 69085 384.860 480 257.350 33%
pomdp9-s50-t7 799 350 799 700 3 10 701 107660 454.910 560 290.425 36%
pomdp9-s50-t8 906 400 906 800 3 10 800 224727 528.582 640 323.575 39%
pomdp9-s50-t9 1013 450 1013 900 3 10 900 207883 599.923 720 348.325 42%
pomdp9-s50-t10 1120 500 1120 1000 3 10 701 231511 668.883 800 372.750 44%

pomdp10-s50-t3 371 150 371 300 3 10 400 6249 180.257 240 141.950 21%
pomdp10-s50-t4 478 200 478 400 3 10 500 14333 253.043 320 184.925 27%
pomdp10-s50-t5 585 250 585 500 3 10 600 36078 331.108 400 221.775 33%
pomdp10-s50-t6 692 300 692 600 3 10 200 66848 409.456 480 258.525 37%
pomdp10-s50-t7 799 350 799 700 3 10 60 121312 480.291 560 290.300 40%
pomdp10-s50-t8 906 400 906 800 3 10 80 116597 563.324 640 321.425 43%
pomdp10-s50-t9 1013 450 1013 900 3 10 100 290003 633.134 720 346.500 45%
pomdp10-s50-t10 1120 500 1120 1000 3 10 300 244446 707.226 800 375.900 47%

Table 4.35: Case Study Results from SysAdmin-MDP Domains 2. Table shows the upper bound gen-
erated by algorithm WMBMM-EXP(20), and the lower bound generated by online planner SNAP [Cui and
Khardon, 2019]. c is the number of chance variables, d is the number of decision variables, p is the number of
probability functions, u is the number of utility functions, k is the maximum domain size, s is the maximum
scope size, w is the constrained induced width, utime is the time in seconds for generating upper bounds,
and ltime is the time in seconds for generating lower bounds.
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Summary Our results show that the gap between the upper and the lower bounds is larger

compared with SysAdmin-MDP problems, ranging between 18 percent to 47 percent. We see

that the upper bound for the most challenging problem instance pomdp10-s50-t10 is still

within a factor of 2 of the unknown MEU.

4.7 Conclusion

We presented empirical evaluation results of our proposed algorithms JGD-ID, WMBE-ID,

JGD-EXP, and WMBMM-EXP along with earlier translation based approaches and non-

variational bounding algorithm MBE-ID. In the experiment, we evaluated algorithms in

four synthetic benchmark sets including factored finite horizon MDP/POMDP domains, a

random network instances, and instances obtained by converting BNs. When problem in-

stances are easy or moderately difficult, the bounding schemes JGD-ID and WMBE-ID that

are extending the valuation algebra generated tight upper bounds. However, as the con-

strained induced width grows in more challenging problem instances, the bounding schemes

JGD-EXP and WMBMM-EXP dominated all other approaches. Comparing JGD-EXP and

WMBMM-EXP, JGD-EXP generated the tightest upper bounds when algorithms were given

low i- bounds, 1 or 5 and given enough time for iterative algorithms to converge. On the

other hand, WMBMM-EXP is the best performing algorithm when using higher i-bounds,

15 or 20 or we are limiting time bounds shorter than 1,000 seconds. We next presented the

result of a case study on SysAdmin MDP/POMDP from probabilistic planning domains. We

see that our bounding algorithms were able to generate upper bounds within a factor of 2

from unknown MEUs in the worst case, and the overall upper bounds are close to the lower

bounds within 4 percent to 47 percent gap from the lower bounds estimated by online plan-

ners, which shows a potential of applying our bounding algorithms as a heuristic generator

for probabilistic planning.
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Chapter 5

Conclusion

The main topic we addressed in this dissertation was the development of algorithms that

generate upper bounds on the maximum expected utility in influence diagrams.

We first considered a bounding scheme for the MEU task that utilizes the valuation alge-

bra framework. Our bounding method generalizes two powerful variational decomposition

bounds, namely, generalized dual decomposition bounds and weighted mini-bucket bounds

to the maximum expected utility task. Specifically, we extend the powered summation oper-

ation and the decomposition bounds to valuation algebra, provide two optimization formu-

lations yielding two types of message passing architectures, called JGD-ID and WMBE-ID.

We next focused on another bounding scheme for influence diagrams, that does not use the

valuation algebra. In this scheme, we utilized the Jensen’s inequality applied to exponential

functions and developed a bounding method that allows for the reuse of powerful algorithms

designed for the marginal MAP task. This was enabled through an MEU formulation that

uses an exponential representation of the utility functions and lead to another two message

passing algorithms, called JGD-EXP and WBMMM-EXP.
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Directions for Future Research

The work presented in this dissertation opens up new directions for future research of infer-

ence and search algorithms for the MEU task in influence diagrams.

Short-term Research

Inference algorithms for the MEU task The approach presented in this dissertation ex-

tends variational decomposition bounds to the task of maximizing the expected utility in

influence diagrams. In bounding schemes using valuation algebra, our reparameterization

scheme leads to non-convex optimization problems. The empirical evaluation results show

that the naive first-order optimization algorithm often fails to tighten the upper bounds, or

it needs a longer time to converge. In future work, we can adopt more advanced optimization

routines that recently became available to mitigate the issue by optimizing a large number

of non-convex settings.

Another orthogonal direction is to explore bounding schemes under new model decomposition

frameworks [Pralet et al., 2006, Lee, 2020], which capture the local structure of influence

diagrams more tightly and possibly leading to more efficient algorithms.

Search algorithms for the MEU task One major bottleneck in advancing heuristic search

algorithms for the MEU task has been the lack of good enough, yet efficient heuristic gener-

ators. It appears that for other inference tasks, AND/OR search augmented with partition-

based heuristic is able to guide the performance of the various search strategies quite well

[Dechter and Mateescu, 2007, Marinescu and Dechter, 2009, Otten and Dechter, 2012, Flerova

et al., 2016, Otten and Dechter, 2017, Marinescu et al., 2014, 2017, 2018a]. In a similar vein,

one could adopt the bounding schemes presented in this dissertation to generate heuristics

for search, in solving influence diagrams. In particular, algorithm WMBMM-EXP can be
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well-suited for generating admissible heuristics for the AND/OR search spaces [Dechter and

Mateescu, 2007, Marinescu, 2010], as the same type of algorithm was successfully applied

to the marginal MAP as shown in [Marinescu et al., 2018b]. Indeed, we demonstrated the

tightness of the bounds by algorithm WMBMM-EXP on large scale planning instances in

the case study showing its promise.

Long-term Research

Limited memory influence diagrams [Lauritzen and Nilsson, 2001] offer a graphical model

framework for sequential decision-making under imperfect recall. Namely, a decision-maker

forgets the history while making decisions. When multiple agents are competing or co-

operating to achieve their goals, multi-agent influence diagrams [Koller and Milch, 2003,

Detwarasiti and Shachter, 2005] or networks of influence diagrams [Gal and Pfeffer, 2008]

provide a graphical model for the inference task, maximizing the maximum expected util-

ity of participating agents. Although graphical models are available for modeling various

decision-making scenarios, we rarely see the works that address the inference task defined

over more complex influence diagrams, even for exact algorithms. As a long-term research

agenda, we plan to extend the graphical model inference frameworks to those more complex

influence diagrams modeling more practical and general decision-making scenarios.
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