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MOTIVATION AND CONTRIBUTION INFLUENCE DIAGRAMS

e IDs are a powerful formalism for reasoning with sequential decision-making problems under uncertainties

— Involve random (or chance) variables, decision variables and utility functions

e Task: find the maximum expected utility (MEU) and the corresponding optimal policy

— Notoriously difficult to solve exactly in practice

e Recent work focused on bounding the MEU

— E.g., information relaxation, reformulation to Marginal MAP, partitioning over join-trees
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Revisit multi-operator cluster DAG (MCDAG) decompositions for influence diagrams
Partitioning-based (mini-bucket) approximation for MCDAGs to upper bound the MEU

Apply cost-shifting to tighten the upper bounds further MEU = maxp, Y. p maxp, 3. maxp, P(C1|C3) -
In practice, we obtain significantly tighter bounds (by several orders of magnitude) than existing schemes P(C3)-(u1 (Do) +usa(Dy, 0117 Dy)+us( D;, Cs3)+us(Dsa, Dy))

e Compute the MEU via message passing over the MCDAG, bottom-up from leaves to the root: 0(B,0,D) = A{(B,C) + ha(C, D) - AJ(B) + \L(B,C) + gu(C, D) - \2(B)
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(A, B,C) = hi(A, B) - ha(A,C)
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COST-SHIFTING VIA MOMENT-MATCHING EXPERIMENTS

e Use weighted elimination for variable X: X% f = (Xx f w )

. . . . gridlé - Average gap - w* = 34; s* = 22 rand30 - Average gap - w* = 72; s* = 64 pomdpl6 - Average gap - w* = 83; s* = 80
e Moment-matching between mini-buckets for SUM clusters (when eliminating variable X)
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- Let Q@ = {Q1,...,Qr} be a mini-bucket partitioning such that % = |lseq, fand w, > Osuch that ) | w, =1 o] =0 4-\'—' —e—t—s
- Re-parameterize ¥, = . (£)"", i, = Sy, ™", jo = [, ji, ¥, = vars(Q,) \ X N\ ——

e Moment-matching between mini-buckets for MAX clusters (When ehmmatmg variable X)

- If vy, = erQr f then re-parameterize v, = wr( H ) = maxy, ¥, 1t = (][, ) YR Y, = vars(Q,) \ X

- If ¢, = 3" ¢, [ then re-parameterize ¢, = ¥, — i, + J 1, pr = Maxy, ¥r, o = 3, pr, Yr = vars(Q,) \ X !' \\\F I
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Revisit MCDAGs for IDss and develop a mini-bucket approximation scheme for bounding the MEU
MCDAGs are more sensitive to the underlying problem structure than strong join-trees (i.e., smaller induced-widths)

Apply cost-shifting by moment-matching to tighten the bounds further
Experiments on difficult benchmark problem instances demonstrate the effectiveness of our proposed bounding

scheme compared with existing state-of-the-art approaches w*- induced width (join-tree): s*- induced width (MCDAG
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Gapp = , relative to the tightest upper bound U*




