A New Bounding Scheme for Influence Diagrams

Radu Marinescu, Junkyu Lee and Rina Dechter

AAAI-2021

Motivation

- Influence diagrams are a powerful formalism for reasoning with sequential decision-making problems under uncertainties
 - Involve random (or chance) variables, decision variables and utility functions
- Task: find the maximum expected utility (MEU) and the corresponding optimal policy
 - Notoriously difficult to solve exactly in practice
- Recent work focused on bounding the MEU
 - E.g., information relaxation, reformulation to Marginal MAP, partitioning over join-trees
- Contribution:
 - Revisit multi-operator cluster DAG (MCDAG) decompositions for influence diagrams
 - Partitioning-based (mini-bucket) approximation for MCDAGs to upper bound the MEU
 - Apply cost-shifting to tighten the upper bounds further
 - Show empirically that the new scheme produces bounds that are several orders of magnitude tighter than those obtained with existing bounding schemes

Outline

- Motivation
- Preliminaries
- MCDAG decompositions
- Weighted mini-buckets over MCDAGs
- Experimental results
- Conclusion

Influence Diagrams

- An ID is a tuple (X, D, P, U) where:

 X = {X₁, ..., X_n} are chance variables
 D = {D₁, ..., D_m} are decision variables
 P = {P₁, ..., P_n}, s. t. P_i = Pr(X_i|pa(X_i)) are conditional probability tables (CPTs)
 U = {U₁, ..., U_r} are local utility functions defining global utility U = Σ^r_{i-1}U_i
- No-forgetness and regularity imply a partial ordering: $I_0 < D_1 < I_1 < \cdots < D_m < I_m$
- MEU: $\sum_{I_0} \max_{D_1} \dots \sum_{I_m} \max_{D_m} \sum_{I_m} (\prod P_i \sum U_j)$
- Variable elimination [Schachter, 1986], [Jensen et al., 1994], [Dechter, 2000] ...

• An ID is a tuple (X, D, P, U) where: $-X = (X_1, ..., X_n)$ are chance variables $-D = (D_1, ..., X_n)$ are devision variables $-P = (P_1, ..., P_n)$, s.t. $P_i = \Pr(X_i | pa(X_i))$ are conditional probability tables (OFTs) $-U = (U_1, ..., U_r)$ are local utility functions defining global utility $\Psi = \sum_{i=1}^{n} U_i$

* No-forgetness and regularity imply a partial ordering: $l_0 < D_1 < l_1 < \dots < D_m < l_m$

• MEU: $\sum_{l_0} \max_{D_1} \dots \sum_{l_m} \max_{D_m} \sum_{l_m} (\prod P | \Sigma V | 0 | 1 |$

 Variable elimination [Schachter, 1986] [Jensen et al., 1994], [Dechter, 2000] .

Multi-operator Cluster DAGs (MCDAGs)

- Recent decomposition for IDs with smaller induced widths than traditional strong jointree decompositions [Pralet et al., 2006]
- Refines the MEU expression to exploit reordering freedom and normalization conditions on CPTs
- A DAG where each vertex (cluster) *c* has:
 - Variables V(c), functions $\Psi(c)$
 - Child clusters ch(c)
 - Operators ⊕∈ {Σ, max} and ⊗∈ {+,×}
 such that (⊕, ⊗, ℝ) is commutative semiring
 - ⊕: elimination operator
 - ⊗: combination operator

Variable Elimination over MCDAGs

Compute the MEU via message passing over the MCDAG, from leaves to the root:

$$MEU = \max_{D_0} \lambda_2 + \lambda_3$$

$$\lambda_2 = u_1(D_0)$$

$$\lambda_3 = \sum_{C_1} \lambda_4$$

$$\lambda_4 = \max_{D_2} \max_{D_4} (\lambda_5 + \lambda_6 + \lambda_7)$$

$$\lambda_5 = \lambda_8 \cdot u_4(D_2, D_4)$$

$$\lambda_6 = \lambda_8 \cdot u_2(D_0, C_1, D_4)$$

$$\lambda_7 = \sum_{C_3} P(C_3) \cdot P(C_1 | C_3) \cdot u_3(D_2, C_3)$$

$$\lambda_8 = \sum_{C_3} P(C_3) \cdot P(C_1 | C_3)$$

Weighted Mini-Buckets for MCDAGs

- Complexity of VE is time and space exponential in the size of the largest message – i.e., exponential in the induced width of the MCDAG
- The idea is to approximate the λ-messages by sets of smaller messages (called *compound messages*) via a partitioning-based (or mini-bucket) approximation
 - Compound messages are propagated along the edges of the MCDAG
 - Compound messages must be combined in different ways, either by multiplication or summation depending on whether the sending cluster is a sum or a max one
- Formally, we define two types of compound messages:
 - π -messages: product of functions (i.e., $\pi = \prod_i f_i$)
 - σ -messages: sum of π -messages (i.e., $\sigma = \sum_j \pi_j$)
- The approximation scheme is guaranteed to output an upper bound on the MEU value
- Complexity is exponential (time and space) in the i-bound that controls the mini-bucket partitioning (i.e., i-bound dictates the number of distinct variables allowed in a mini-bucket

Processing a SUM Cluster

i-bound is 2, therefore we generate mini-buckets with at most 2 distinct variables

Generate a σ -message:

$$\begin{split} \sigma &= \{ \pi_1, \pi_2 \}, \text{ where } \\ \pi_1 &= \{ \lambda_1(B), \lambda_2(C) \}, \\ \pi_2 &= \{ \lambda_3(B), \lambda_4(C) \} \end{split}$$

$$\sigma(B,C) = \lambda_1(B) \cdot \lambda_2(C) + \lambda_3(B) \cdot \lambda_4(C)$$

$$n \underbrace{\sum_A \times}_{f_1(A,B)} \underbrace{\sigma(A,B,C)}_{\sigma(A,B,C)}$$

$$\pi(A,B,C) = h_1(A,B) \cdot h_2(A,C)$$

$$\sigma(A,B,C) = g_1(A,B) \cdot g_2(A,C) + g_3(A,B) \cdot g_4(A,C)$$

$$\lambda = \sum_A f_1(A,B) \cdot h_1(A,B) \cdot g_1(A,B) \underbrace{h_2(A,C) \cdot g_2(A,C)}_{A} \underbrace{f_1(A,B) \cdot h_1(A,B) \cdot g_3(A,B)}_{A} \underbrace{h_2(A,C) \cdot g_4(A,C)}_{A} \underbrace{f_1(A,B) \cdot h_1(A,B) \cdot g_3(A,B)}_{A} \underbrace{f_1(A,B) \cdot h_1(A$$

Processing a MAX cluster

i-bound is 2, therefore we generate mini-buckets with at most 2 distinct variables

Generate a σ -message:

$$\begin{split} \sigma &= \{\pi_1, \pi_2, \pi_3, \pi_4\}, \text{ where } \\ \pi_1 &= \{\lambda_1^1(B, C)\}, \\ \pi_2 &= \{\lambda_2^1(B), h_2(C, D)\}, \\ \pi_3 &= \{\lambda_3^1(B, C)\}, \\ \pi_1 &= \{g_4(C, D), \lambda_3^2(B)\} \end{split}$$

For MAX clusters, the max operator is pushed both inside summation as well as multiplication (unlike SUM case)

Tightening the Bounds by Cost-Shifting

- The upper bounds obtained can be tighten further using cost-shifting
 - Use weighted elimination instead of regular elimination

•
$$\sum_{X}^{W} f = \left(\sum_{X} f^{\frac{1}{W}}\right)^{W}$$

Moment-matching between mini-buckets for SUM clusters [Marinescu et al., 2014]

• Let $Q = \{Q_1, \dots, Q_R\}$ be a mini-bucket partitioning such that $\psi_r = \prod_{f \in Q_r} f$ and assign weight $w_r > 0$ to each mini-bucket Q_r such that $\sum_r w_r = 1$ (X is the eliminated)

• Re-parameterize
$$\psi_r = \psi_r \left(\frac{\mu}{\mu_r}\right)^{w_r}$$
, $\mu_r = \sum_{Y_r} \psi_r^{1/w_r}$, $\mu = \prod_r \mu_r^{w_r}$, $Y_r = vars(Q_r) \setminus X$

– Moment-matching between mini-buckets for MAX clusters

- Let $Q = \{Q_1, \dots, Q_R\}$ be a mini-bucket partitioning
- If $\psi_r = \prod_{f \in Q_r} f$ then re-parameterize $\psi_r = \psi_r(\frac{\mu}{\mu_r})$, $\mu_r = \max_{Y_r} \psi_r$, $\mu = (\prod_r \mu_r)^{1/R}$ If $\psi_r = \sum_{f \in Q_r} f$ then re-parameterize $\psi_r = \psi_r \mu_r + \frac{1}{R}\mu$, $\mu_r = \max_{Y_r} \psi_r$, $\mu = \sum_r \mu_r$

Experimental Results

- Algorithms for IDs
 - MBE [Dechter, 2000]
 - Mini-bucket approximation over a join-tree
 - WMB [Lee et al., 2019]
 - Weighted mini-buckets using a valuation algebra for influence diagrams
 - MCDAG-MBE
 - Mini-buckets over MCDAGs
 - MCDAG-WMB-MM
 - Weighted mini-buckets over MCDAGs with moment-matching
- Benchmarks
 - Random: grids, random graphs, POMDPs
 - Planning: system administrator [Guestrin et al., 2003]

Results: random influence diagrams

Gap $\rho = \frac{(U-U^*)}{U}$, relative to the tightest upper bound U^*

 w^* - induced width (join-tree); s^* - induced width (MCDAG)

Lower (closer to 0) is better

Results: planning instances (sysadmin)

instance	algorithm	i=2	i=10	i=18
sys1_s=10_t=3	MBE	2.09E+34	2.38E+18	7.70E+13
c=79,d=30	MCDAG-MBE	2.82E+24	2.88E+09	2.60E+06
w*=60	WMB	1.02E+10	8.37E+07	4.34E+06
s*=58,k=3	MCDAG-WMB-MM	3.44E+07	8.79E+03	4.31E+02
sys1_s=10_t=4	MBE	1.72E+46	3.01E+26	1.11E+19
c=102,d=40	MCDAG-MBE	1.93E+35	3.79E+14	1.39E+10
w*=80	WMB	6.59E+13	2.87E+11	3.04E+08
s*=78,k=3	MCDAG-WMB-MM	1.18E+11	2.68E+06	3.98E+04
sys1_s=10_t=5	MBE	1.38E+58	5.43E+30	6.27E+22
c=125,d=50	MCDAG-MBE	1.33E+46	3.18E+19	9.12E+13
w*=100	WMB	1.80E+17	7.67E+13	4.34E+11
s*=98,k=3	MCDAG-WMB-MM	4.09E+14	1.36E+09	1.46E+07

Smaller values are better

Conclusion

- Revisit MCDAG decompositions for influence diagrams and develop a partitioning-based approximation scheme for bounding the maximum expected utility
- MCDAGs are more sensitive to the underlying problem structure than strong join-trees
 Smaller induced width led to a partitioning that yields more accurate bounds
- Apply cost-shifting by moment-matching to tighten the bounds further
- Experiments on difficult benchmark problem instances demonstrate the effectiveness of our proposed bounding scheme compared with existing state-of-the-art approaches
- Future work: using these bounds as heuristics for guiding search algorithms for finding optimal policies, as well as developing a more powerful iterative cost-shifting scheme between the clusters of the MCDAG decomposition

