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Sequential Decision Making Under Uncertainty
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agent system

stochastic dynamics over factored state variables

stochastic partial observation

stochastic, non-stationary, limited memory policy



Influence Diagrams 
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Limited Memory Influence Diagrams 
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Policy functions



Graphical Models
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Decomposition of IDs with Perfect Recall
• Constrained Junction-Tree for IDs

• Transform influence diagram to primal graph

• Use restricted elimination order to obtain constrained tree decomposition
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[Jensen, 1994]

• Decomposition of IDs
• Identify requisite observation in IDs

• Extract required subset of variables and functions for each decision variable

[Nielsen and Jensen1999] [Nielsen, 2001]

• MC-DAG for IDs
• Re-write MEU expression and identify the most relaxed variable elimination order for 

computing MEU

[Pralet, et. al. 2006]



Decomposition of LIMIDs
• Soluble LIMIDs

• Identify a subclass of LIMIDs that can be solved by variable elimination

• local search algorithm that improves single policy function at each iteration
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[Zhang and Poole,  1992] [Lauritzen and Nilsson, 2001]

• Local Search for LIMIDs
• Improve multiple policy functions at each iteration

• Identify relevant subset of nodes for updating multiple policy functions

[Detwarasiti and Shacter, 2005] [Maua, 2016]



Upper bounds for MEU in IDs
• IDs with perfect recall

• Information Relaxation 

• Join-Graph Decomposition Bounds

• Weighted Mini-bucket Decomposition Bounds
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[Lee, et. al. 2018]

[Lee, et. al. 2019]

[Yuan, et. al. 2010][Nielsen and Hohle,2001]

• LIMIDs
• Theoretical Bounds

[Maua and Cozman, 2016]

• Translating IDs with perfect recall
• Marginal MAP

• MILP Encodings 

[Maua, 2016][Liu and Ihler, 2012]

[Parmentier et. al,2020]
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Motivations and Contributions
• Graph-based method for decomposing IDs and LIMIDs

• Remove some restrictions in earlier approaches

• 1 decision per 1 time step, regularity condition, perfect recall

• Extend tree clustering framework for reasoning in graphical models 

• Identify subproblems from graph 

• Extract a cluster tree for exact algorithms

• Characterize complexity

• Upper-Bounds for MEU in IDs and LIMIDs
• Don’t inflate problem size by translation

• Avoid difficult non-convex optimization formulations in earlier works
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Partial Evaluation and Local MEU

• (Definition) Local Maximum Conditional Expected Utility
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Submodel

• (Definition) Submodel is a relevant subset of model       for 
computing LMEU on 

14

Relevant Observed Variables Relevant Hidden Variables



Stable Submodel

• (Definition) Submodel is stable when there is no decision 
variables in
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Unstable Submodel Stable Submodel



Graph-based Identification of Submodels

• is descendant utility nodes of decision nodes
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[Nielsen and Jensen1999]



Graph-based Identification of Submodels

• is the backdoor* set between D’ and U’
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{C3, C6} is a backdoor set relative to ({D2,D3}, {U2, U3})

Z

Y

X

(Backdoor) [Pearl 2009]

a set Z satisfies the backdoor criterion relative to (X, Y)
(1) None of the nodes in Z is a descendant of X
(2) Z blocks every path between X and Y that contain arrow into X

Removing C3 opens a backdoor path by
C1->C3->D2 ->C3->C5->U3



Graph-based Identification of Submodels

• is the union of all frontdoor* set between pa(D’) and ch(U’)
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C1, C2, D1, and C4 don’t belong to any frontdoor set

Z1

Y

Z2

X

Z3

(Frontdoor) [Pearl 2009]

a set Z satisfies the frontdoor criterion relative to (X, Y)
(1) Z intercept all directed paths from X to Y
(2) There is no backdoor path from X to Z
(3) All backdoor paths from Z to Y are blocked by X



Submodel–Tree Clustering

• Process decision nodes in reverse topological order
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Submodel is unstable

Process decision variables in the order of D3, D2, and D1

Partial decision order 



Submodel–Tree Clustering

• Find a stable submodel
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is stable

Next combine two submodels
and Try



Submodel–Tree Clustering

• Eliminate submodel from IDs 
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Remove D2, D3, U2, U3 and Add V(C3)

V

Remove barren chance nodes C4, C5, C6



Submodel–Tree Clustering

• Identify the next submodel and find a submodel-tree
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V V

Submodel Cluster is a single-stage ID

Submodel Cluster Propagates Conditional MEU



Valuation Algebra over Stable Submodels

• Given an ID     ,                                       is a valuation algebra
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Partial decision order read from ID

A set of stable submodels in         subject to

A closure of                   under the combination

Projection operator for a submodel

Combination operator for a submodel

Domain of a submodel (all variables in           )

A set of domains of submodels in 

[Shenoy 1997] [Kohlas and Shenoy, 2000] 



Semi-group of submodels:                   is a semi-group with the combination operation

Valuation Algebra over Stable Submodels

• Given an ID     ,                                       is a valuation algebra
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Domain of combination:

Marginalization:

Transitivity of marginalization:

Distributivity of marginalization over combination:

Neutral elements:

[Kohlas and Shenoy, 2000] 

• Valuation algebra satisfies axioms of local computation [Shenoy 1997]



Submodel–Tree Decomposition
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• Given an ID     , and the set of stable submodels relative to      ,
submodel-tree decomposition is a tuple 

Tree of submodel cluster nodes        and separator edges

Label a cluster with a subset of variables in 

Label a cluster with a subset of submodels in 

Tree-decomposition satisfies running intersection property

V



Submodel–Tree Decomposition
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• Minimal submodel-tree decomposition

V

A submodel-tree decomposition is minimal 
if submodels assigned at each cluster is not a combination of two stable submodels

• Given an ID, minimal submodel-tree decomposition is unique.

• For IDs with perfect recall, the minimal submodel-tree is equivalent to MC-DAG

• For IDs without perfect recall, each submodel cluster defines the scope of exhaustive search

• For IDs with perfect recall, each submodel cluster is one time-step ID



Message Passing over a Submodel-Tree
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V

• Each submodel can be solved by any exact algorithm for propagating messages 



Message Passing over a Submodel-Tree
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V

The time and space complexity for solving IDs over the submodel-tree 
decomposition is exponential in submodel-tree width                                        , 
where                 is the constrained tree-width of the submodel at C 



Bounding MEU of Each Submodel

29

For each submodel cluster, we can apply Jensen’s inequality to bound MEU

LSH: MEU expression with additive utility function
RHS: Upper bound of MEU with log-partition function with exponentiated utility functions 

• Exponentiated Utility Bounds for MEU

• Use “any” upper bounding scheme for MMAP on RHS
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Benchmark Domains
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Finite Horizon MDP

Finite Horizon POMDP

Random Influence Diagrams

IDs converted from BN



Experiments: Synthetic IDs

• ST-GDD: submodel-tree decomposition + GDD for MMAP 

• ST-WMB: submodel-tree decomposition + WMBMMM for MMMAP

• JGDID: constrained-join graph + GDD for IDs 

• WMBMEID: constrained mini-bucket tree + WMB/GDD for IDs 
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[marinescu et al 2014]

[Lee et al 2018]

[Lee et al 2019]

[ping et al 2015]

• Evaluation: average of the gap 



Experiments: Synthetic LIMIDs
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• |C|: number of clusters in submodel tree

• Kpu-UB: Analytical bound by [Maua and Cozman 2016]



Experiments: SysAdmin MDP/POMDP
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[Guestrin, et. al 2003]

• Evaluation

• UB: WMBMM-EXP (i=20)

• LB:  Online planner to obtain lower bounds



SysAdmin MDP 
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SysAdmin POMDP 
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Conclusion and Future Directions

• Extend Tree-Clustering Framework in PGM for IDs and LIMIDs
• Graph-based tree-clustering procedure for IDs and LIMIDs

• Hierarchical message passing algorithm for exact inference

• Simple and Scalable Bounding Scheme for IDs
• Exponentiating utility functions and reuse decomposition bounds for MMAP

• Future Directions
• Guide heuristic search for finding MEU in IDs and LIMIDs

• Extend relaxation schemes in PGM to submodel-tree decomposition

• Submodel-tree clustering framework for multi-agent IDs
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