

Submodel Decomposition Bound for Influence Diagrams

Junkyul@uci.edu junkyul@uci.edu University of California, Irvine IBM Research Al

Radu Marinescu radu.marinescu@ie.ibm.com IBM Research Europe

Rina Dechter dechter@ics.uci.edu University of California, Irvine

35th AAAI Conference on Artificial Intelligence

Outline

- Backgrounds
 - Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 - Decomposition of IDs and LIMIDs
 - Bounding Schemes for Maximum Expected Utility (MEU)
- Submodel Decomposition for IDs and LIMIDs
 - Motivation and Contributions
 - A Submodel-Tree Clustering Scheme
 - A Bounding Scheme over Submodel-Tree
- Experiments and Case Study
 - Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain
- Conclusion and Future Directions

Outline

UC

- Backgrounds
 - Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 - Decomposition of IDs and LIMIDs
 - Bounding Schemes for Maximum Expected Utility (MEU)
- Submodel Decomposition for IDs and LIMIDs
 - Motivation and Contributions
 - A Submodel-Tree Clustering Scheme
 - A Bounding Scheme over Submodel-Tree
- Experiments and Case Study
 - Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain
- Conclusion and Future Directions

Sequential Decision Making Under Uncertainty

$$\begin{split} & \mathbb{P}(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \quad \text{stochastic dynamics over factored state variables} \\ & \mathbb{P}(\mathbf{o}_t | \mathbf{s}_t, \mathbf{a}_{t-1}) \quad \text{stochastic partial observation} \\ & \Delta(\mathbf{a}_4 | \mathbf{a}_3, \mathbf{o}_3) \quad \text{stochastic, non-stationary, limited memory policy} \end{split}$$

Test

Test

result

Seismic

structure

Influence Diagrams [Howard and Matheson, 1984]

Oil

sales

Oil sale

policy

Sales cost

 $\mathcal{M} := \langle \mathbf{X}, \mathbf{D}, \mathbf{P}, \mathbf{U}, \mathcal{O}
angle$

Test

COSL

Drill

Drill cost

Oil

underground

Oil

produced

Chance variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ Decision variables $\mathbf{D} = \{D_1, D_2, \dots, D_m\}$ Probability functions $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ Utility functions $\mathbf{U} = \{U_1, U_2, \dots, U_r\}$ Policy functions $\boldsymbol{\Delta} = \{\Delta_1, \dots, \Delta_m\}$ $\mathcal{O} = \{\operatorname{pa}(D_1) \prec D_1 \prec \dots \prec \operatorname{pa}(D_m) \prec D_m\}$ $\Delta_i(D_i | \operatorname{hist}(D_i))$

Maximum expected Utility $\max_{\Delta} \mathbb{E}_{P(\mathbf{X},\mathbf{D})} [\sum_{U_i \in \mathbf{U}} U_i] \quad P(\mathbf{X},\mathbf{D}) = \prod_{P_i \in \mathbf{P}} P_i \times \prod_{\Delta_i \in \Delta} \Delta_i$ Optimal strategy $\Delta^* = \operatorname{argmax}_{\Delta} \mathbb{E} [\sum_{U_i \in \mathbf{U}} U_i]$

Market

information

IBM Research

UCI

Limited Memory Influence Diagrams [Lauritzen and Nilsson, 2001]

 $\mathcal{M} := \langle \mathbf{X}, \mathbf{D}, \mathbf{P}, \mathbf{U}, \mathcal{O}
angle$

Policy functions $\Delta = \{\Delta_1, \dots \Delta_m\}$ $\Delta_i(D_i | \text{pa}(D_i))$

Graphical Models

 $\mathcal{M} := \langle \mathbf{X}, \mathbf{D}, \mathbf{F} \rangle$ Global Function $F(\mathbf{X}) = \prod_{F_i \in \mathbf{F}} F_i(\mathbf{X}_{F_i})$ combination operator: $\otimes, \times, +, \bowtie$ Domains $\mathbf{D} = \{D_1, D_2, \dots, D_n\}$ Inference Task $Z = \sum_{\mathbf{X}} \prod_{F_i \in \mathbf{F}} F_i(\mathbf{X}_{F_i})$ elimination operator: \sum, \max, \min

Complexity $(\max |D_i|)^{\text{tree-width}}$ [Decther, 1999]

Decomposition of IDs with Perfect Recall

- Constrained Junction-Tree for IDs [Jensen, 1994]
 - Transform influence diagram to primal graph
 - Use restricted elimination order to obtain constrained tree decomposition
- Decomposition of IDs [Nielsen and Jensen1999] [Nielsen, 2001]
 - Identify requisite observation in IDs
 - Extract required subset of variables and functions for each decision variable

- MC-DAG for IDs [Pralet, et. al. 2006]
 - Re-write MEU expression and identify the most relaxed variable elimination order for computing MEU

Decomposition of LIMIDs

- Soluble LIMIDs [Zhang and Poole, 1992] [Lauritzen and Nilsson, 2001]
 - Identify a subclass of LIMIDs that can be solved by variable elimination
 - local search algorithm that improves single policy function at each iteration
- Local Search for LIMIDs [Detwarasiti and Shacter, 2005] [Maua, 2016]
 - Improve multiple policy functions at each iteration
 - Identify relevant subset of nodes for updating multiple policy functions

Upper bounds for MEU in IDs

- IDs with perfect recall
 - Information Relaxation [Nielsen and Hohle, 2001] [Yuan, et. al. 2010]
 - Join-Graph Decomposition Bounds [Lee, et. al. 2018]
 - Weighted Mini-bucket Decomposition Bounds [Lee, et. al. 2019]
- LIMIDs [Maua and Cozman, 2016]
 - Theoretical Bounds

- Translating IDs with perfect recall
 - Marginal MAP [Liu and Ihler, 2012] [Maua, 2016]
 - MILP Encodings [Parmentier et. al, 2020]

Outline

UC

- Backgrounds
 - Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 - Decomposition of IDs and LIMIDs
 - Bounding Schemes for Maximum Expected Utility (MEU)
- Submodel Decomposition for IDs and LIMIDs
 - Motivation and Contributions
 - A Submodel-Tree Clustering Scheme
 - A Bounding Scheme over Submodel-Tree
- Experiments and Case Study
 - Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain
- Conclusion and Future Work

Motivations and Contributions

- Graph-based method for decomposing IDs and LIMIDs
 - Remove some restrictions in earlier approaches
 - 1 decision per 1 time step, regularity condition, perfect recall
 - Extend tree clustering framework for reasoning in graphical models
 - Identify subproblems from graph
 - Extract a cluster tree for exact algorithms
 - Characterize complexity
- Upper-Bounds for MEU in IDs and LIMIDs
 - Don't inflate problem size by translation
 - Avoid difficult non-convex optimization formulations in earlier works

Partial Evaluation and Local MEU

• (Definition) Local Maximum Conditional Expected Utility

 $\max_{\Delta(D_2|C_3,C_4),\Delta(D_3|C_6)} \sum_{\mathbf{X},\mathbf{D}} \frac{P(\mathbf{X},\mathbf{D})}{P(C_3,C_4,C_6)} \left[U_2 + U_3 \right]$

Submodel

• (Definition) Submodel $\mathcal{M}'(D', U')$ is a relevant subset of model \mathcal{M} for computing LMEU on $D' \subseteq D, U' \subseteq U$

Relevant Observed Variables $\operatorname{REL}_O(\mathbf{D'},\mathbf{U'})$

Relevant Hidden Variables $\operatorname{REL}_H(\mathbf{D'},\mathbf{U'})$

Stable Submodel

• (Definition) Submodel $\mathcal{M}'(\mathbf{D}', \mathbf{U}')$ is stable when there is no decision variables in $\operatorname{REL}_H(\mathbf{D}', \mathbf{U}')$

Unstable Submodel $\mathcal{M}'(\{D_3\}, \{U_3\})$

Stable Submodel $\mathcal{M}'(\{D_2, D_3\}, \{U_2, U_3\})$

Graph-based Identification of Submodels

• $\operatorname{REL}_U(\mathbf{D}')$ is descendant utility nodes of decision nodes [Nielsen and Jensen1999]

Graph-based Identification of Submodels

• $\operatorname{REL}_O(\mathbf{D}', \mathbf{U}')$ is the backdoor* set between D' and U'

(Backdoor) [Pearl 2009]

a set Z satisfies the backdoor criterion relative to (X, Y)

- (1) None of the nodes in Z is a descendant of X
- (2) Z blocks every path between X and Y that contain arrow into X

{C3, C6} is a backdoor set relative to ({D2,D3}, {U2, U3})

Removing C3 opens a backdoor path by C1->C3->D2 ->C3->C5->U3

Graph-based Identification of Submodels

• $\operatorname{REL}_H(\mathbf{D}', \mathbf{U}')$ is the union of all frontdoor* set between pa(D') and ch(U')

(Frontdoor) [Pearl 2009]

a set Z satisfies the frontdoor criterion relative to (X, Y)

- (1) Z intercept all directed paths from X to Y
- (2) There is no backdoor path from X to Z
- (3) All backdoor paths from Z to Y are blocked by X

C1, C2, D1, and C4 don't belong to any frontdoor set

Submodel–Tree Clustering

• Process decision nodes in reverse topological order Partial decision order $\mathcal{O}_D = \{D_1 \prec D_2 \prec D_3\}$

Process decision variables in the order of D3, D2, and D1

Submodel $\mathcal{M}'(\{D_3\}, \{U_3\})$ is unstable

Submodel–Tree Clustering

• Find a stable submodel

Next combine two submodels $\mathcal{M}'(\{D_3\}, \{U_3\}) \otimes \mathcal{M}'(\{D_2\}, \{U_2, U_3\})$ and Try $\mathcal{M}'(\{D_2, D_3\}, \{U_2, U_3\})$

 $\mathcal{M}'(\{D_2,D_3\},\{U_2,U_3\})$ is stable

Submodel–Tree Clustering

• Eliminate submodel $\mathcal{M}'(\{D_2, D_3\}, \{U_2, U_3\})$ from IDs \mathcal{M}

Remove D2, D3, U2, U3 and Add V(C3)

Remove barren chance nodes C4, C5, C6

Submodel–Tree Clustering

Identify the next submodel and find a submodel-tree

Submodel Cluster Propagates Conditional MEU

Valuation Algebra over Stable Submodels

- Given an ID \mathcal{M} , $\Upsilon_{\mathcal{M}} = \langle \mathbb{M}_{\mathcal{O}_D}, \mathbb{D}_{\mathcal{O}_D}, \otimes, \psi \rangle$ is a valuation algebra [Shenoy 1997] [Kohlas and Shenoy, 2000]
 - \mathcal{O}_D Partial decision order read from ID
 - $\mathbf{M}_{\mathcal{O}_D}$ A set of stable submodels in \mathcal{M} subject to \mathcal{O}_D
 - \otimes Combination operator for a submodel
 - \Downarrow Projection operator for a submodel
 - $\mathbb{M}_{\mathcal{O}_D}$ A closure of $\, \mathbf{M}_{\mathcal{O}_D} \,$ under the combination

 $\mathrm{dom}(\mathcal{M}')\,$ Domain of a submodel (all variables in \mathcal{M}')

 $\mathbb{D}_{\mathcal{O}_D}$ A set of domains of submodels in $\mathbb{M}_{\mathcal{O}_D}$

Valuation Algebra over Stable Submodels

• Given an ID \mathcal{M} , $\Upsilon_{\mathcal{M}} = \langle \mathbb{M}_{\mathcal{O}_D}, \mathbb{D}_{\mathcal{O}_D}, \otimes, \psi \rangle$ is a valuation algebra [Kohlas and Shenoy, 2000]

Semi-group of submodels: $\mathbb{M}_{\mathcal{O}_D}$ is a semi-group with the combination operation

Domain of combination: $\operatorname{dom}(\mathcal{M}'_1 \otimes \mathcal{M}'_2) = \operatorname{dom}(\mathcal{M}'_1) \cup \operatorname{dom}(\mathcal{M}'_2)$

 $\label{eq:transitivity} \text{Transitivity of marginalization: } \Downarrow_{\mathbf{X}} (\Downarrow_{\mathbf{Y}} \ \mathcal{M}') = \Downarrow_{\mathbf{X} \cap \mathbf{Y}} \ \mathcal{M}'$

Distributivity of marginalization over combination: $\[mu]_{\mathbf{X}}(\mathcal{M}'_1 \otimes \mathcal{M}'_2) = \mathcal{M}'_1 \otimes (\Downarrow_{\mathbf{X}} \mathcal{M}'_2)$ Neutral elements: $\mathcal{M}'_{\mathbf{0}(\mathbf{X})} \otimes \mathcal{M}'_{\mathbf{0}(\mathbf{Y})} = \mathcal{M}'_{\mathbf{0}(\mathbf{X} \cup \mathbf{Y})}$

Valuation algebra satisfies axioms of local computation [Shenoy 1997]

Submodel–Tree Decomposition

- Given an ID \mathcal{M} , and the set of stable submodels $\mathbf{M}_{\mathcal{O}_D}$ relative to \mathcal{O}_D , submodel-tree decomposition is a tuple $\mathcal{T}_{ST} := \langle T(\mathcal{C}, \mathcal{S}), \chi, \psi \rangle$
 - $T(\mathcal{C},\mathcal{S})$ Tree of submodel cluster nodes $\,\mathcal{C}\,$ and separator edges $\,\mathcal{S}\,$
 - $\chi:\mathcal{C} o 2^{\mathrm{dom}(\mathcal{M})}$ Label a cluster with a subset of variables in $\,\mathcal{M}$
 - $\psi:\mathcal{C} o 2^{\mathbf{M}_{\mathcal{O}_D}}$ Label a cluster with a subset of submodels in $\mathbf{M}_{\mathcal{O}_D}$

Tree-decomposition satisfies running intersection property

Submodel–Tree Decomposition

Minimal submodel-tree decomposition

A submodel-tree decomposition is minimal

if submodels assigned at each cluster is not a combination of two stable submodels

- Given an ID, minimal submodel-tree decomposition is unique.
- For IDs with perfect recall, the minimal submodel-tree is equivalent to MC-DAG
- For IDs with perfect recall, each submodel cluster is one time-step ID
- For IDs without perfect recall, each submodel cluster defines the scope of exhaustive search

Message Passing over a Submodel-Tree

UCI

• Each submodel can be solved by any exact algorithm for propagating messages

Message Passing over a Submodel-Tree

Algorithm 1 Hierarchical Message Passing over \mathcal{T}_{ST}

Require: $\mathcal{T}_{ST} := \langle T(\mathcal{C}, \mathcal{S}), \chi, \psi \rangle$

Ensure: Submodel-tree augmented with messages sent out from clusters, MEU

1: MEU $\leftarrow 0$

- 2: for each cluster C from the leaves to the root in T do
- 3: Pull messages from incoming edges
- 4: Update submodel \mathcal{M}^C at C with the received messages

```
5: V^{C} \leftarrow Eval(\mathcal{M}^{C})
```

- 6: **if** C is the root node or V^C is a constant **then** 7: MEU \leftarrow MEU + V^C
- 8: **else**
- 9: Push V^C to the outgoing edge return MEU

The time and space complexity for solving IDs over the submodel-tree decomposition is exponential in submodel-tree width $w_s : \max_{C \in \mathcal{C}} w_c(C)$, where $w_c(C)$ is the constrained tree-width of the submodel at C

Bounding MEU of Each Submodel

• Exponentiated Utility Bounds for MEU

For each submodel cluster, we can apply Jensen's inequality to bound MEU

$$\max_{\mathbf{\Delta}} \mathbb{E} \Big[\sum_{U_i \in \mathbf{U}} U_i(\mathbf{X}_{U_i}) \Big] \leq \max_{\mathbf{\Delta}} \log \mathbb{E} \Big[e^{\sum_{U_i \in \mathbf{U}} U_i(\mathbf{X}_{U_i})} \Big]$$
$$= \log \max_{\mathbf{\Delta}} \mathbb{E} \Big[e^{\sum_{U_i \in \mathbf{U}} U_i(\mathbf{X}_{U_i})} \Big]$$
$$= \log \max_{\mathbf{\Delta}} \mathbb{E} \Big[\prod_{u \in U_i(\mathbf{X}_{U_i})} \Big]$$

LSH: MEU expression with additive utility function RHS: Upper bound of MEU with log-partition function with exponentiated utility functions

• Use "any" upper bounding scheme for MMAP on RHS

Outline

- Backgrounds
 - Influence Diagrams (IDs) and Limited Memory IDs (LIMIDs)
 - Decomposition of IDs and LIMIDs
 - Bounding Schemes for Maximum Expected Utility (MEU)
- Submodel Decomposition for IDs and LIMIDs
 - Motivation and Contributions
 - A Submodel-Tree Clustering Scheme
 - A Bounding Scheme over Submodel-Tree
- Experiments and Case Study
 - Upper bounds in IDs, LIMIDs, and MDP/POMDP planning domain
- Conclusion and Future Directions

Benchmark Domains

Finite Horizon MDP		n		c d		f	р	u	k	s	w
	Min	25	20) 3		30	20	10	2	4	5
	Average	105.7	99.6	6.1	13	34.1 9	99.6	34.5	3.1	7.1	25.5
	Max	170	160) 10		240	160	80	5	9	43
Finite Horizon POMDP			n	с	d	f	р	u	ı k	s	w
	Min		15	12	3	18	12	6	5 2	3	10
	Average		55.9	52.4	3.5	73.5	52.4	21.1	2.4	5.5	28
	Max		96	92	5	140	92	48	3 3	9	46
Random Influence Diagra	ms			n	c	d	f p	11	k s	w	
						u	г р 	u	n 0		
		Min		22	20	2 2	2 20	2	2 3	6	
		Average Max		50 01	47	9 5	b 47 1 70	9 91	2 3	17 24	
				91	10	21 3	1 10	21	2 0	04	
IDs converted from BN			n	с	d	f	р	u	k	\mathbf{s}	w
	Min		54	48	3	54	48	3	2	6	12
	Avera	ge	84	77	7	84	77	7	2	8	21
	Max	-	115	109	12	115	109	12	2	10	42

Experiments: Synthetic IDs

Domain	n	w_c	w_s	ST-GDD(i=1)	ST-GDD(i=5)	ST-WMB(i=10)	JGDID(i=1)	WMBEID(i=10)
ID-BN	84.6	30.2	21.8	0.19	0.15	0.13	0.33	0.74
IDBN14w57d12	115	57	42	103.89	96.24	95.37	1420	2.2E+4
FH-MDP	105.7	25.5	25.4	0.06	0.07	0.18	0.16	0.44
mdp9-32-3-8-3	99	43	43	18.92	19.71	25.31	23.09	111.81
FH-POMDP	55.9	28.1	28.1	0.31	0.22	0.06	0.56	0.72
pomdp8-14-9-3-12-14	96	47	46	73.53	76.37	67.18	5.E+08	5.E+09
RAND	56.2	20.5	17.9	0.22	0.24	0.24	0.23	0.46
rand-c70d21o1	84	32	34	1309.89	1791.93	1752.47	1743.6	2.E+04

- ST-GDD: submodel-tree decomposition + GDD for MMAP [ping et al 2015]
- ST-WMB: submodel-tree decomposition + WMBMMM for MMMAP [marinescu et al 2014]
- JGDID: constrained-join graph + GDD for IDs [Lee et al 2018]
- WMBMEID: constrained mini-bucket tree + WMB/GDD for IDs [Lee et al 2019]
- Evaluation: average of the gap $\frac{U-U_{\min}}{U}$

Experiments: Synthetic LIMIDs

	w_s	C	STWMBMM.10.	STWMBMM.20	kpu-UB	pomdp1-4_2_2_2_
ID_from_BN_0_w28d6_limid	26	1	44.30	43.86	9.08E+06	pomdp10-12_7_3_
ID_from_BN_0_w29d6_limid	22	2	47.47	44.79	9.08E+06	pomdp2-2_2_2_2_
ID_from_BN_0_w32d11_limid	31	2	83.81	81.74	2.74E+07	pomdp3-4_4_2_2_
ID_from_BN_0_w33d11_limid	34	2	87.14	86.60	2.74E+07	pomdp4-4_4_2_2_
ID_from_BN_14w42d6_limid	33	1	45.25	43.61	1.22E+08	pomdp5-6_4_3_5_
ID_from_BN_14w57d12_limid	46	2	94.45	91.87	4.70E+08	pomdp6-12_6_2_6
ID_from_BN_78_w18d3_limid	15	1	23.54	22.80	4.61E+08	pomdp7-20_10_2_
ID_from_BN_78_w19d3_limid	17	2	24.07	23.28	4.61E+08	pomdp8-14_9_3_1
ID_from_BN_78_w23d6_limid	17	1	46.97	45.21	1.83E+09	pomdp9-14_8_3_1
ID_from_BN_78_w24d6_limid	25	1	48.72	46.08	1.83E+09	rand-c20d2o1-01_
mdp1-4_2_2_5_limid	5	6	3.74	3.74	4.42E+05	rand-c30d3o1-01
mdp10-32_3_8_4_limid	42	10	37.96	33.39	3.74E+09	rand-c30d6o1-01
mdp2-8_3_4_5_limid	10	7	12.20	12.20	7.45E+07	rand-c30d9o1-01
mdp3-10_3_5_10_limid	14	14	43.40	31.08	2.60E+09	rand-c50d10o1-01
mdp4-10_3_5_10_limid	14	11	39.11	32.73	2.60E+09	rand-c50d15o1-03
mdp5-16_3_8_10_limid	21	16	79.42	48.98	2.32E+10	rand-c50d5o1-00
mdp6-20_5_5_5_limid	29	6	31.56	21.13	4.58E+15	rand-c70d14o1-01
mdp7-28_3_6_5_limid	41	11	44.01	34.90	4.66E+11	rand c70d21c1_01
mdp8-28_3_6_4_limid	41	9	32.42	27.77	2.98E+11	rand c70d7c1 01
mdp9-32_3_8_3_limid	45	11	25.23	22.29	1.68E+11	rano-c/00/01-01_

	w_s		STWMBMM.10.	STWMBMM.20	kpu-UB
4_2_2_2_3_limid	11	1	4.34	4.12	1.79E+05
-12_7_3_8_4_limid	40	9	29.54	24.17	5.06E+07
2_2_2_2_3_limid	10	1	4.51	4.51	5.55E+04
4_4_2_2_3_limid	16	1	4.76	3.62	1.97E+05
4_4_2_2_5_limid	27	2	7.69	5.74	5.39E+05
6_4_3_5_3_limid	18	3	11.23	9.19	2.72E+07
12_6_2_6_3_limid	29	5	19.69	14.07	1.19E+08
20_10_2_10_3_limid	46	8	37.30	30.45	1.22E+08
14_9_3_12_4_limid	47	12	46.90	39.49	4.28E+08
14_8_3_10_4_limid	44	8	41.70	32.90	4.27E+08
d2o1-01_limid	6	1	170.63	170.63	3.76E+04
d3o1-01_limid	11	1	272.77	272.71	8.27E+04
d6o1-01_limid	13	2	537.87	537.75	2.15E+05
d9o1-01_limid	16	2	735.74	733.01	4.11E+05
d10o1-01_limid	23	2	863.38	863.11	5.91E+05
d15o1-03_limid	27	2	1243.53	1241.16	1.13E+06
d5o1-01_limid	17	1	429.09	428.37	2.25E+05
d14o1-01_limid	31	2	1194.34	1193.46	1.15E+06
d21o1-01_limid	41	2	1735.30	1731.70	2.21E+06
d7o1-01_limid	22	1	657.22	655.98	4.38E+05

- |C|: number of clusters in submodel tree
- Kpu-UB: Analytical bound by [Maua and Cozman 2016]

Experiments: SysAdmin MDP/POMDP [Guestrin, et. al 2003]

 $P(X'_{i} = t \mid X_{i}, X_{i-1}, A)$:

	Action is reboot:							
	machine i	other machine						
$\begin{array}{c} X_{i-1} = f \land \\ X_i = f \end{array}$	1	0.0238						
$\begin{array}{c} X_{i-1} = f \land \\ X_i = t \end{array}$	1	0.475						
$\begin{aligned} X_{i-1} &= t \land \\ X_i &= f \end{aligned}$	1	0.0475						
$\begin{array}{c} X_{i-1} = t \land \\ X_i = t \end{array}$	1	0.95						

- Evaluation
 - UB: WMBMM-EXP (i=20)

- $gap = 1 \frac{LB}{UB}$
- LB: Online planner to obtain lower bounds

SysAdmin MDP

Instance	с	d	р	u	k	s	w	utime (sec)	ub wmbmm	ltime (sec)	lb sogbofa	$_{\left(\frac{ub-lb}{ub}\right)}^{gap}$
mdp9-s50-t3	227	150	227	300	3	8	107	217	161.292	240	142.931	11%
mdp9-s50-t4	286	200	286	400	3	8	108	241	218.210	320	184.250	16%
mdp9-s50-t5	345	250	345	500	3	8	109	298	274.907	400	222.925	19%
mdp9-s50-t6	404	300	404	600	3	8	109	353	329.248	480	261.319	21%
mdp9-s50-t7	463	350	463	700	3	8	109	49406	383.290	560	296.269	23%
mdp9-s50-t8	522	400	522	800	3	8	109	530	438.786	640	328.550	25%
mdp9-s50-t9	581	450	581	900	3	8	108	370	496.466	720	355.263	28%
mdp9-s50-t10	640	500	640	1000	3	8	109	129	547.757	800	385.263	30%
mdp10-s50-t3	218	150	218	300	3	11	112	149	162.368	240	142.731	12%
mdp10-s50-t4	274	200	274	400	3	11	112	184	217.515	320	183.650	16%
mdp10-s50-t5	330	250	330	500	3	11	113	257	273.332	400	221.450	19%
mdp10-s50-t6	386	300	386	600	3	11	113	19741	327.268	480	257.394	21%
mdp10-s50-t7	442	350	442	700	3	11	113	28013	383.312	560	291.988	24%
mdp10-s50-t8	498	400	498	800	3	11	113	41748	439.826	640	316.600	28%
mdp10-s50-t9	554	450	554	900	3	11	113	34739	494.662	720	345.844	30%
mdp10-s50-t10	610	500	610	1000	3	11	113	58270	549.867	800	364.569	34%

IBM Research

UCI

SysAdmin POMDP

Instance	с	d	р	u	k	s	w	utime (sec)	ub wmbmm	ltime (sec)	lb snap	$_{\left(\frac{ub-lb}{ub}\right)}^{gap}$
1.0.50.0	0.51	150	0.51	200		10	200	2000		2.40		2017
pomdp9-s50-t3	371	150	371	300	3	10	300	7660	177.597	240	141.575	20%
pomdp9-s50-t4	478	200	478	400	3	10	400	20747	244.415	320	182.775	25%
pomdp9-s50-t5	585	250	585	500	3	10	501	27369	315.351	400	223.000	29%
pomdp9-s50-t6	692	300	692	600	3	10	600	69085	384.860	480	257.350	33%
pomdp9-s50-t7	799	350	799	700	3	10	701	107660	454.910	560	290.425	36%
pomdp9-s50-t8	906	400	906	800	3	10	800	224727	528.582	640	323.575	39%
pomdp9-s50-t9	1013	450	1013	900	3	10	900	207883	599.923	720	348.325	42%
pomdp9-s50-t10	1120	500	1120	1000	3	10	1000	231511	668.883	800	372.750	44%
pomdp10-s50-t3	371	150	371	300	3	10	300	6249	180.257	240	141.950	21%
pomdp10-s50-t4	478	200	478	400	3	10	400	14333	253.043	320	184.925	27%
pomdp10-s50-t5	585	250	585	500	3	10	501	36078	331.108	400	221.775	33%
pomdp10-s50-t6	692	300	692	600	3	10	600	66848	409.456	480	258.525	37%
pomdp10-s50-t7	799	350	799	700	3	10	701	121312	480.291	560	290.300	40%
pomdp10-s50-t8	906	400	906	800	3	10	800	116597	563.324	640	321.425	43%
pomdp10-s50-t9	1013	450	1013	900	3	10	900	290003	633.134	720	346.500	45%
pomdp10-s50-t10	1120	500	1120	1000	3	10	1000	244446	707.226	800	375.900	47%

Conclusion and Future Directions

- Extend Tree-Clustering Framework in PGM for IDs and LIMIDs
 - Graph-based tree-clustering procedure for IDs and LIMIDs
 - Hierarchical message passing algorithm for exact inference
- Simple and Scalable Bounding Scheme for IDs
 - Exponentiating utility functions and reuse decomposition bounds for MMAP
- Future Directions
 - Guide heuristic search for finding MEU in IDs and LIMIDs
 - Extend relaxation schemes in PGM to submodel-tree decomposition
 - Submodel-tree clustering framework for multi-agent IDs

