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ABSTRACT
Evolutionary Game Theory is an application of game theory to
evolving populations of organisms. Of recent interest are EGT mod-
els situated on structured populations or spatial evolutionary games.
Due to the complexity added by introducing a population structure,
model analysis is usually performed through agent-based Monte-
Carlo simulations. However, it can be difficult to obtain desired
quantities of interest from these simulations due to stochastic ef-
fects. We first define a framework for modeling spatial evolutionary
games using Dynamic Bayesian Networks that capture the underly-
ing stochastic process. The resulting Dynamic Bayesian Networks
can be queried for quantities of interest by performing exact in-
ference on the network. Taking inspiration from moment-closure
approximation techniques, we then propose a method for produc-
ing approximations of the spatial evolutionary game through the
truncation of the corresponding DBN. This method generalizes
mean-field and pair approximations in the literature for spatial
evolutionary games and we show that a special case of the method
can be used to derive the differential equations for pair approxima-
tion. Furthermore, we show empirical results demonstrating the
capability of the method to obtain much better accuracy than pair
approximation with respect to stochastic simulations.
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1 INTRODUCTION
Evolutionary Game Theory (EGT) was initially developed to model
biological evolution [18] but has found additional use in research
on the evolution of cultural phenomena [8], and a variety of multi-
agent systems topics [2, 22, 28, 29, 35]. EGT models provide a frame-
work for modeling the time evolution of a population of agents that
interact with each other through strategic games whose outcome
determines each individual’s evolutionary fitness. These models
typically disregard any game-theoretic assumptions of rational-
ity on individual agents and instead let individuals reproduce or
change strategies stochastically based on a population update rule.
A central tenet of these models is the idea that individuals that
obtain a higher fitness are more likely to reproduce than those that
obtained a lower fitness. When modeling cultural evolution, this
implies that behaviors that give individuals a higher fitness are

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, London,
UK. © 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

more likely to spread through a population over time. While far
from an exact description of human interactions, EGT models can
be used to find trends that capture essential characteristics of the
modeled interactions [7, 9].

In applications such as modeling cultural evolution, we might be
interested in quantities such the proportions of each strategy or type
of individual in the population and how fast the proportions change
over time. These quantities have traditionally been studied using
systems of differential equations commonly termed as evolution-
ary game dynamics [5] that approximate the interactions between
agents in a population [33]. These models make the assumption that
the population is well-mixed so that each agent is likely to interact
with any other agent in the population. However, real world popu-
lations are rarely well-mixed and have relationships that would be
better described as a social network. This spatial component adds a
new level of complexity that is not easily addressed using existing
game dynamic approaches. Attempts have been made to extend
game dynamic models to spatial populations through techniques
such as pair approximation [12, 16].While these extensions may not
be very accurate with respect to the underlying stochastic model
[13, 15, 25, 31], there is still a great deal of interest in using them
to obtain qualitative insights into model behavior [11, 12, 19, 24].
Alternatively, one can rely on agent-based stochastic simulations
[1] to obtain insights into quantities of interest. However, there
are cases such as EGT models with multiple equilibria where it is
difficult to obtain the desired quantities of interest from the model
using agent-based simulations due to stochastic effects. Beyond
these specific situations, agent based simulations come with their
own limitations in that they are difficult to validate [17] and may
need to be repeated many times to reduce variability in results
obtained [21].

In this paper, we propose a framework for the exact modeling
of spatial evolutionary games using a Dynamic Bayesian Network
(DBN) [6], thus making the whole toolbox of probabilistic inference
algorithms applicable to such stochastic games [10]. Subsequently,
we develop a method for producing approximations of stochastic
spatial evolutionary games through the truncation of the corre-
sponding DBN. The approximation method we propose generalizes
existing mean-field techniques and their extensions in past litera-
ture [32] and we show that the framework can be used to obtain,
as special cases, Bayesian Networks that can be used to derive
the differential equations for existing pair approximation methods
[12]. The power of our methodology is that it allows for a flexible
framework for the exploration of approximation techniques such
as moment closure (see Section 2) and higher order approximations
beyond pair approximation that allow for better accuracy with
respect to the underlying stochastic model. Finally, we provide pre-
liminary empirical results illustrating the potential of our approach
in modeling stochastic simulations and its advantages over existing
approximations in the literature.



2 RELATEDWORK
Past research on the approximation of stochastic evolutionary dy-
namics has mainly focused on the investigation of different systems
of evolutionary dynamics. These dynamics are a continuous time
approximation of the original discrete time process specified by the
evolutionary game. The resulting systems of differential equations
can be viewed as population-level models as they model the evolu-
tionary game by analyzing the time evolution of the proportion of
agents playing each strategy in the population 𝑝𝑖 . For evolutionary
games defined on a well-mixed population, it is simple to derive
these dynamics by using the master equation that corresponds
to the Markov process specifying the underlying microscopic dy-
namics [33]. Since the population is well mixed, the fitness of an
individual is calculated from the proportion of each strategy in the
population. As they rely on population level averages, these type
of approximations are usually called mean-field approximations.

For spatial evolutionary games, the above techniques do not
produce a closed system of equations. When applying the master
equation to a spatial evolutionary game to find the time evolution of
the proportion of a strategy in the population, we arrive at equations
that depend on higher order quantities. Equations that specify the
time evolution of the proportion of agents playing each strategy 𝑝𝑖
in the population depend on the proportion of pairs of agents 𝑝𝑖 𝑗
playing different strategy pairs in the population. In turn, equations
that specify the time of evolution of pairs 𝑝𝑖 𝑗 will depend on the
proportion of triples 𝑝𝑖 𝑗𝑘 . This leads to a hierarchy of equations
defined up to proportions of groups of agents the size of the entire
population:

¤𝑝𝑖 = 𝐹 (𝑝𝑖 , 𝑝𝑖 𝑗 )
¤𝑝𝑖 𝑗 = 𝐺 (𝑝𝑖 , 𝑝𝑖 𝑗 , 𝑝𝑖 𝑗𝑘 )
¤𝑝𝑖 𝑗𝑙 = 𝐻 (𝑝𝑖 , 𝑝𝑖 𝑗 , 𝑝𝑖 𝑗𝑘 , 𝑝𝑖 𝑗𝑘𝑙 )
.
.
. (1)

These systems of equations are intractable to solve given a large
enough population size. Consequently, there is much work in past
literature [12, 16, 23, 26, 27, 31, 32] in which higher order propor-
tions are approximated using lower order proportions. This idea
of approximating higher order terms by lower order terms is an
approximation technique known as moment closure [20]. Pair ap-
proximation uses a specific case of moment closure in which triplet
terms are approximated using single and pair terms. For example,
[12] defines a pair approximation where second order conditional
probabilities are approximated using first order conditional proba-
bilities as follows:

𝑝𝑖 | 𝑗𝑘 ≈ 𝑝𝑖 | 𝑗
𝑝𝑖 | 𝑗𝑘𝑝 𝑗𝑘𝑝 𝑗 ≈ 𝑝𝑖 | 𝑗𝑝 𝑗𝑘𝑝 𝑗

𝑝𝑖 𝑗𝑘 ≈
𝑝𝑖 𝑗𝑝 𝑗𝑘

𝑝 𝑗
(2)

More complicated pair approximations can be defined such as those
based on the Kirkwood closure [23]:

𝑝𝑖 𝑗𝑘 ≈
𝑝𝑖 𝑗𝑝 𝑗𝑘𝑝𝑖𝑘

𝑝𝑖𝑝 𝑗𝑝𝑘
(3)

Higher order moment closures such as triplet approximations or
𝑛-point approximations have also been considered [32]. Likewise,
in the literature of probabilistic graphical models it is common to
model a complex probability distribution using factors of smaller
order [6].

3 SPATIAL EVOLUTIONARY GAMES
We consider a population of𝑀 agents {1, ..., 𝑀} that are placed on
evenly-spaced points in a grid with circulatory boundary conditions.
Each agent can interact with 𝑑 neighbors specified by a chosen
neighborhood structure. We assume that each agent interacts with
their von Neumann neighborhood (𝑑 = 4) on the grid, but the
methods in this paper can easily be applied to other neighborhoods
such as a Moore neighborhood (𝑑 = 8). We will denote the set of
agents in neighborhood of a given agent 𝑖 as 𝑁 (𝑖).

Let 𝑆 be the set of strategies that each agent can choose from. To
simplify our discussion, we will only consider memoryless strate-
gies (excluding strategies such as Tit-for-Tat). An evolutionary
game consists of 𝑇 iterations, each consisting of an interaction
phase followed by an update phase. Each iteration, agents update
their strategies according to the rules of the evolutionary game
based off of the fitness they obtain from the interaction phase.

3.1 Interaction phase
Each agent 𝑖 chooses some action 𝑠𝑖 ∈ 𝑆 and receives a payoff 𝜋𝑖
which is the sum of the payoffs received from playing a normal-
form game with each of its neighbors. A symmetric normal form
game with two strategies 𝑆 = {𝐶, 𝐷} has a payoff (or utility) matrix
U as follows:

C D
C a b
D c d

For this given payoff matrix, an agent playing the strategy𝐶 against
a neighbor playing strategy 𝐷 will receive 𝑏 payoff from its in-
teraction with that neighbor. We will denote this operation as
U[𝐶, 𝐷] = 𝑏. Since the game is symmetric, the neighbor’s pay-
off will be U[𝐷,𝐶] = 𝑐 . We can then write the payoff received by
an agent during the interaction phase as:

𝜋𝑖 =
∑

𝑗 ∈𝑁 (𝑖)
U[𝑠𝑖 , 𝑠 𝑗 ], (4)

where 𝑁 (𝑖) is the set of all neighbors of 𝑖 .

3.2 Update phase
Each time the update phase occurs, a percentage of agents 𝛾 in
the population usse an update rule (see next paragraph) to decide
whether to change strategies or how to reproduce on the grid.
If the percentage chosen for strategy updating encompasses the
entire population, then every agent will update its strategy at the
same time (synchronous updating). However, in most of the EGT
modeling efforts we have seen, just a single agent updates its payoff
at each iteration (asynchronous updating) [12].

There are a number of different update rules ([14, Section 4.1]
gives a summary). One of the best known, and the one we use in
this paper, is the Fermi rule, in which an agent compares its payoff 𝜋

from the interaction phase with the payoff 𝜋 ′ of a randomly chosen



neighbor and switches to the neighbor’s strategy with probability
Pr𝑓 (𝜋, 𝜋 ′), where

Pr𝑓 (𝜋, 𝜋 ′) = 1
(1 + 𝑒−𝑠 (𝜋 ′−𝜋 ) )

(5)

where 𝑠 > 0 is a constant called the selection strength. Some models
also define an exploration dynamic in which each agent can also
have a small probability ` > 0 of mutation in which they change to
a random strategy during the update phase [34].

4 BAYESIAN NETWORK APPROXIMATIONS
We start by defining a general framework for using a Bayesian
Network to model the exact stochastic process present in a spa-
tial evolutionary game. We follow this by describing a method for
approximating this exact model by truncating the network. Ad-
ditional steps that are analogous to moment closure are taken to
complete the approximation by filling in the unknown sections of
the truncated network. We will then demonstrate how these trun-
cated networks can be used to derive existing pair approximation
equations in the literature.

4.1 Exact Model
We first define a model that fully captures our spatial evolutionary
game using a Dynamic Bayesian Network (DBN). For our example,
we will model the stochastic spatial evolutionary game using the
parameters listed in Table 1. The chosen game is a two strategy
game with a payoff matrix that is based on the prisoner’s dilemma
using the synchronous (𝛾 = 1.0) Fermi-rule.

Given an evolutionary game, we define a Dynamic Bayesian
Network (𝑋 (𝑡), 𝐷 (𝑡), 𝐹 (𝑡)), where the variable set 𝑋 is split into
two sets of variables 𝑋 = 𝐴 ∪ 𝑃𝑎𝑦 at each iteration.

• 𝐴(𝑡)𝑖, 𝑗 ∈ 𝐴: Each of these variables represents the strategy
of the agent placed at coordinate (𝑖, 𝑗) on the grid at the start
of each iteration 𝑡 and its values are the strategy set 𝑆 .

• 𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 ∈ 𝑃𝑎𝑦: Each of these variables represent the payoff
received by the agent at (𝑖, 𝑗) during the interaction phase.
The domain of these variables consists of all possible payoff
values.

Each 𝑥𝑖 is also associatedwith a parent function 𝐹 (𝑡)𝑖 = Pr(𝑥𝑖 | 𝑝𝑎𝑖 )
where 𝑝𝑎𝑖 is the set of parent nodes of 𝑥𝑖 . Next we will define these
functions 𝐹 (𝑡)𝑖 as Conditional Probability Tables (CPTs) for the

Table 1: Spatial Evolutionary Game Parameters

Parameter Value
Graph Type Grid
Graph Degree 𝑑 = 4 (von Neumann neighborhood)
Update Rule Fermi Rule
Update Percentage 𝛾 = 1.0
Selection Strength 𝑠 = 5/3
Mutation Rate ` = 0.05
Strategies 𝑆 = {𝐶, 𝐷}

Payoff Matrix U =

(
2 −1
3 0

)

payoff nodes and the strategy nodes at time 𝑡 + 1. In the following
discussion we will interchange the terms "nodes" and "variables".

4.2 CPT for Payoff Nodes
Each node 𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 has 𝑑 + 1 parents: 𝐴(𝑡)𝑖, 𝑗 and its 𝑑 neighbors.
The conditional probability function 𝑃 (𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠) is con-
structed as a logical function using the payoff matrix P. Like in the
spatial evolutionary game, we have that 𝑁 (𝐴(𝑡)𝑖, 𝑗 ) is the neighbor-
hood of 𝐴(𝑡)𝑖, 𝑗 . Then we have:

Pr(𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 | 𝐴(𝑡)𝑖, 𝑗 , 𝑁 (𝐴(𝑡)𝑖, 𝑗 ))

=

{
1 if 𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 =

∑
𝐴(𝑡 )𝑘,𝑙 ∈𝑁 (𝐴(𝑡 )𝑖,𝑗 ) U[𝐴(𝑡)𝑖, 𝑗 , 𝐴(𝑡)𝑘,𝑙 ]

0 otherwise
(6)

4.3 CPT for t+1 Strategy Variables

Figure 1: Upper part of the decision tree for t+1 variables

Each 𝐴(𝑡 + 1)𝑖, 𝑗 has 2(𝑑 + 1) parents: 𝐴(𝑡)𝑖, 𝑗 , 𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 and the 𝐴(𝑡)
and 𝑃𝑎𝑦 (𝑡) nodes for each of the 𝑑 neighbors of 𝐴(𝑡)𝑖, 𝑗 . Our goal is
to define:

Pr(𝐴(𝑡 + 1)𝑖, 𝑗 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
Recall that during the update phase of the evolutionary game, a
percentage 𝛾 of agents are chosen for updating. Each agent chosen
for updating chooses a random neighbor from its 𝑑 neighbors to
compare its payoffs with. Given a random neighbor 𝐴(𝑡)𝑘,𝑙 , 𝐴(𝑡)𝑖, 𝑗
has a Pr𝑓 (𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 , 𝑃𝑎𝑦 (𝑡)𝑘,𝑙 ) chance of copying the strategy of
𝐴(𝑡)𝑘,𝑙 . Additionally, separate from the Fermi rule, each agent has
` probability of mutating to a random strategy. By conditioning on
the value of each of these independent events happening, we can
compute our transition probability on a case by case basis.

We follow the convention in [3] to represent this computation as
a decision tree. We define the following three additional variables
to represent events in the decision tree:

• update: is the node within the fraction 𝛾 of the population
chosen for updating?



• mut: did a mutation event happen?
• rand: which neighbor did the node choose to compare its
payoff with?

The decision tree can be seen in Fig. 1 and Fig. 2 where circular
nodes denote variables and square nodes denote the value of the
variable. The decision tree specifies the context independent paths
that make up the CPT for 𝐴(𝑡 + 1)𝑖, 𝑗 .

In the case where a node is chosen for updating and mutation
does not happen, the final probability must be conditioned on the
path chosen. In Fig. 2 we have branches of the variable rand where
𝐴𝑖, 𝑗 chooses different neighbors 𝐴𝑛𝑒𝑖 to compare its payoff to. For
each neighbor 𝐴𝑛𝑒𝑖 , the probability of the bottom edges of Fig. 2 is:

Pr(𝐴(𝑡 + 1)𝑖 𝑗 = 𝑠)

=


𝑃𝑟 𝑓 (𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 , 𝑃𝑎𝑦 (𝑡)𝑛𝑒𝑖 ) if 𝐴(𝑡)𝑛𝑒𝑖 = 𝑠

1 − 𝑃𝑟 𝑓 (𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 , 𝑃𝑎𝑦 (𝑡)𝑛𝑒𝑖 ) if 𝐴(𝑡)𝑖, 𝑗 = 𝑠

0 otherwise
(7)

Figure 2: Cross section of (mut = no) branch

We can obtain also an explicit representation for Pr(𝐴(𝑡 + 1)𝑖, 𝑗 =
𝑠𝑡+1 | 𝐴(𝑡)𝑖, 𝑗 = 𝑠𝑡 , other parents). For notation purposes, we use
indicator functions to define the following quantities:

Pr𝛿 = 1𝐴(𝑡+1)𝑖,𝑗=𝐴(𝑡 )𝑘,𝑙
Pr∅ = 1𝐴(𝑡+1)𝑖,𝑗=𝐴(𝑡 )𝑖,𝑗

Following a case by case breakdown, we can then write:

Pr(𝐴(𝑡 + 1)𝑖, 𝑗 = 𝑠𝑡+1 | 𝐴(𝑡)𝑖, 𝑗 = 𝑠𝑡 , other parents) = (1 − 𝛾)Pr∅+

𝛾
[ `

|𝑆 | + (1 − `)
∑

𝐴(𝑡 )𝑘,𝑙 ∈𝑁 (𝐴(𝑡 )𝑖,𝑗 )

1
𝑑
Pr𝑓 (𝑘, 𝑙)Pr𝛿 (1 − Pr∅) + Pr∅

]
(8)

where Pr𝑓 (𝑘, 𝑙) = Pr𝑓 (𝑃𝑎𝑦 (𝑡)𝑖, 𝑗 , 𝑃𝑎𝑦 (𝑡)𝑘,𝑙 ). The final network can
be seen in Figure 3, which displays a subset of the full network that
contains all of the immediate parents of 𝐴(𝑡 + 1)1,1. Several of the
parent nodes 𝐴(𝑡)𝑘,𝑙 of the payoff nodes have been omitted in this
cross-sectional view.

The resulting DBN formulation fully encodes the stochastic pro-
cess of the spatial evolutionary game. For a given stochastic spatial
evolutionary game, an agent-based simulation is equivalent to run-
ning a Monte-Carlo simulation on the corresponding DBN. Due
to the symmetry of the grid structure, the marginal distribution of
each𝐴(𝑡)𝑖, 𝑗 for all (𝑖, 𝑗) are the same. Therefore, one can obtain the
proportion of a population playing a given strategy at time 𝑡 by
querying the marginal distribution of any 𝐴(𝑡)𝑖, 𝑗 . Quantities such
as fixation probabilities as in [26] can also be calculated by query-
ing the Bayesian Network for the probability that all of the stategy
nodes 𝐴(𝑇 )𝑖, 𝑗 ∈ 𝐴 have the same strategy at the time horizon 𝑇 .

The method for defining a DBN can be applied to other strategy
update rules such as the Death-Birth or Birth-Death rules. In those
cases, it would be necessary to compute different values for equation
8. For more complicated update rules such as an extended Death-
Birth rule where dead nodes are not always replaced every iteration,
it may be necessary to add an additional layer of nodes in the
network to represent intermediate states.

It is well known that exact inference is exponential in size of the
network. Therefore, if the number of agents𝑀 is large, computation
will take too much time. To address this computation issue we pro-
pose a novel method for truncating the full DBN taking inspiration
from moment-closure methods in the mean-field approximation
literature.

Figure 3: Slice of Dynamic Bayesian Network for the Fermi
update rule centered at the agent located at position (1,1)



5 TRUNCATION APPROXIMATION
In our approximation method, we construct a separate Bayesian
Network for each iteration that takes the states of each agent from
𝑡 to 𝑡 +1. We term the nodes at time 𝑡 the input nodes and the nodes
at 𝑡 + 1 as the output nodes for the Bayesian Network at iteration 𝑡 .
Unlike the full DBN in the exact model, the number of input nodes
at 𝑡 and the number of output nodes at 𝑡 + 1 are not the same.

Our target is to estimate the joint probability distribution over
the truncated neighborhood at time 𝑡 , and use the transition prob-
abilities as described in Figure 3 of the agent variables at time
𝑡 + 1. Notice that we have the exact distribution over the truncated
neighborhood at 𝑡 = 0 which is the product of all the single agents
marginal probabilities defined by the initial condition. However, the
distribution of the truncated neighborhood of subsequent iterations
is no longer sparse as the strategies may have significant proba-
bilistic dependencies which are hard to compute. Thus the idea is
to approximate the joint probability of the agents in the input of
any iteration using only marginal probabilities on single variables
or pairwise probabilistic quantities. Because of the high symme-
try between the agents, those will be derived from representative
agents distributions at the output of the previous iteration.

The method consists of three steps. First, we decide on what
subset of agents will make up the truncation neighborhood. The
neighborhood defines what agents are represented as input nodes
in the Bayesian Network at the start of each iteration. Second,
we decide on what distributions to extract from the 𝑡 + 1 nodes
that will be used to define the strategy state nodes for the next
iteration. These could be marginal distributions over single output
nodes, joint distributions over multiple output nodes, or conditional
distributions of an output node conditioned on other nodes. Finally
we decide how to define the input nodes for the network at 𝑡 + 1
using the distributions obtained by querying the output layer of
the previous Bayesian Network.

Figure 4: Truncation Neighborhood

For our example, we can exploit the symmetry of the spatial
structure of the spatial evolutionary game when deciding on a
truncation neighborhood. As mentioned in the previous section,

the marginal distribution of any node 𝐴(𝑡)𝑖, 𝑗 on the network is the
same as the marginal distribution for every other 𝐴(𝑡)𝑘,𝑗 . For the
purpose of this truncation algorithm, we will denote arbitrarily
𝐴(𝑡)3,3 as the focal node. An example truncation neighborhood is
shown in in Fig. 4. This composes the set of nodes that will be the
input nodes to a given Bayesian Network at each iteration.

During the update process in the spatial evolutionary game, an
agent only looks in one direction to find a neighbor to update their
strategy. In addition to spatial symmetry, the grid structure of our
population possesses rotational symmetry. We will therefore des-
ignate one neighbor as representative for the focal agent’s update.
Using this rotational symmetry, we choose to look at an arbitrary
update direction and assume that the node 𝐴(𝑡)3,3 will update by
looking at 𝐴(𝑡)3,2. We essentially truncate the branches of the rand
variable in Fig. 2 to have only one neighbor to choose from with a
probability of 1.

By exploiting symmetry and choosing an arbitrary update di-
rection beforehand, this particular choice of neighborhood encap-
sulates all possible agents at time 𝑡 = 0 that can affect the states
of the focal node 𝐴3,3 and its neighboring node 𝐴3,2 at time 𝑡 = 1.
We then follow the method in the previous section to construct
the Bayesian Network for 𝑡 = 1 and use the transition probabilities
from time 𝑡 to time 𝑡 + 1 as defined in Figure 3. Due to the limited
number of nodes at time 𝑡 , we are unable to construct 𝑡 + 1 versions
of each node in the truncated neighborhood. With this truncated
neighborhood, the output nodes will consist of the focal node and
its neighbor𝐴3,2 instead of all the nodes in the truncation neighbor-
hood. The resulting network can be seen in Figure 5. Unlike Figure
3 which is a cross-section of the full DBN, Figure 5 displays the size
of the entire Bayesian Network at 𝑡 = 0. An additional node labeled
"edgeUpdate" is also included that is simply the joint distribution
over 𝐴3,3 (𝑡 + 1) and 𝐴3,2 (𝑡 + 1).

Figure 5: Truncated Bayesian Network at 𝑡 = 0

The resulting network is small enough that we can run exact
inference algorithms such as variable elimination in a reasonable
amount of time in order to compute the needed marginal and pair-
wise conditional distributions of the output nodes at 𝑡 +1. Clearly, in
principle, we can also derive higher distributions such as the entire
distribution over the 5 agent variables (𝐴3,3, 𝐴3,2, 𝐴2,3, 𝐴3,4, 𝐴4,3).
For this example, we will query the marginal distribution of the
focal node and the conditional distribution of 𝐴3,2 conditioned
on the focal node at 𝑡 + 1 in order to calculate the probability



distributions 𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗 . Since we assumed that 𝐴3,3 will reproduce
by looking at 𝐴3,2, the probability of 𝐴3,2 conditioned on 𝐴3,3 is
not the same as the probability of 𝐴2,3, 𝐴3,4, 𝐴4,3 conditioned on
𝐴3,3. Since we don’t know the 𝑡 + 1 distributions of 𝐴2,3, 𝐴3,4, 𝐴4,3
conditioned on 𝐴3,3, we will approximate 𝑃𝑠𝑖 |𝑠 𝑗 using 𝑃𝑠𝑖 through
a weighted average.

𝑃𝑠𝑖 = Pr(𝐴3,3 (𝑡 + 1) = 𝑠𝑖 ), ∀𝑠𝑖 ∈ 𝑆 (9)

𝑃𝑠𝑖 |𝑠 𝑗 =
1
𝑑
Pr(𝐴3,2 (𝑡 + 1) = 𝑠𝑖 | 𝐴3,3 (𝑡 + 1) = 𝑠 𝑗 )

+ 𝑑 − 1
𝑑

𝑃𝑠𝑖 , ∀𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 (10)

The next step in the approximation algorithm is to define the distri-
bution of the strategy state nodes at the next iteration. At 𝑡 = 0, the
input nodes followed a distribution defined by the initial condition.
Because the output nodes of the Bayesian Network represent fewer
nodes than the input nodes, we do not have a joint distribution over
the output nodes at the previous iteration to carry over to the next
iteration. We approximate the joint distribution over the truncation
neighborhood at the next iteration by defining the distribution of
each node using only the lower order distributions stored as 𝑃𝑠𝑖 and
𝑃𝑠𝑖 |𝑠 𝑗 . By doing this, we make several independence assumptions
over the nodes in the input layer. This step is analogous to the idea
of moment closures present in pair approximation equations.

In order to define all the nodes in the truncation neighborhood
using conditional probability distributions, we need to decide on
a definition order. One heuristic for this is to simply define each
node in a breadth-first search manner starting from the focal node.
This changes the input layer in Fig. 5 into a Bayesian network with
three layers in Fig. 6.

Marginal: 𝐴3,3

Conditional: 𝐴3,3 → 𝐴3,2, 𝐴2,3, 𝐴3,4, 𝐴4,3

𝐴3,2 → 𝐴2,2, 𝐴3,1, 𝐴4,2

𝐴3,1 → 𝐴2,1, 𝐴3,0, 𝐴4,1

𝐴2,2 → 𝐴1,2

𝐴4,2 → 𝐴5,2 (11)

Each node is on the left hand side of an entry in the order is defined
using the conditional probability distribution stored as 𝑃𝑖, 𝑗 . An ex-
ample is provided for parent link from𝐴3,2 to𝐴3,1 in Table 2. Notice
that we use the conditional probabilities 𝑃𝑖, 𝑗 to define nodes that
are beyond the neighbors directly adjacent to the focal node. The

Table 2: Conditional Probability Table for Node Definition

𝐴3,2 𝐴3,1 𝑃 (𝐴3,1 | 𝐴3,2)
C C 𝑃𝐶 |𝐶
C D 𝑃𝐷 |𝐶
D C 𝑃𝐶 |𝐷
D D 𝑃𝐷 |𝐷

framework allows for a wide variety of truncation neighborhoods,
𝑡 + 1 query choices, and definition orders.

Figure 6: Truncated Bayesian Network at 𝑡 > 0

5.1 Pair Approximation as a Special Case
In this section, we show that there is a set of approximation parame-
ters that result in a Bayesian Network that can be used to derive the
differential equations for pair approximation. We will not provide
a general proof but rather illustrate this by modeling the general
spatial evolutionary game in the appendix of [12]. The strategy
space consists of two strategies 𝑆 = {𝐶, 𝐷} and the evolutionary
game uses asynchronous updating with the Fermi rule. We set our
framework parameters to be:

• Truncated Neighborhood:
{𝐴2,2, 𝐴2,1, 𝐴3, 2, 𝐴2,3, 𝐴1,2, 𝐴1,1, 𝐴3,1, 𝐴2,0}

• Query Values:
𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗

• Definition Order:

Marginal: 𝐴2,2

Conditional: 𝐴2,2 → 𝐴2,1, 𝐴3,2, 𝐴2,3, 𝐴1,2

𝐴2,1 → 𝐴1,1, 𝐴3,1, 𝐴2,0

Figure 7: Truncated Bayesian Network for Pair Approxima-
tion

We start by considering the probability that 𝐴2,2 (𝑡 + 1) takes the
value of 𝐶 . We condition this on the value of 𝐴2,2 (𝑡):

Pr(𝐴2,2 (𝑡 + 1) = 𝐶) =∑
𝑠∈𝑆

Pr(𝐴2,2 (𝑡 + 1) = 𝐶 | 𝐴2,2 (𝑡) = 𝑠) Pr(𝐴2,2 (𝑡) = 𝑠) (12)



Recall that 𝐴2,2 (𝑡) is distributed according to the current marginal
distribution 𝑃𝑖 :

Pr(𝐴2,2 (𝑡 + 1) = 𝐶) =∑
𝑠∈𝑆

𝑃𝑠 · Pr(𝐴2,2 (𝑡 + 1) = 𝐶 | 𝐴2,2 (𝑡) = 𝑠) (13)

Consider the probability that the focal player playing the strategy
𝐷 switches the the strategy𝐶 . Let 𝑘𝐶 be the number of neighbors of
the focal node playing𝐶 . Since all nodes are independently defined,
the nodes are 𝐶 with probability 𝑃𝐶 |𝐷 . The probability that 𝑘𝐶 of
the nodes 𝐴2,1, 𝐴3,2, 𝐴2,3, 𝐴1,2 are 𝐶 is:

Pr
𝑘𝐶

=
𝑑!

𝑘𝐶 !(𝑑 − 𝑘𝐶 )!
𝑝
𝑘𝐶
𝐶 |𝐷𝑝

𝑑−𝑘𝐶
𝐷 |𝐷 (14)

Without loss of generality, we assign the neighboring 𝐶-player
to be 𝐴2,1. We can denote 𝑘 ′

𝐶
as the number of nodes among the

neighbors of 𝐴2,1 that are playing 𝐶 and calculate the probability
of a given configuration of 𝑘 ′

𝐶
.

Pr
𝑘′
𝐶

=
𝑑 − 1!

𝑘 ′
𝐶
!(𝑑 − 𝑘 ′

𝐶
− 1)!𝑝

𝑘′
𝐶

𝐶 |𝐷𝑝
𝑑−𝑘′

𝐶
−1

𝐷 |𝐷 (15)

We can now condition on the nodes 𝐴2,1, 𝐴3,2, 𝐴2,3, 𝐴1,2 and the
nodes 𝐴1,1, 𝐴3,1, 𝐴2,0 using 𝑘𝐶 and 𝑘 ′

𝐶
:

𝑑∑
𝑘𝐶

𝑑−1∑
𝑘′
𝐶

𝑘

𝑘𝐶
Pr
𝑘𝐶

Pr
𝑘′
𝐶

𝑃 (𝐴2,2 (𝑡 + 1) = 𝐶 | 𝐴2,2 (𝑡) = 𝐷,𝑘𝐶 , 𝑘
′
𝐶 ) (16)

The value of both payoff nodes can be uniquely obtained from the
amount of cooperators 𝑘𝐶 , 𝑘 ′𝐶 among the corresponding neighbors.
Given that we condition on 𝑝𝑎𝑦2,1, 𝑝𝑎𝑦2,2, 𝐴2,2, and 𝐴2,1, the distri-
bution of𝐴2,2 (𝑡 +1) can be obtained from the the CPT of𝐴2,2 (𝑡 +1).
In this case for the asynchronous Fermi rule, we have that:

Pr(𝐴2,2 (𝑡 + 1) = 𝐶 | 𝐴2,2 (𝑡) = 𝑠, 𝑘𝐶 , 𝑘
′
𝐶 ) ={

1
𝑀
𝑓 (𝑃𝑎𝑦𝐶 (𝑘 ′𝐶 ) − 𝑃𝑎𝑦𝐷 (𝑘𝐶 )) if 𝐴2,2 (𝑡) = 𝐷

𝑀−1
𝑀

+ 1
𝑀
(1 − 𝑓 (𝑃𝑎𝑦𝐷 (𝑘 ′

𝐶
) − 𝑃𝑎𝑦𝐶 (𝑘𝐶 ))) if 𝐴2,2 (𝑡) = 𝐶

(17)

Then the final probability has the form:

Pr(𝐴2,2 (𝑡 + 1) = 𝐶) =
𝑑∑
𝑘𝐶

𝑑−1∑
𝑘′
𝐶

𝑘

𝑘𝐶
𝑃𝑟 (𝑘𝐶 )𝑃𝑟 (𝑘 ′𝐶 )

[𝑃𝐷
𝑀

𝑓 (𝑃𝑎𝑦𝐶 (𝑘 ′𝐶 ) − 𝑃𝑎𝑦𝐷 (𝑘𝐶 ))+

𝑃𝐶 (
𝑀 − 1
𝑀

+ 1
𝑀

(1 − 𝑓 (𝑃𝑎𝑦𝐷 (𝑘 ′𝐶 ) − 𝑃𝑎𝑦𝐶 (𝑘𝐶 ))))
]

(18)

We can move the probability 𝑃𝐶 out from this expression and write
an equation of the form 𝑃𝐶 (𝑡 + 1) = 𝑃𝐶 (𝑡) + Δ𝑃𝐶 :

𝑃𝐶 (𝑡 + 1) =

𝑃𝐶 (𝑡) +
𝑑∑
𝑘𝐶

𝑑−1∑
𝑘′
𝐶

𝑘

𝑘𝐶
𝑃𝑟 (𝑘𝐶 )𝑃𝑟 (𝑘 ′𝐶 )

[𝑃𝐷
𝑀

𝑓 (𝑃𝑎𝑦𝐶 (𝑘 ′𝐶 ) − 𝑃𝑎𝑦𝐷 (𝑘𝐶 ))+

− 𝑃𝐶

𝑀
𝑓 (𝑃𝑎𝑦𝐷 (𝑘 ′𝐶 ) − 𝑃𝑎𝑦𝐶 (𝑘𝐶 ))))

]
(19)

Taking

¤𝑝𝐶 = lim
𝑀→∞

Δ𝑃𝐶
1/𝑀 (20)

recovers exactly the differential equation for the time evolution of
proportion of 𝐶 agents in the population as in [12]. We can follow
this step by step expansion of the probabilities in the Bayesian Net-
work for the pair level probabilities and arrive at the corresponding
equations for the time evolution of the pair level quantity 𝑝𝐶𝐶 .

6 EMPIRICAL EVALUATION
We compare our different approximation methods with agent based-
simulations. The parameters for each of the approximations tested
are listed in Table 4. These include the example shown in Fig. 5 and
Fig. 6 called BN-Medium and a case equivalent to pair approxima-
tion called BN-PA. We also include two more cases: BN-MF and
BN-Large. BN-MF has the same neighborhood as BN-PA but the
input probability distribution is defined using only the marginal
probabilities obtained from the previous iteration. On the other
hand, BN-Large captures all the nodes that can impact a focal node
directly and all their direct neighbors.

We run empirical experiments on a selection of commonly en-
countered games in evolutionary game theory literature (see Table
3). Our spatial evolutionary game is simulated on a 50x50 grid with
parameters (with the exception of the payoff matrix) as specified in
Table 1. The time evolution graphs for the simulation are obtained
by averaging the results of 20 simulations on the 50x50 grid.

Our results show that in games where pair approximation (BN-
PA) obtains a good agreement with the simulation results (Fig. 8),
the larger approximation neighborhoods reduce the quantitative
error in the time evolution graphs. In these cases, all approximation
methods converge to the same equilibrium as the simulation. Yet,
larger neighborhoods yield more accurate values for the rate of
change of each strategy over time before equilibrium.

Previous research in pair approximation on 2x2 games (see [30,
Section 3.8]) has indicated that pair approximation does not have
good quantitative agreement with simulation results in Stag Hunt
and Snowdrift games. Fig. 9 demonstrates this phenomena for a
Snowdrift game, one of the pathological cases where pair approxi-
mation does not converge to the same equilibrium as the simulation.
In this case we see clearly that choosing a larger neighborhood
decreases the error between the approximation and the simulation.
The difference between the results of pair approximation and larger
neighborhood approximations can be used to indicate situations
where the simulation will differ greatly from pair approximation
without having to run the simulations themselves. Interestingly, on
the tested games we observe that by increasing the neighborhood
size we can obtain results approaching the simulation results even
without using higher order probabilistic factors.

Table 3: Evolutionary Game Payoff Matrices

Game Name Payoff Matrix

Prisoner’s Dilemma
(
2 −1
3 0

)
Snowdrift

(
2 1
3 0

)
Battle of the Sexes,
symmetric version [4]

(
0 1
2 0

)



Table 4: Approximation Framework Parameters

Name Truncation Neighborhood Query/Input

BN-MF 𝑃𝑠𝑖 , i.i.d

BN-PA 𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗 , BFS

BN-Medium 𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗 , BFS

BN-Large 𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗 , BFS

7 DISCUSSION AND CONCLUSION
This paper presents a dynamic Bayesian network formulation of
spatial evolutionary games, thus making Bayesian network tech-
niques applicable to such games. Since exact inference on large
Bayesian networks is intractable, we accompany our formulation
with a new flexible approximation scheme that is tailored to the
inherent symmetry in spatial games by using a truncated neighbor-
hood of agents that lead to truncated DBNs, which are then solved
by exact inference algorithms. The truncated neighborhood can be
arbitrarily defined up to the size of the population in the original
stochastic simulations. By controlling the neighborhood size we
can control the strength of the approximation and its complexity.
We further show that certain approximated DBNs can be used to re-
cover discrete analogs of existing pair approximations in literature.
Our empirical results illustrate the potential of this approach.

Our DBN formulation is only in its initial steps. In the future,
we plan to explore how to tune the approximation parameters
to produce good truncated neighborhoods, and how to balance
accuracy and complexity. Specifically, neighborhoods larger than
BN-Medium are currently computationally intensive. However,
prior work [30, 31] has shown that while pair approximations are

Figure 8: Proportion of agents playing the second strategy in
a Prisoner’s Dilemma game (upper) and a symmetric Battle
of the Sexes game (lower) for different approximations

Figure 9: Proportion of agents playing the second strategy
in a Snowdrift game for different approximations

computationally efficient, they can miss the effect of long-range
correlations between agent states. We would therefore study the
computation versus accuracy trade-off in a hierarchy of truncated
networks. We will also explore the impact of various exact infer-
ence algorithms on such a hierarchy and the potential of using
large truncated networks that are processed using approximation
algorithms such as Belief propagation [6]. In particular, we will
investigate what truncated network topologies are effective for
approximate inference.
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