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Abstract

Bucket Elimination (BE) is a universal inference
scheme that can solve most tasks over probabilistic
and deterministic graphical models exactly. How-
ever, it often requires exponentially high levels of
memory (in the induced-width) preventing its ex-
ecution. In the spirit of exploiting Deep Learning
for inference tasks, in this paper, we will use neural
networks to approximate BE. The resulting Deep
Bucket Elimination (DBE) algorithm is developed
for computing the partition function. We provide a
proof-of-concept empirically using instances from
several different benchmarks, showing that DBE
can be a more accurate approximation than current
state-of-the-art approaches for approximating BE
(e.g. the mini-bucket schemes), especially when
problems are sufficiently hard.

1 Introduction
Probabilistic graphical models, including Bayesian networks
and Markov random fields, provide a framework for infor-
mation representation and reasoning [Pearl, 1988; Darwiche,
2009]. Bucket Elimination (BE) [Dechter, 1999] is a univer-
sal exact algorithm for probabilistic inference. It is a vari-
able elimination algorithm that can answer queries, rang-
ing from constraint satisfaction, to pure combinatorial op-
timization (e.g., Most Probable Explanation (MPE/MAP)),
and weighted counting (Partition Function, Probability of Ev-
idence, Solution Counting). Even the most challenging mixed
inference tasks, involving both optimization and summation,
such as computing the Marginal Map or the Maximum Ex-
pected Utility over an influence diagram can be addressed
with BE [Dechter, 2013]. Bucket Elimination algorithms are
time and space exponential in the induced-width of the un-
derlying dependency primal graph of the model. Thus when
the induced-width is too high these algorithms cannot be ex-
ecuted. In this work, we propose to address this fundamental
problem using Neural Network (NN) approximation.

To better understand how the induced width affects BE,
note that the central operation of BE is processing the bucket
function of each variable, one at a time, along a reverse or-
dering starting from the last variable in the ordering and

going towards the first. Processing a bucket involves com-
bining all its functions by a combination operator (often
product) and then eliminating the bucket’s variable yield-
ing the output bucket’s function λ (also called a message).
The arguments of λ (called its scope) are the set of all the
bucket’s variables excluding itself. The largest scope size
of all the buckets corresponds to the induced width of the
model given the ordering. The bucket’s function λ is then
placed in a parent bucket in the ordering which, among all
of its scope variables is the closest (i.e., latest). However,
if the induced-width is too high then a bucket’s function is
too large to fit memory and the computation becomes in-
feasible. Therefore, significant research went into bound-
ing BE. This includes the (weighted) mini-bucket scheme
[Dechter and Rish, 2003; Liu and Ihler, 2012] and gen-
eralized belief propagation schemes [Yedidia et al., 2000;
Mateescu et al., 2010].

We focus here on BE for the sum-product task, yet the
scheme that we will present is applicable to pure optimiza-
tion and to mixed, max-sum queries as well. In probabilistic
graphical models, the sum-product problem, which includes
the partition function and the probability of evidence as spe-
cial cases, has many applications in areas such as computa-
tional protein design, genetic linkage analysis, and schedul-
ing [Fishelson et al., 2005; Sontag et al., 2008].

Providing good approximations to BE is important not only
because it generates an answer to a query, but primarily be-
cause it compiles a structure and a set of messages that can be
used to answer multiple queries (e.g., the probability of evi-
dence for various evidence variables [Darwiche, 2009]). Also
because, the messages can be used as building blocks for gen-
erating heuristics for search or for providing good proposal
distributions for sampling, to further improve performance.
We will therefore consider and evaluate Deep Bucket Elimi-
nation (DBE) within the class of approximate BE schemes.

Contributions We present a novel algorithm, Deep Bucket
Elimination (DBE), that addresses the memory bottleneck
of bucket elimination by training NNs to approximate the
bucket-functions or messages. We provide an analysis of our
algorithm and compare DBE against one of the most power-
ful approximations of bucket-elimination, the weighted mini-
bucket scheme (WMB). Our empirical results show that DBE
is overall significantly more accurate than WMB especially on
hard instances and even when the latter is provided the most



generous memory resources feasible.
While DBE is not yet competitive time-wise, as it re-

quires training of many NNs, it can yield far more accu-
rate approximations of BE compared against other bucket-
elimination approximations which cannot improve their per-
formance even when given more time. Therefore, at this initial
exploration stage, we focus more on DBE’s accuracy, leav-
ing speed optimization issues for followup studies. We pro-
vided the source code to reproduce the results of this paper at
https://github.com/dechterlab/DBE.

Related work As noted, approximating and bounding the
Bucket Elimination algorithm has been carried out exten-
sively over the years for all probabilistic queries. Well known
is the Mini-Bucket Elimination scheme [Dechter and Rish,
2003] and its variants, such as Weighted Mini-Bucket (WMB),
augmented with message-passing cost-shifting [Liu and Ih-
ler, 2011]. Those schemes also extend into iterative versions
such as generalized belief propagation (IBP, IJGP) [Mateescu
et al., 2010; Liu and Ihler, 2012]. We therefore judge DBE
within this class of algorithms.

The approach we take here is to approximate BE’s mes-
sages by exploiting Deep Learning (DL) [Goodfellow et al.,
2016; Baldi, 2020], leveraging the well known universal ap-
proximation properties of neural networks (NN) [Hornik et
al., 1989; Cybenko, 1989; Baldi, 2020]. Our idea is closest
in spirit to the Neuro-Dynamic Programming scheme as out-
lined in [Bertsekas and Tsitsiklis, 1996] where the cost-to-go
functions generated by dynamic programming (that parallel
the bucket’s messages) can be approximated by neural net-
works. This is also highly related to Deep Reinforcement
Learning (DRL) [Mnih et al., 2015] where, in the absence of
a model, the value function is approximated by neural net-
works learned from temporal trajectories.

Our scheme can also fit within the unifying framework
of structural message passing (SMP) [Gogate and Domin-
gos, 2013] for approximating inference algorithms exploiting
functions’ structures in messages (e.g., ADD/AOMDD [Ma-
teescu et al., 2014] and sparse hash tables). These are defined
relative to message passing algorithms over cluster-graphs.

At first, our approach may seem closely related to Graph
Neural Networks [Baldi, 2020; Z and Savelsbergh, 1999;
Scarselli et al., 2009; Yoon et al., 2018; Heess et al., 2013]
which use message-passing architectures exploring the under-
lying graph structure of the problem, however our scheme
differs, significantly. In particular, we confine our learning to
within each problem instance only.

2 Background
A graphical model, such as a Bayesian or a Markov network
[Pearl, 1988; Darwiche, 2009; Dechter, 2013] can be defined
by a 3-tupleM = (X,D,F), where X = {Xi : i ∈ V, V =
{1, ..., n}} is a set of n variables indexed by V and D =
{Di : i ∈ V } is the set of finite domains for each Xi (i.e.
each Xi can only assume values in Di, and each Di is finite).
Each function fα ∈ F is defined over a subset of the variables
called its scope,Xα, where α ⊆ V are the indices of variables
in its scope and Dα denotes the Cartesian product of their
domains, so that fα : Dα → R≥ 0. The primal graph of

a graphical model associates each variable with a node. An
edge between node i and node j is created if and only if there
is a function containing Xi and Xj in its scope. Graphical
models can be used to represent a global function, often a
probability distribution, defined by Pr(X) ∝

∏
α fα(Xα).

An important task is to compute the normalizing constant,
also known as the partition function Z =

∑
X

∏
α fα(Xα).

Algorithm 1: [Deep] Bucket Elimination (DBE)
Input: Graphical modelM = (X,D,F), Ordering

d = X1, ..., Xn, i-bound i, error bound ε,
Output: the partition function constant and bucket

messages
1 foreach p from n to 1 do
2 (Initialize buckets) put all unplaced functions

mentioning Xp in Bp.
3 foreach p from n to 1 do
4 Let Xa be the closest ancestor variable of Xp in d

that is in bucket Bp; if none exists, let a = 0.
5 Formulate the bucket function:

λp→a ←
∑
Xp

∏
fα∈Bp fα

6 If width(XP ) ≤ i then λΦ,p→a ← λp→a,
7 else
8 λΦ,p→a ← approximate-NN (λp→a, ε )
9 Put λΦ,p→a in Ba

10 Z =
∏
λΦ∈B0

λΦ

11 return Z and All λΦ-messages generated

Bucket Elimination Given a variable ordering d, BE (pre-
sented in Algorithm 1) processes variables one by one with
respect to the reverse ordering. For the next variable Xp, it
considers all the functions in bucket Bp. This includes the
original functions in the graphical model as well as the mes-
sages created by processing previous variables (we do not
distinguish between the different functions in step 5). It then
marginalizesXp out from the product of functions inBp gen-
erating a new, so called, bucket function or message, denoted
λp→a, or λp for short.

λp→a =
∑
Xp

∏
fα∈Bi

fα (1)

where Xa is the latest variable in λ’s scope along the
ordering (constants are placed in B1), called its parent
bucket. The λ function is placed in the bucket of Xa, Ba.
Once all the variables are processed, BE outputs all the
messages and the exact value of Z by taking the product of
all the constant present in the bucket of the first variable.
Figure 1a shows a primal graph of a graphical model with
variables indexed from A to G with functions over pairs
of variables that are connected by an edge. In this partic-
ular example F = {f(A), f(A,B), f(A,D), f(A,G),
f(B,C), f(B,D), f(B,E), f(B,F ), f(C,D),
f(C,E), f(F,G)}.

Bucket-Elimination can be viewed as a 1-iteration
message-passing algorithm along its bucket-tree (bottom-up).
The nodes of the tree are the different buckets. Each bucket of

https://github.com/dechterlab/DBE
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(a) A primal graph.

(b) Bucket elimination example

Figure 1: (a) A primal graph of a graphical model with 7 variables.
(b) Illustration of BE with an ordering A B C E D F G.

a variable contains a set of the model’s functions depending
on the given order of processing (see Algorithm 1). There is
an arc from bucket Bp to a parent bucket Ba, if the function
created at bucket Bp is placed in bucket Ba. We illustrate BE
message flow on our example problem in Figure 1b.

Complexity Both the time and space complexity of BE
are exponential in the induced-width which can be com-
puted as a graph parameter based on the ordered primal graph
[Dechter, 2013]. The induced width is the size of the largest
number of variables, in the scope of any message. Clearly,
BE becomes impractical if the induced-width is large. We de-
note by scope(f) the set of arguments of function f and for
a bucket B, scope(B) is the number of variables in B when
processed (which is its induced-width + 1).

3 Deep Bucket Elimination
Algorithm 1 presents DBE. Note that DBE is identical to BE
except that, when the scope size of a bucket’s message to
be generated is beyond a given i-bound, it approximates the
bucket’s function by training a neural network as described
in lines 6-8. As before, the central operation of BE is pro-
cessing the bucket of each variable one at the time. How-
ever, when the bucket’s functions are too large, BE cannot be
executed. To overcome this limitation, we approximate the
bucket’s function by training a neural network architecture
having a manageable size, aiming towards achieving an er-
ror bounded by a given ε. For example, in Figure 1, if we
use an i-bound i = 2 with DBE, then instead of sending
an exact function from the bucket of D to the bucket of C,

λD→C(A,B,C), we will send a compact NN approximation
µΦ,D→C(A,B,C), as we will describe next.

Approximating a bucket message in DBE is carried out by
training a neural network using the approximate-NN in Algo-
rithm 2. Given a target function λ(S) (where S = scope(λ))
and an error bound ε, the training scheme first generates a
given number of samples from the function that serve as ex-
amples to train the neural network until either the ε error
bound is obtained, the validation set error increases for two
consecutive epochs (early stopping criteria), or until a cap
on the number of training iterations (#epochs) is reached.
Each sample is a pair (s, λ(s)), where s is a configuration
of S. Ideally, the number of samples needed can be tailored
to the size of the neural network’s architecture (i.e., number
of parameters), which in turn should be tuned to the com-
plexity of the function λ, and in particular to the size of its
scope. In principle, neural networks can approximate any
reasonable function [Hornik et al., 1989; Cybenko, 1989;
Baldi, 2020]. So, the main question is how to fit a NN’s archi-
tecture to approximate a function, while maintaining a desir-
able error bound, and how these local function errors translate
into a global error. Should we use a single or multiple archi-
tectures per problem instance or across instances of the same
benchmark? To reduce the space of design choices we com-
mit to a single NN architecture for all buckets. In summary,
the main design questions are: 1. How to select an effective
NN architecture for a given benchmark that accommodates
effective learning? 2. Given an architecture, how should we
generate samples? should we aim for a particular distribu-
tion? 3. How many samples do we need? Following we
address the aforementioned questions.

Algorithm 2: approximate-NN(λ, ε)
Input: λ function on a set of variables X , ε bounds

the bucket’s error,
set the #epochs a bound on the number of epochs,
NN, the neural network structure, ns: number of
samples
Output: µΦ(x), the trained neural network

1 train samples, val samples← generate-samples(λ, ns)
2 p=1
3 while val error ≥ ε &
¬early stopping(val error) & p≤#epochs do

4 µΦ ← train(NN, p, train samples)
5 val error← test(NN, p, val samples)
6 p←p+1
7 return µΦ and a bound on the error

Selecting the Architecture For benchmark instances hav-
ing no determinism (zero as the function value), we first
started with training a feedforward neural network with fully
connected layers. We experimented with several activation
functions, such as ReLU, Sigmoid, and Tanh activation func-
tions for each layer. We found that ReLU activation yields
stronger performance. The number of layers and the number
of units in each layer were tuned according to the complex-
ity of the instance (details in the Empirical Evaluation sec-



Figure 2: The structure of the MaskedNet.

tion). While the fully connected network works well when
the function has no determinism, it does not work well with
determinism. We found that the fully connected network with
ReLU were unable to correctly predict deterministic outputs.
Therefore for such benchmarks, we used a MaskedNet. The
MaskedNet first predicts whether the output is inconsistent
(zero), and if not, it predicts the value. The structure of the
MaskedNet is described in Figure 2. The input is sent to sev-
eral fully connected layers to obtain a feature vector which
summarizes the high level representation of the input. Then
this feature vector is sent to two sister networks: 1) a network
that outputs a binary mask which is responsible for determin-
ing whether the final output is zero, and 2) a network respon-
sible for predicting the target value of the Bucket’s function.
The activation functions of the final layer for the first and sec-
ond sub-networks are the logistic function and the softplus
function, respectively. The outputs from the two sister net-
works are multiplied together to get the final output of the
MaskedNet. In our experiments, we found that the Masked-
Net effectively decreases the error of the Bucket’s function
approximation compared to a plain feedforward network in
the case of problems with determinism.

Sample Generation Given a generic bucketB of a variable
X and a target bucket-function λ(S), where S is the scope
of the bucket’s output function, we generate a required num-
ber, ns, of training examples (s, λ(s)) by sampling config-
urations {S = s} uniformly at random from the domain of
scope S. Each generated configuration s should be paired
with its function value λ(s). We consult the definition of
the function bucket in Eq. 1 (see also step 5 of Algorithm
1). Specifically, given a configuration s over a bucket B,
S = scope(B) \ {X}, for each x ∈ DX we compute the
product ψ(s, x) =

∏
f∈B f(s, x) (i.e., a product of constants)

and then sum over the different values of x:

λ(s) =
∑
x

ψ(s, x).

Therefore, if we have r functions in a bucket, for each we
need to perform up to k function evaluations, where k is the
maximum variable’s domain size, yielding a total of O(rk)
function evaluations per sample s. For a tabular function the
evaluation is a simple table lookup. However, if the bucket
contains a trained NN, it will take longer to evaluate it.

Proposition 1. The time to generate m samples in a bucket
having r functions, when k bound the domain size and tNN
bounds the NN evaluation time is O(m · r · k · tNN ).

Training. Once the samples are available, we split them
into training (80%), validation (10%), and test sets (10%).
Given a NN architecture, it is then trained to minimize the
average mean square error on the training samples:

1

nstrain

nstrain∑
n=1

(λΦ(sn)− λ(sn))2

where nstrain is the number of training samples and sn is the
nth sample in the training set. We train the network using
the Adam optimizer [Kingma and Ba, 2014] with a learning
rate of 0.001 and a batchsize of 256. In our experiments,
Adam optimizer tends to converge faster and is more stable
than the SGD optimizer. The search of hyper-parameters such
as learning rate and batchsize is carried out using the Sherpa
software. [Hertela et al., 2020]. The NN is trained up to a
#epochs bound of 100. The model is evaluated on a holdout
validation set after each epoch. We stop training either when
the validation error is below ε, or when the bound #epochs
is reached. We perform early stopping [Prechelt, 1996] if the
validation error starts to increase for two consecutive epochs.
Subsequently, we evaluate the trained model on the test set to
ensure the performance of the model.

4 Complexity Analysis
We can immediately observe the following properties of
DBE(i):

1. The scope S of the NN functions of trained buckets sat-
isfies |S| ≥ i+ 1.

2. The number of buckets trained, #NB(i), can be com-
puted apriori from the graph along the ordering and it
corresponds to the number of variables whose induced-
width is larger or equal to i.

3. Exactly computed buckets include NN functions only
when their scopes is subsumed in the scope of a bucket
processed earlier (namely it is later in the ordering).

We use TNN (m) to denote the time bounds for training a
NN approximating a discrete function regardless of its num-
ber of arguments when using m samples.
Theorem 1 (complexity of DBE(i)). Given a problem having
n variables, r functions, domain size k, then DBE(i), when
using a neural network NN whose size is bounded by |NN |,
and whose evaluation time is bounded by tNN , has time com-
plexity

O(n · TNN (m) + n · tNN · r · ki+1))

and space complexity
O(nki + n · |NN |).

When TNN >> ki and when #NB(i) is the number of
trained buckets, DBE(i) time is also bounded by

O(#NB(i) · TNN (m) + n · r · tNN · ki+1))

and its memory is
O(#NB(i) · |NN |).



Proof. Exact buckets (that produce a tabular representation)
having at most i variables can be processed in time O(r ·
ki+1). But, if they include a NN, then computing an exact
bucket is O(r · tNN · ki+1) time-wise.

When approximating a bucket, we need to generatem sam-
ples from the bucket’s function which is O(m · r · k · tNN )
time (Proposition 1). The training time is TNN (m), yielding
a total of O(TNN (m) + m · r · k · tNN ). Given #NB(i)
trained buckets the total processing time is

O(#NB(i) · (TNN (m) +m · r · k · tNN ))+

(n−#NB(i))(r · tNN · ki+1))

which, when assuming that TNN >> ki and m ≤ ki simpli-
fies to

O(#NB(i) · TNN (m) + n · r · tNN · ki+1))

yielding the time claims.
Regarding memory, a bucket can include tabular functions

(with size O(ki)), and NN functions (with size O(|NN |)).
Therefore the memory requirement is O((n−#NB(i))ki+
#NB(i) · |NN |), yielding the memory claims.

5 Empirical Evaluation
Algorithms We ran experiments comparing DBE against
the weighted mini bucket WMB scheme [Dechter and Rish,
2003; Liu and Ihler, 2012]. We use WMB as our baseline
because this is one of the strongest BE schemes that approx-
imates buckets functions. Algorithms in this class, such as
generalized BP [Mateescu et al., 2010; J. S. Yedidia and
Weiss, 2005] will be included in our future work. Other
anytime solvers for the partition function, e.g. [Gogate and
Dechter, 2011; Broka et al., 2018; Kask et al., 2020], are not
included in the current comparison because they are not ap-
proximations of BE but rather schemes that build upon such
approximations and thus can benefit from DBE as well.

Both WMB and DBE use the i-bound parameter. For WMB
it is well known that higher i-bounds generally lead to more
accurate bounds but at the cost of more time and memory.
For DBE we observed immediately that higher i-bounds tend
to improve both accuracy and time because of the reduced
number of trained buckets #NB(i) as a function of i. Con-
sequently, we focused primarily on reporting the highest fea-
sible i-bound for both schemes. As noted before, WMB(i)’s
accuracy is bounded by the highest feasible i-bound (around
20) while the estimate by DBE is more flexible memory-wise
and can yield more accuracy in an anytime fashion.

Benchmarks We carried our experiments on instances se-
lected from three well-known benchmarks from the UAI
repository used in [Kask et al., 2020] such as grids (vision do-
main), Pedigrees (from genetic linkage analysis), and DBNs.
We targeted diverse benchmarks (in structure and level of de-
terminism) and aimed for different levels of hardness. Thus,
in each benchmark, we distinguish between problems that can
be solved exactly, which we call ”easy”, and those that can-
not be solved, called ”hard”. We also distinguish benchmarks
that possess determinism, namely have a high proportion of
zero probabilities, a feature which can impact training. We

randomly selected 12 instances from Grids, with easy ones
(i.e., width 20-30) and hard ones (i.e., 1600 variables, width
55), 7 from pedigrees, which posses high level of determin-
ism and 6 from DBNs, totalling 25 instances.

Performance measures and methodology We evaluate the
performance using: error = |log10Z

∗ − log10Ẑ| where Ẑ is
the generated estimate of the partition function, Z, and Z∗ is
reference value. When the exact Z is not available (for hard
Grid benchmark), Z∗ is a surrogate to Z, which is obtained
from [Kask et al., 2020]. Their estimate is obtained using an
advanced sampling scheme for a duration of 100 ∗ 1hr. We
also converted solvable problem instances into hard ones, by
selecting a bad, high induced-width, variable ordering. We
used this methodology for the Pedigree benchmark, since all
Pedigree instances can be solved exactly.Hence, we were able
to show the performance on instances having high induced
width while having access to the exact Z value for reference.

Our experiment used a fixed number of training samples
throughout. Clearly tuning #samples to the function’s com-
plexity is essential if we want an effective scheme, but we
leave this aspect to future explorations. We used fully con-
nected feedforward NN for benchmarks with no determinism
and MaskedNet for benchmarks with determinism to account
better for the sparsity in the target. To specify the parameters
of the NN, we first conducted NN architecture optimization
for a single bucket function from a single selected problem in-
stance of each benchmark. This preprocessing step was used
to tune the NN structure (number of hidden units and layers)
and other hyperparameters (e.g., the learning rate). During
DBE execution, we used the optimized structure and hyper-
parameters for all trained buckets for all instances. In all the
experiments, we used 5 × 105 samples for training the NNs
with an error bound of ε = 10−6. The #epochswas bounded
at 100. As explained, we are concerned primarily with accu-
racy (and less with time) aiming to show a proof of concept.

5.1 Results
Our results are shown in the four tables of Figure 3, one
for each benchmark. The first few columns describe the
problems statistics, followed by reporting the performance of
DBE. In particular we display the number of trained buckets
(#NB) and the average of mean squared error on the valida-
tion set of all of the trained buckets for each instance over 10
runs; we use this value as a representation of the local error
for each trained bucket. In our experiments, the validation
and test set were very close to each other. We also report
the average and the smallest error over 10 runs to capture the
randomness in training. Finally, we show the error obtained
by WMB and the baseline reference Z value. For legend and
description of the tables see its caption.

Grids The results for the Grid benchmarks are shown in
Figures 3a (easy) and 3b (hard). For the easy problems we
used a lower i-bound of 10 to facilitate the training of a rel-
atively large number of buckets. As expected, when an in-
stance has a low induced-width only a small number of buck-
ets are trained (e.g. Id 2) and both schemes obtain high ac-
curacy. As the induced-width increases, more buckets are
trained yet DBE still obtains far higher accuracy compared



(a) Grid, easy, Without Determinism

(b) *Grid, Hard, Without Determinism

(c) Pedigree, Hard, With Determinism

(d) DBN, meduim, Without Determinism

Figure 3: Results on performance of DBE against WMB. k:domain size, #v:variable numbers, w:induced width, Arch:the architecture of
the NN, #NB: number of buckets that are trained with NNs, avg valmse: average mean square error for validation set over trained buckets
and 10 runs, error: L1 error for referenced and estimated log(Z) (reported smallest (minimum), average, and standard deviation over 10
runs for DBE). *Note: Here, referenced Z is approximated by [Kask et al., 2020]



Figure 4: The impact of the i-bound, H:hardness, e:easy, h:hard,
#v:number of variables, w:induced width, #NB: number of NNs,
error: L1 error for referenced/estimated log(Z), T : algorithm time.

with WMB. See for example instance 6 whose induced-width
is 27. In this case DBE’s average error is 17.8 while for WMB
the error is 122.91. On the hard instances, (Figure 3b) we
used the highest possible i-bound of 20 and we see that DBE
can achieve a far lower error than WMB. For all of the in-
stances the average error of the DBE is far better than the
WMB error.
Pedigree Pedigree results are presented in Table 3c. Since
Pedigrees can be solved exactly using good variable order-
ings, we selected an alternative variable ordering in order to
artificially create hard instances while still having access to
the exact Z for reference. Again, we see that DBE achieved
significantly smaller error than WMB (by a factor of more
than 2 in most cases) with the same i-bound of 20. As ex-
pected, the number of trained buckets vary with the induced-
width.
DBN DBN instances (see Figure 3d) all have exact solu-
tions (obtained by other schemes), yet they are almost at the
edge or utterly intractable memory-wise having widths 20-23.
Here too DBE can achieve high accuracy, sometime signifi-
cantly higher than WMB (instances 2 and 3 that are the hardest
in this set). DBE still achieves low error for problems which
WMB is almost exact (instances 1 and 4).
Buckets’ Local Errors We also reported for each bench-
mark the average validation error we obtained per bucket
function to illustrate the relationship between the ε used for
training and the estimate of the local error obtained. We ob-
serve good correspondence except for the pedigree bench-
mark.
The Impact of the i-bound As noted earlier, the highest
i-bound possible is around 20 depending also on the do-
main size. For the WMB scheme, both theory and practice
show that higher i-bounds yield more accurate approxima-
tions most of the time [Dechter and Rish, 2003]. We initially
explored several i-bounds with DBE and we immediately ob-
served that for higher i-bound DBE achieves higher accuracy
with less time, primarily because more buckets are processed
exactly and thus fewer need to be trained (see complexity
analysis). For illustration, see results in Figure 4 on four grid
instances with i = 20 and i = 15. We thus clearly see that
DBE’s accuracy and time is significantly better when the i-
bound is higher and, as expected, that the number of buckets
that need to be trained is reduced.
Time performance As noted WMB time performance can
be order of magnitude faster (taking seconds or minutes)

while DBE may take many hours. Clearly this is due to
DBE’s needs to train tens to hundreds of neural networks.
Yet, DBE’s performance can improve far beyond WMB even
in its best performance due to its memory limit especially, on
hard problem instances.

6 Conclusion and Future Work
This work brings the power of Neural Networks to approx-
imate a class of variable elimination algorithms known as
Bucket Elimination (BE) for probabilistic and determinis-
tic graphical models. We present Deep Bucket Elimina-
tion (DBE) and show, on challenging instances from three
benchmarks, that it can be far more accurate compared with
weighted mini-bucket WMB, one of the most powerful ap-
proximations of Bucket Elimination. This holds true even
when WMB uses the largest feasible i-bound. DBE can
be viewed as a realization of Neuro-Dynamic Programming
schemes [Bertsekas and Tsitsiklis, 1996], in the context of
graphical models. That being said, DBE requires training of
numerous NN per problem instance and thus is more time
consuming than other approximation schemes of BE. How-
ever, WMB and other iterative BE approximations [Mateescu
et al., 2010], cannot improve once their memory is exhausted.
We believe that the DBE has great potential to become more
time efficient and may also extend into learning across a set
of instances from the same benchmark domain.

Future work. We will explore speeding up the training
in DBE. Many design choices we made were addressed to
merely provide a proof-of-concept regarding accuracy while
deferring efficiency issues to future work. For example, we
use the same network architecture and the same number of
samples across all the instances of a benchmark and across
all their buckets, ignoring difference in their function com-
plexity. We generated samples uniformly at random while
other policies should be considered, for example sampling in
proportion to the target function distribution.

One relatively straightforward idea to reduce the number
of trained functions is to train a single function per union of
buckets, which yield a cluster in a tree-decomposition [Kask
et al., 2005; Dechter, 2013]. This can significantly reduce the
number of trained functions at the cost of more time for sam-
ple generation, a trade-off we plan to study. We will also ex-
plore ideas from transfer learning [Pan and Yang, 2010] tech-
niques; retraining a network to approximate a specific bucket
function, and then fine-tuning the same network to approxi-
mate the others.
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