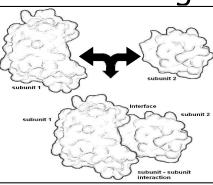
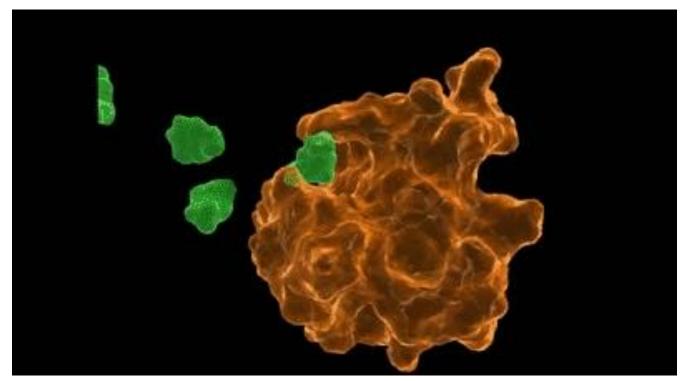
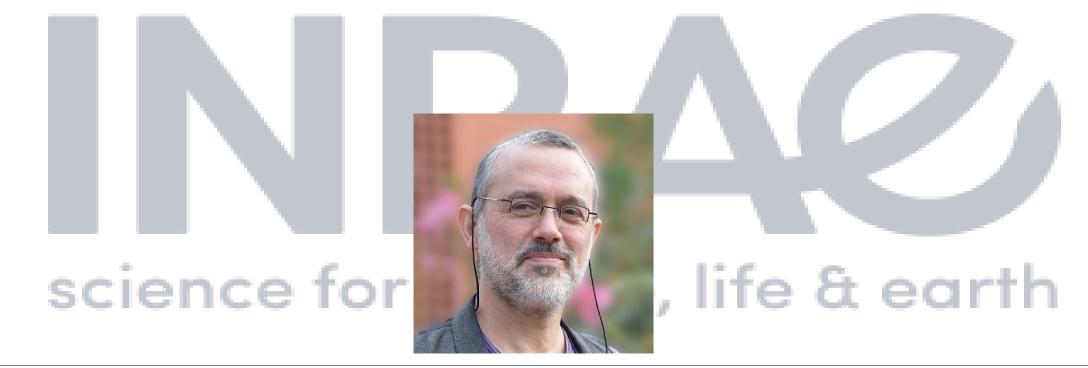
AND/OR Branch-and-Bound for Computational Protein Design Optimizing K*

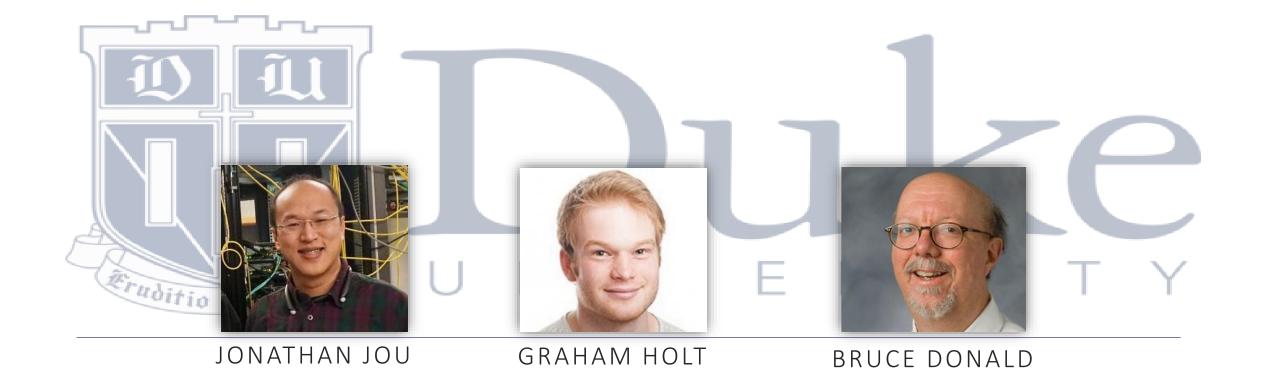

Computational Protein Design (CPD)


[Re]design proteins to perform desired biological functions.

CPD often manifests as an optimization problem:

Ex. find the optimal composition that maximizes binding between


subunits.

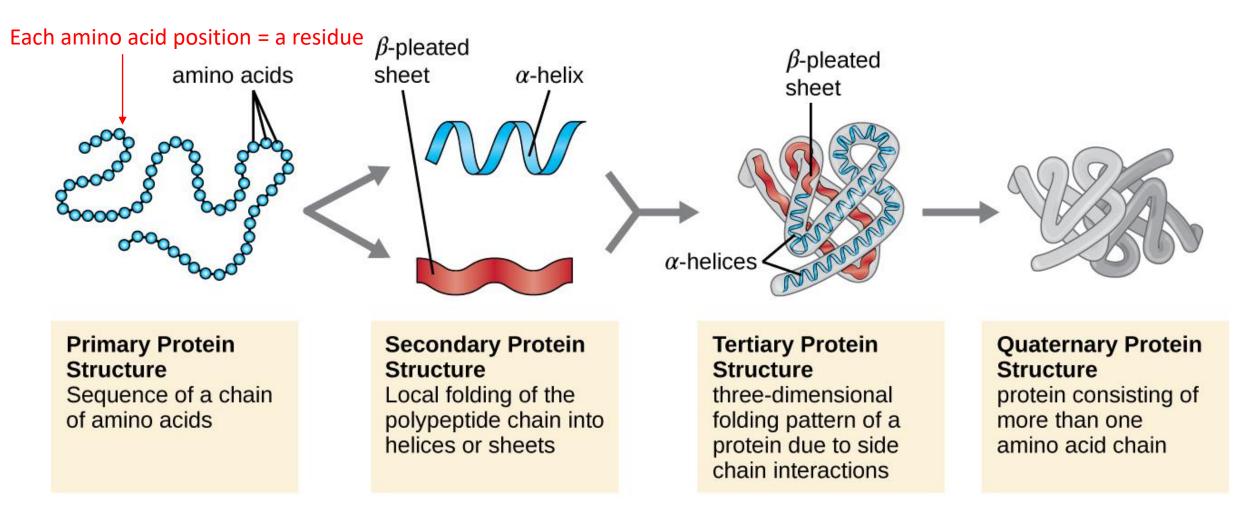

https://www.mrdubuque.com/uploads/2/4/5/0/24509062/u4sp7h_orig.gif

Special thanks to...

THOMAS SCHIEX

Special thanks to...

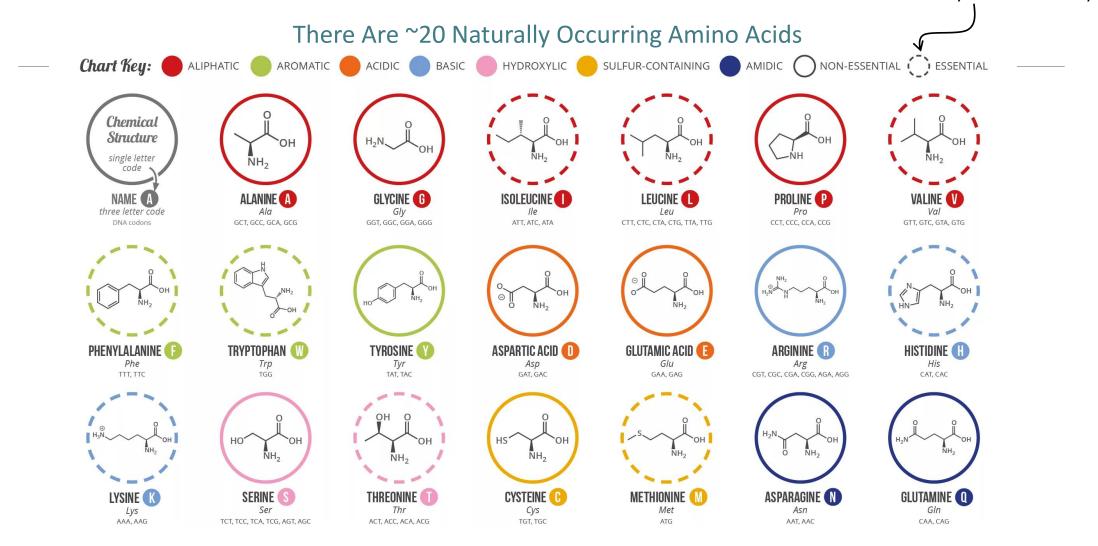
Key Contributions


Two formulations as a graphical model for optimizing K*.

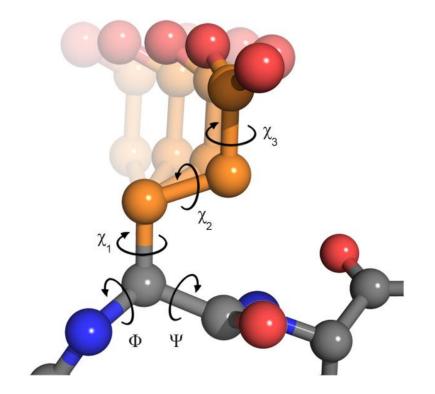
□ wMBE-K* heuristic that can bound the optimal K* and guide search.

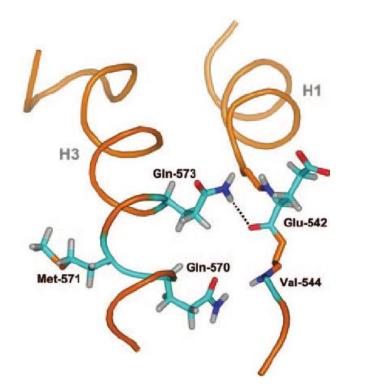
- AOBB-K*, a depth-first branch-and-bound algorithm for maximizing K* that uses a compact AND/OR search space.
- An experiments on over 40 protein design problems as an empirical proof-of-concept

Background

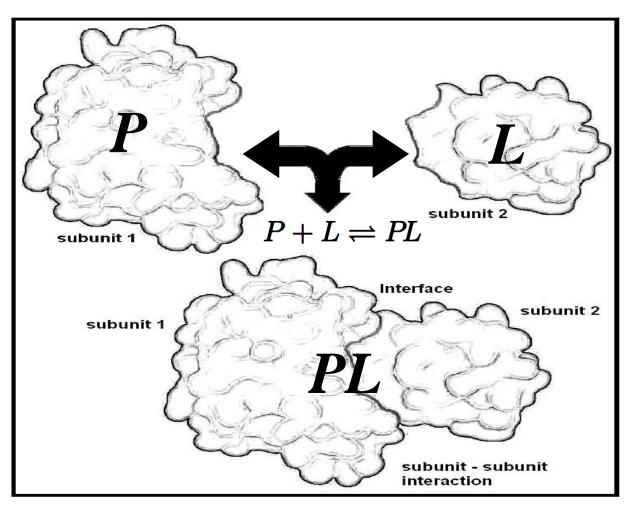

Review of Proteins

In Collaboration with the Donald Lab, Duke University

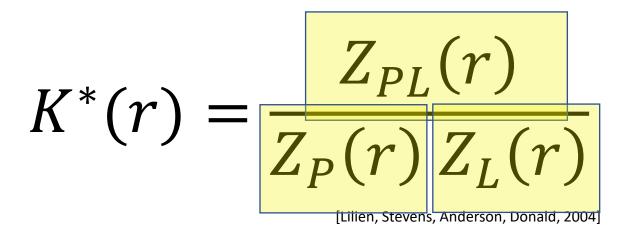

Review of Proteins


Cannot be made by the human body

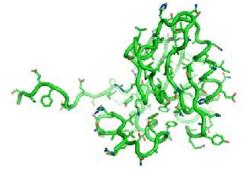
Review of Proteins


Amino Acid Rotamers: Select conformational isomers of an amino acid

Peter Carlsson, Konrad F. Koehler, and Lennart Nilsson Molecular Endocrinology 19(8):1960–1977. https://doi.org/10.1210/me.2004-0203


Proteins are Dynamic Structures

Sowmya, Gopichandran & Vaishnavi, A. & Jigisha, A. & Kangueane, Pandjassarame. (2011). Protein-protein complexes.


K* Objective

(approximates Ka, a biological measure of affinity)

$$Z_{\gamma}(r) = \sum_{c \in C_{\gamma}(r)} \exp\{-E_{\gamma}(c)/\mathcal{RT}\}$$

Note that K* not only considers the "goodness" of the bonded state (PL), but also weighs it relative to the "goodness" of the unbound (dissociate) states

mino acid assignments to the residues

- = possible rotamer conformations given a.a. sequence r
- = energy given conformation c

universal gas constant (for unit conversion between kJ and K)

sbsolute temperature (Kelvin)

Partition Function (Z) Normalizes the Likelihood of the Protein In A Particular Conformational State

K*MAP Task

$$K^*MAP = \max_R K^*(r)$$

ie. Find the sequence with the greatest K* ~ Ka

Marginal MAP (MMAP)

$$MMAP(\mathcal{M}, X_{MAP}) = \max_{X_{MAP}} \sum_{X/X_{MAP}} \prod_{\alpha} f_{\alpha}(X_{\alpha})$$

GMEC MAP

 Max-Inference

$$f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

 Sum-Inference
 $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

 Mixed-Inference
 $f(\mathbf{x}^*_M) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

 Mixed-Inference
 $f(\mathbf{x}^*_M) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

• **NP-hard**: exponentially many terms

• State-of-the-art search and sampling algorithms

State-of-the-art Marginal MAP (MMAP) algorithms

Learning Depth-First AND/OR Search [Marinescu, Dechter, Ihler, 2018]

Stochastic Best-First AND/OR Search [Marinescu, Dechter, Ihler, 2018]

Recursive Best-First AND/OR Search [Marinescu, Dechter, Ihler, Kishimoto, Botea, 2018]

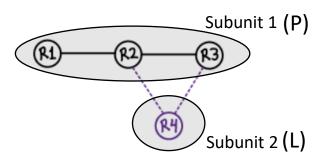
[Marinescu, Lee, Dechter, Ihler, 2018]

State-of-the-art sampling algorithms

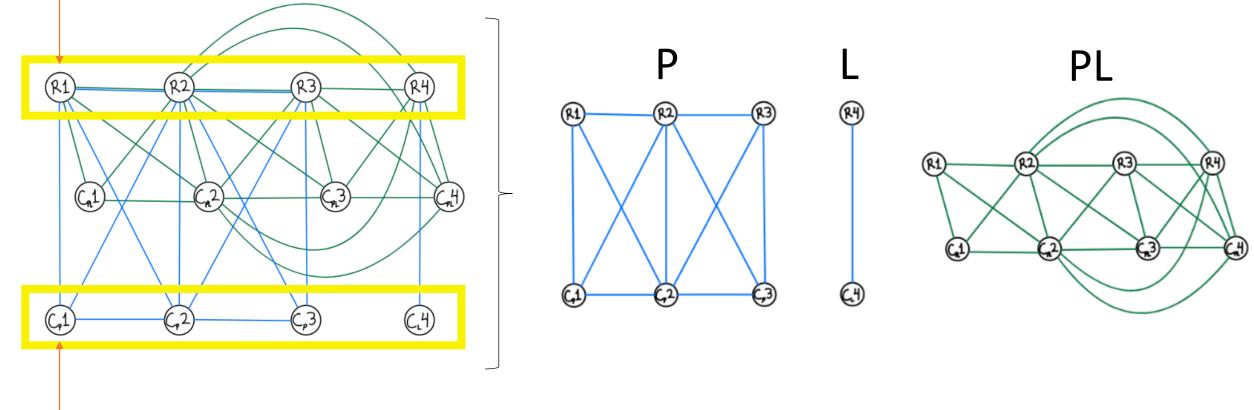
Dynamic Importance Sampling [Liu, Dechter, Ihler, 2017]

Abstraction Sampling [Kask, Pezeshki, Broka, Ihler, Dechter, 2020]

Graphical Models for K*MAP Task

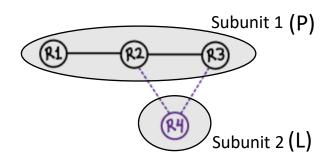

Problem Formulation: Simplificaitons

□ Select Residues: Model using only a subset of the residues.

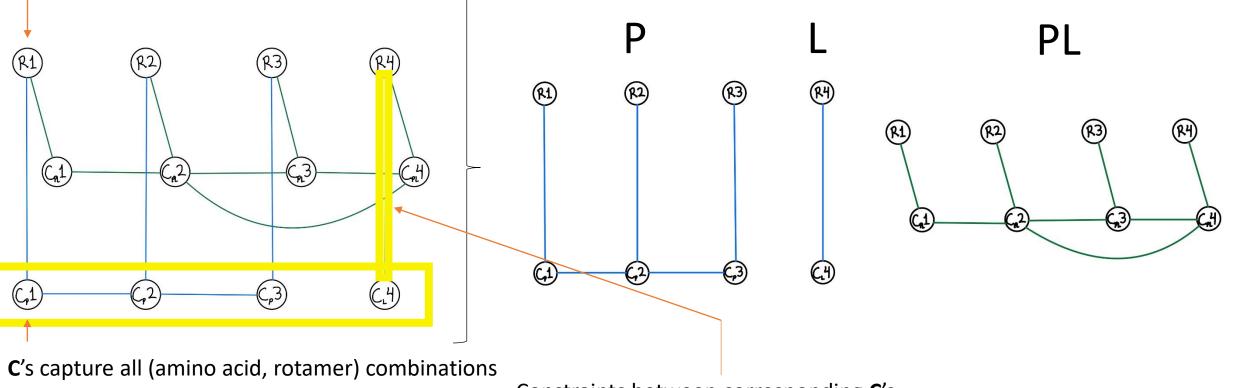

Discrete Rotamers: Use discrete side-chain conformations.

Fixed Backbone: Fix the position of the residues in space.

Problem Formulation 1:



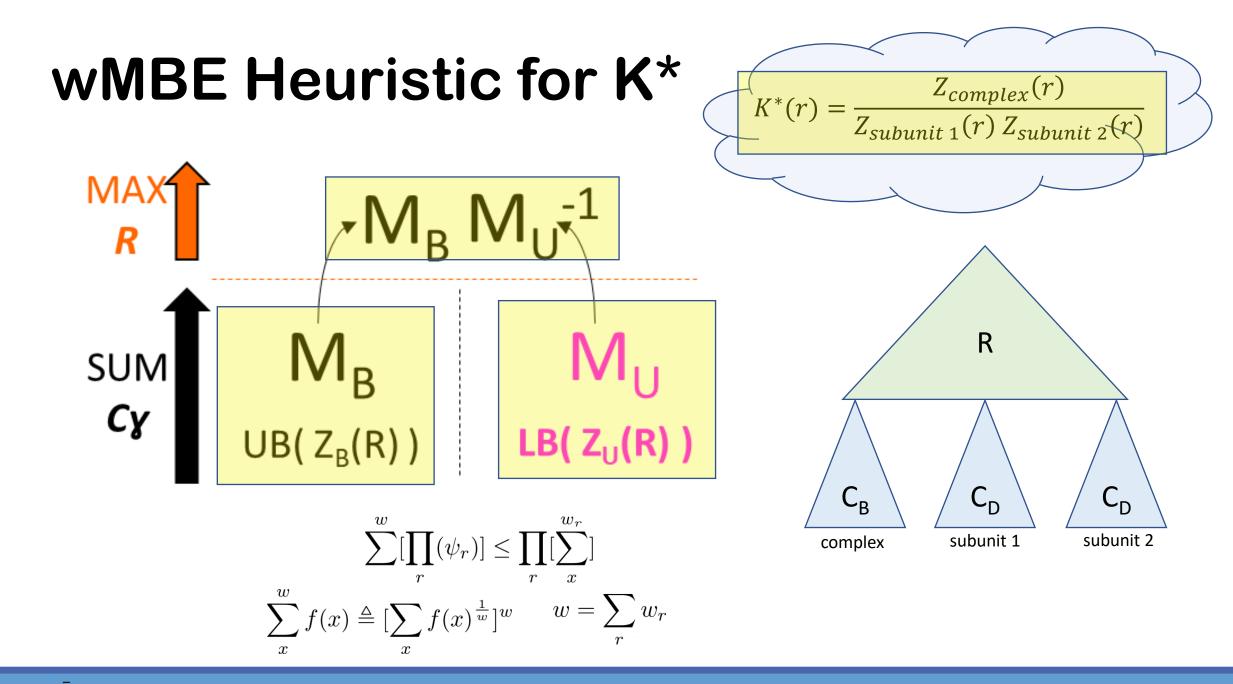
R's capture amino acid assignment for residue



C's index rotamer of amino acid assigned to corresponding R

Problem Formulation 2:

R's capture amino acid assignment for residue



possible at its corresponding R

Constraints between corresponding C's and **R**'s ensure consistent assignments

wMBE-K*

Based on wMBE-MMAP [Marinescu, Dechter, Ihler, 2014]

1st Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE), AAAI-22

AOBB-K*

Based on AOBB-MMAP [Marinescu, Dechter, Ihler, 2014]

AOBB-K* Algorithm

Algorithm 2: AOBB-K*

input :CPD graphical model \mathcal{M} ; pseudo-tree \mathcal{T} ; K^* upper-bounding heuristic function $h_{K^*}(.)$; Z_{γ} upper-bounding heuristic function $h_{Z_{\gamma}}(.)$; and subunit stability threshold S_{γ} for each subunit γ **output** : $K^*MAP(\mathcal{M})$

1 begin

- 2 Encode deterministic relations in \mathcal{M} into CNF
- 3 $\pi \leftarrow \text{root OR node } s$

$$4 \quad ub_{K^*}(s) \leftarrow h_{K^*}(s)$$

$$5 \mid lb_{K^*}(s) \leftarrow -inf$$

$$\mathbf{6} \mid g(s) \leftarrow 1$$

7 **foreach** $\gamma \in \varphi$ **do**

8
$$UB_{Z_{\gamma}}(s) \leftarrow \prod_{m \in ch_{T_{\gamma}}(s)} h_{Z_{\gamma}}(m)$$

while $n_X \leftarrow EXPAND(\pi)$ do 9 if $ConstraintPropagation(\pi) = false$ then 10 $PRUNE(\pi)$ 11 else if $\exists \gamma \in \varphi \text{ s.t. } UB_{Z_{\gamma}}(n_X) < S_{\gamma}$ then 12 $PRUNE(\pi)$ 13 else if $X \in \mathbf{R}$ then 14 if $\exists a \in anc^{OR}(n)$ s.t. $ub_{K^*}(a, \pi) < lb_{K^*}(a)$ then 15 $PRUNE(\pi)$ 16 else if $ch_T^{unexp}(n) = \emptyset$ then 17 $BACKTRACK(\pi)$ 18 return $ub_{K^*}(s) = lb_{K^*}(s) = K^*MAP(\mathcal{M})$ 19

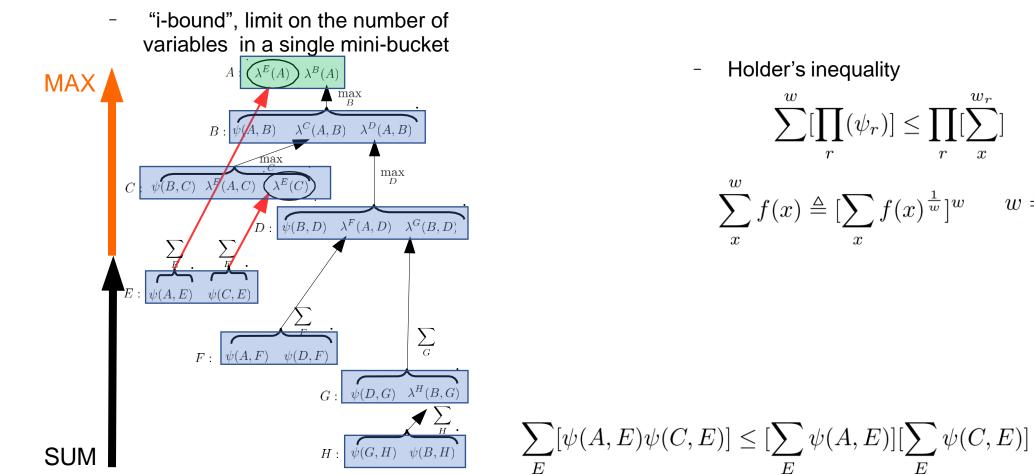
AOBB-K* High Level Overview

- Exact branch-and-bound algorithm over AND/OR search spaces
- □ Can use the statically compiled wMBE-K* heuristic
- □ Exploits determinism by using constraint propagation
- □ Incorporates a global constraint enforcing biologically relevant solutions [Ojewole, Jou, Fowler, Donald, 2018]

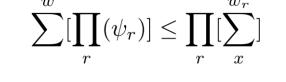
Empirical Evaluation

Results vs. State-of-the-art BBK* [Ojewole, Jou, Fowler, Donald, 2018]

Problem	iB	X	Dmax	w*	d	UB	OR	AND	СРР	UBP	SSP	I	time	*MAP	BBK* t	BBK* sln
1gwc_00021	4	12	203	4	6	10.29	28766	134930	77823	55	2	5	16	9.79	152	9.79
2hnu_00026	4	14	203	5	7	15.08	22010	105458	76657	38	0	4	7	13.18	437	13.18
2hnv_00025	4	16	203	6	8	15.04	115194	297138	84882	39	0	3	16	13.65	962	13.65
2rf9_00018	6	18	205	7	9	16.68	20137	85033	87306	78	0	4	15	15 79	197	15 79
2rfd_00035	6	16	205	6	8	17.70	896239	4253159	3273123	40	0	4	381	17	VS.	16.77
2rfe_00030	4	14	203	5	7	11.53	20393	164126	359007	87	40	7	19	10.50	102	10.20
2rfe_00043	6	16	203	6	8	18.48	15390	40297	422357	34	43	4	80	18.04	50	18.04
2rfe_00044	6	16	203	6	8	18.62	37887	99927	1047107	30	3	6	86	18 10	75	18 10
2rl0_00008	4	10	203	3	5	11.16	2	3	0	40	0	3	3	11.16	VS.	9.46
2xgy_00020	4	14	203	5	7	11.47	43643	262523	743860	40	0	2	14	10.60	007	10.00
3cal_00032	6	16	203	6	8	13.38	133851	1067419	531976	32	6	4	125	11.62	1429	11.62
3u7y_00009	5	12	203	4	6	4.51	2	3	0	40	0	3	6	4.51	191	4.51
4kt6_00023	4	16	203	6	8	14.80	38186	101546	23877	16	19	4	7	12.69	136	12.69
4wwi_00019	5	14	203	5	7	15.43	8094	30774	17888	40	0	2	7	14.99	26	14,99
1gwc_00021	4	13	203	4	7	12.51	33881	590621	473189	388	6	-		11.92		11.72
2hnv_00025	4	17	203	6	9	18.38	215171	550559	220825	77	0	4	153	16.18	VS	13.65
2rfe_00012	5	15	205	5	8	14.36	3127	10003	32610	57	0	3	85	15.95	× 3.	12.22
2rfe_00014	5	15	205	5	8	14.79	4087	13087	39411	57	0	3	85	14 36	45	14 36
2rfe_00017	5	15	203	5	8	11.46	245894	1063198	6389737	227	25	43	333	10.86	<mark>\/<</mark>	10.80
2rfe_00030	4	15	203	5	8	13.61	256957	1327425	2816050	726	83	7	274	11.12	VS.	10.97
2xgy_00020	5	15	203	5	8	11.39	398102	2383318	7422285	42	0	2 D	360	10.90	1.000	10.90
3u7y_00009	4	13	203	4	7	4.95	36760	228568	564654	204	7	28	99	4.51	216	4.51
3u7y_00011	4	13	203	4	7	12.29	5758	16108	68579	50	0	5	86	11.85	27	11.85
4wwi_00019	5	15	203	5	8	16.05	22945	87485	91677	176	75	5	180	14.99	34	14.99


Future Work

- Design new, more compact, problem representations
- Explore new heuristic functions and use of a dynamic heuristic
- Extend to search to approximate anytime methods and n-best solutions
- □ Extend to more complex formulations


Thank You!

wMBE Heuristic for MMAP

Mini-bucket elimination [Dechter & Rish 2001]

- Weighted Mini-bucket [Liu & Ihler, 2012]
 - Holder's inequality

$$\sum_{x}^{w} f(x) \triangleq \left[\sum_{x} f(x)^{\frac{1}{w}}\right]^{w} \qquad w = \sum_{r} w_{r}$$

Problem Formulation: Subunit-Stability Constraints

Do not want dissociate subunits to be too unstable

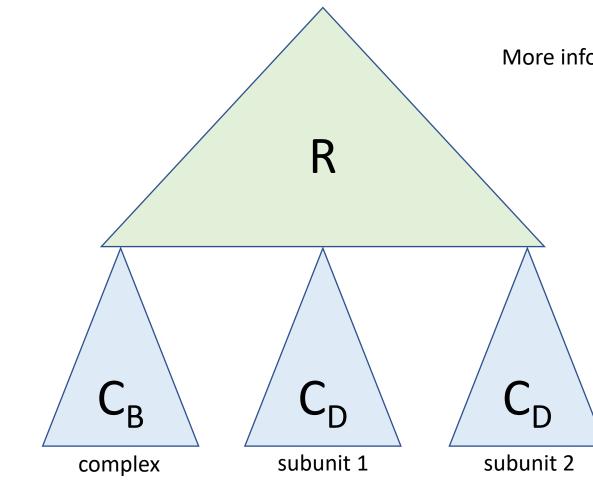
 $Z_{subunit i}(r) > Z_{subunit i}(r^{wt}) * \exp\{-5/\mathcal{R}T\}$

Likelihood of naturally occurring version Constant factor to threshold with

i = index of dissociate subunit

r = amino acid sequence assignments

D = indicating dissociate subunit


- r^{wt} = naturally occurring in nature amino acid sequence (wild type)
- **R** = universal gas constant (for unit conversion between kJ and K)

T = absolute temperature (Kelvin)

 $Z_{complex}(r)$

 $\overline{Z_{subunit 1}}(r) Z_{subunit 2}(r)$

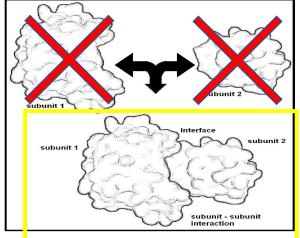
Problem Formulation: Pseudo Tree Overview for K*MAP

More information:

"Search Algorithms for Solving Queries on Graphical Models and the Importance of Pseudo-trees in their Complexity" UCI ICS Technical Report, June 2017.

https://www.ics.uci.edu/~dechter/publications/r243.pdf

Key Takeaway: Can take advantage of decomposition

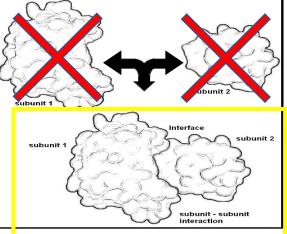

GMEC Objective

Lower Energy → More Stable → Structure More Likely To Exist

Def. Global Minimum-Energy Conformation (GMEC):

conformation that minimizes the energy of the complex

$$GMEC(r) = \min_{c \in C(r)} E(c)$$


r = amino acid assignments to the residues

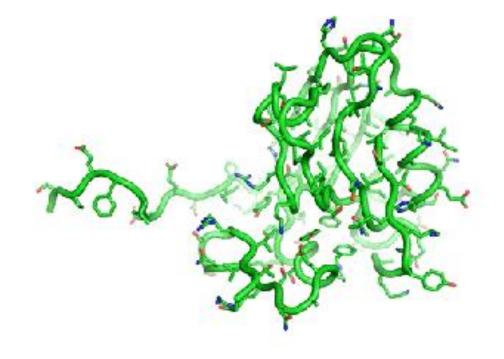
C(r) = possible rotamer conformations given a.a. sequence r

E(c) = energy given conformation c

GMEC MAP Task

$$GMEC MAP = \min_{R} GMEC(r)$$

ie. Find the sequence with the lowest GMEC


• ie. Find sequence that has the most stable conformation

Proteins are Dynamic Structures

A protein's structural state is dynamic

Proteins continuously transition between various energetically favorable conformation.

Not captured by the GMEC objective.

 $X \in \{Bound, Dissociate\}$

K*MAP

$$Z_X(\mathbf{r}) = \sum_{C_{\gamma}} \prod_{E_{\gamma}} e^{-\frac{E_{\gamma(i,j)}(r_i, C_{\gamma(i)}, r_j, C_{\gamma(j)})}{\mathcal{R}T}}$$

$$K^{*}(\boldsymbol{r}) = \frac{Z_{Bound}(\boldsymbol{r})}{Z_{Dissociate}(\boldsymbol{r})} = \frac{Z_{PL}(\boldsymbol{r})}{Z_{P}(\boldsymbol{r}) Z_{L}(\boldsymbol{r})}$$
$$K^{*}MAP = \max_{\boldsymbol{R}} K^{*}(\boldsymbol{r})$$