
AND/OR Branch-and-Bound for
Computational Protein Design Optimizing K*

SUPPLEMENTAL MATERIALS

December 16, 2021

1 Notation and Definitions
M: A CPD graphical model for computing the K*MAP. More formally,M = 〈X,D,F 〉 where:

• X is the set of all variables in the model

• D is the set of domains for all respective variables in the model

• F is the set of all functions over the variables in the model

X:

• the set of all variables of the model

• X = R ∪C

· R
· ”residue variables” - the set of variables corresponding to the protein residues
· the set of variables that will be maximized over (ie. the MAP variables)

· C
· ”conformation variables” - each C ∈ C indexes the rotamer conformation of a particular R ∈ R

· the set of variables that will be summed over (ie. the SUM variables)
· there can be several C ∈ C that correspond to the same R ∈ R. These different C’s capture the

rotamer conformations of their particular R when the protein is in different structural states...
· C = ∪γ∈ϕCγ
· ϕ represents the set of all different substructures the protein’s subunits can exist as
· ϕ = B ∪ U
· B is the set of substructures corresponding to bound (ie. complexed) subunits corresponding

to the numerator of the K∗ ratio
· U is the set of substructures corresponding to the unbound (ie. dissociate) subunits correspond-

ing to the denominator of the K∗ ratio
· thus Cγ is the set of conformation variables corresponding to residues of substructure γ ∈ ϕ
· Cγ(i) is the conformation variable for residue i when residue i’s subunit is in substructure γ

• Xγ = R ∪Cγ

1



D:

• the set of domains for each variable in X

• Dγ is the set of domains for the variables in Xγ

• for all Ri ∈ R, the respective Di = { ALA, VAL, LEU, ILE, PHE, TYR, TRP, CYS, MET, SER, THR, LYS,
ARG, HIP, HIE, HID, ASP, GLU, ASN, GLN, GLY}

• for all Cγ(i) ∈ C,

· Formulation 1

· DCγ(i) = {1, 2, ...,Mi}, where Mi is the maximum number of rotamers for any possible amino acid
assignment to Ri in state γ ∈ ϕ.
· the assignment to Cγ(i) acts as an index to the possible side chain conformations of the amino acid

assigned to Ri.

· Formulation 2

· DCγ(i) = {c | c is a rotamer in substructure γ for one of the possible amino acids of residue Ri}.

F :

• the set of all functions over the model

• F = ∪γ∈ϕFγ

· Formulation 1

· Fγ = Esbγ ∪Epwγ

· Esbγ are the set of all single bodied energies over the residues and their conformations for sub-
structure γ
· Epwγ are the set of all pair-wise energies for all pairs of residues and their conformations that

interact in substructure γ

· Formulation 2

· Fγ = Esbγ ∪Epwγ ∪ Cγ
· Cγ are constraints ensuring that the assigned rotamer to Cγ(i) belongs to the amino acid assigned

to Ri.

Mγ: The CPD graphical modelM modified to include only components corresponding to substructure γ. Namely,
Mγ = 〈Xγ ,Dγ ,Fγ〉

T : Pseudo tree forM constrained for K*MAP computation and providing decomposition of the various substruc-
tures γ ∈ ϕ.

Tγ: Pseudo tree for Mγ based on a modified T such that nodes corresponding to Cγ′ , where γ′ 6= γ, have been
removed.

T : Full AND/OR search tree based on T .

Tγ: Full AND/OR search tree ofMγ based on Tγ .

π: Currently expanded path in T .

πn: Path from the root to n in T .

2



tip(π): The last node in π that was expanded to.

ORR, ORC , etc.: The set of OR nodes whose corresponding variables belong to the variable set denoted by the
superscript. (Absence of superscript corresponds to all OR nodes).

ANDR, ANDC , etc.: The set of AND nodes of T whose corresponding variables belong to the variable set denoted
by the superscript. (Absence of superscript corresponds to all AND nodes).

LEAFT : The set of AND nodes that are leaves in T .

nX : Search tree node n corresponding to a particular variable X ∈X .

chT (n): Children nodes of n in the search tree indicated by its subscript.

chπ(n): Child of n along the π.

chunexpT (n): Children nodes of n in the search tree indicated by its subscript that have yet to be expanded to (ie.
explored) by the algorithm.

chsolvedT (n): Children nodes of n in the search tree indicated by its subscript who have been returned to after explo-
ration of all of their children and provably with lbK∗(n) = ubK∗(n) = v∗(n), v∗(n) being the exact K*MAP value
for the subproblem rooted at n (described futher below).

chunsolvedT (n): Children nodes of n in the search tree indicated by its subscript whose lbK∗(n) and ubK∗(n) values
are not yet known to be exact because not all their children have been expanded to and returned from. chunsolvedT (n) =
chT (n) \ chsolvedT (n).

ancOR(n), ancAND(n), etc.: Ordered ancestors of n in T , from most recent to eldest, that also belong to the set
described by the superscript.

c(n): Edge cost into n in T .

g(n): Path cost from the root into n in T . Namely, c(n) ·
∏
m∈ancAND(n) c(m).

v∗(nX): For X ∈ R, v∗(nX) is the K*MAP value (ie. the optimal K* value) for the problem rooted at n. For
X ∈ C, v∗(nX) is the partition function value of the problem rooted at n. Namely,

v∗(n) =



maxm∈chT (n) v
∗(m), n ∈ ORR

(
∏
m∈chR

T
(n)

v∗(m))(
∏
γ∈B

∏
m′∈ch

Cγ
T

(n)
v∗(m′))

(
∏
γ∈U

∏
m”∈ch

Cγ
T

(n)
v∗(m”)) , n ∈ ANDR∑

m∈chT (n) v
∗(m) · c(m), n ∈ ORC∏

m∈chT (n) v
∗(m), n ∈ ANDC \ LEAFT

1, n ∈ LEAFT

3



v(n): A progressively accumulated quantity based on processing of fully solved and returned children fo a node n.
v(n) converges to the exact K*MAP value of the subproblem rooted at n once all of its children have been expanded
to, solved, and returned from. Namely, if chsolvedT (n) = chT (n), then v(n) = v∗(n). Formally,

v(n) =



maxm∈chsolvedT (n) v(m), n ∈ ORR
(
∏
m∈chsolved,R

T
(n)

v(m))(
∏
γ∈B

∏
m′∈ch

solved,Cγ
T

(n)
v(m′))

(
∏
γ∈U

∏
m”∈ch

solved,Cγ
T

(n)
v(m”)) , n ∈ ANDR∑

m∈chsolvedT (n) v(m) · c(m), n ∈ ORC∏
m∈chsolvedT (n) v(m), n ∈ ANDC \ LEAFT

1, n ∈ LEAFT

µ∗γ(nX): For X ∈ R, µ∗γ(nX) is the MMAP value for the problem rooted at n in Tγ . For X ∈ Cγ , v∗(nX) is the
partition function value of the problem rooted at n in Tγ .

µ∗γ(n) =


maxm∈chTγ (n) µ

∗
γ(m), n ∈ ORR∑

m∈chTγ (n)
µ∗γ(m) · c(m), n ∈ ORC∏

m∈chTγ (n)
µ∗γ(m), n ∈ AND \ LEAFT

1, n ∈ LEAFT

µγ(n): A progressively accumulated quantity based on the fully solved and returned children of node n in Tγ . µγ(n)
converges to the exact MMAP value of the γ-subproblem rooted at n once all of its children in Tγ have been expanded
to, solved, and returned from. Namely, if chsolvedTγ

(n) = chTγ (n), then µγ(n) = µ∗γ(n). Formally,

µγ(n) =



maxm∈ch
Tsolvedγ

(n) µγ(m), n ∈ ORR∑
m∈ch

Tsolvedγ
(n) µγ(m) · c(m), n ∈ ORC∏

m∈ch
Tsolvedγ

(n) µγ(m), n ∈ AND \ LEAFT

1, n ∈ LEAFT

hK∗(n): Precompiled WMBE-K*MAP heuristic for the problem rooted at n.

hZγ (n): Precompiled WMBE-MMAP heuristic for the problem rooted at n considering only X ∈Xγ = R ∪Cγ .

ubK∗(n): Progressively updated upper bound heuristic of the K*MAP problem rooted at n. Formally,

ubK∗(n) =



max(v(n),maxm∈chunsolvedT (n)hK∗(m)), n ∈ ORR

v(n) ·
(
∏
m′∈chunsolved,R

T
(n)

hK∗ (m
′))(

∏
γ∈B

∏
m”∈ch

unsolved,Cγ
T

(n)
hZγ (m”))

(
∏
γ∈U

∏
m′”∈ch

unsolved,Cγ
T

(n)
hZγ (m

′”)) , n ∈ ANDR

v(n) +
∑
m∈chunsolvedT (n) hK∗(m) · c(m), n ∈ ORC

v(n) ·
∏
m∈chunsolvedT (n) hK∗(m), n ∈ ANDC \ LEAFT

1, n ∈ LEAFT

ubK∗(n, π): Progressively updated upper bound heuristic of the K*MAP problem rooted at n consistent with the
partial search tree π. Formally,

ubK∗(n, π) =


ubK∗(n), n ∈ ORR ∩ tip(π)

ubK∗(chπ(n), π), n ∈ ORR ∩ π \ tip(π)

ubK∗(n) ·
∏
m∈chπ(n)

ubK∗ (m,π)
hK∗ (m) n ∈ ANDR ∩ π

4



ubZγ (n): Progressively updated upper bound of the MMAP problem for substructure γ rooted at n. Formally,

ubZγ (n) =


max(µγ(n),maxm∈chunsolvedTγ

(n)hZγ (m)), n ∈ ORR

µγ(n) +
∑
m∈chunsolvedTγ

(n) c(m) · hZγ (m)), n ∈ ORCγ

µγ(n) ·
∏
chunsolvedTγ

(n) hZγ (m), n ∈ AND

MMAPγ(n): The marginal map value of subunit γ conditioned on residue assignments consistent with the path
from the root to n. Formally,

MMAPγ(n) =

{
µ∗γ(n) ·

∏
m∈ancAND(n)

∏
m′∈chTγ (m)\πn µ

∗
γ(m′), n ∈ R

µ∗γ(n) ·
∏
m∈ancANDR (n)

∏
m′∈chTγ (m)\πn µ

∗
γ(m′), n ∈ Cγ

A×∗Zγ (n): Called the multiplicative ancestral branching mass, A×∗Zγ (n) captures the portion of MMAPγ(n) due to
OR branchings off of n’s AND ancestors. The product of A×∗Zγ and the partition function of the subtree consisting of
πn and the subtree of Tγ rooted at n is the contribution to Zγ from all full configurations consistent with πn. Formally,

A×∗Zγ (n) =
∏

m∈ancAND(n)

∏
m′∈chTγ (m)\πn

v∗Zγ (m′)

A×Zγ (n): Upper bound of A×∗Zγ for node n.

A×Zγ (n) =
∏

m∈ancAND(n)

vZγ (m) ·
∏

m′∈chunexpTγ
(m)

hZγ (m′)

S∗Zγ(n): The contribution to Zγ from all configurations not consistent with πn.

S∗Zγ(n) =
∑

m∈ancOR(n)

R∗Zγ(m) · g(m) ·
∑

m′∈chTγ (m)\πn

c(m′) · µ∗γ(m)

SZγ(n): Upper bound of S∗Zγ .

SZγ(n) =
∑

m∈ancOR(n)

A×Zγ (m) · g(m) · (µγ(m) +
∑

m′∈chunexpTγ
(m)

c(m′) · hZγ (m′))

UBZγ (n): Progressively updated upper bound heuristic on the entire partition function of the substructure γ ∈ Φ.
Formally,

UBZγ (n) =
{
A×Zγ (n) · g(n) · ubZγ (n) + SZγ(n), n ∈ tip(π)

2 AOBB-K∗MAP Algorithm Details

5



Algorithm 1: AOBB-K*MAP

input : CPD graphical modelM; pseudo-tree T ; K∗ upper-bounding heuristic function hubK∗(.); Zγ
upper-bounding heuristic function hubZγ (.); and subunit stability threshold threshold(γ) for each
subunit γ ∈ ϕ

output: K∗MAP (M)

1 begin
2 Initialize MiniSat with constraints fromM // MiniSat initialization
3 and generate literals via constraint propagation

4 π ← dummy AND node nD // initialize DFS to start from dummy root node, nD
5 ubK∗(nD)←

∏
m∈chT (nD) hK∗(m) // initialize nD with global UB on K*

6 lbK∗(nD)← −inf // no solution yet found as a lower bound
7 g(nD)← 1
8 foreach γ ∈ ϕ do // initialize nD with subunit-specific UB values
9 A×Zγ (nD)← 1

10 A+
Zγ

(nD)← 0

11 ubZγ (nD)←
∏
m∈chTγ (nD) hZγ (m) // initialize ubZγ (nD) to the MMAPγ global UB value

12 end
13 while nX ← EXPAND(π) do // DFS Branch-and-Bound

14 if MiniSat(π) = false then // Constraint-Propagation Pruning (CPP)
15 PRUNE(π)

16 else if ∃γ ∈ ϕ s.t. UBZγ (nX) < threshold(γ) then // Subunit-Stability Pruning (SSP)
17 PRUNE(π)

18 else if X ∈ R then
19 if ∃a ∈ ancOR(n) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Upper-Bound Pruning (UBP)
20 PRUNE(π)

21 end

22 else if chunexpT (n) = ∅ then // DFS Backtracking Step
23 BACKTRACK(π)

24 end
25 return ubK∗(nD) = lbK∗(nD) = K∗MAP (M)

26 end

6



Algorithm 2: AOBB-K*MAP subroutine, EXPAND
input : partial search tree π
output: newly expanded node nX of π

1 begin
2 if π = ∅ then // signals end of DFS search
3 return null
4 else
5 nW ← tip(π) // nW is the node to be expanded

6 nX ← next unexplored child of nW // nX is the next node in the DFS
7 chunexpT (nW )← chunexpT (nW ) \ nX
8 if nX ∈ OR then
9 foreach γ ∈ ϕ associated with X do

10 A×Zγ (nX)← A×Zγ (nW ) · ubZγ (nW )/hZγ (nX) // update RZγ to include siblings of nX
11 A+

Zγ
(nX)← A+

Zγ
(nW ) // no new additive ancestral branching

12 end
13 if X ∈ R then // for OR MAP nodes...
14 ubK∗(nX)← maxm∈chT (nX) hK∗(m)
15 foreach γ ∈ ϕ associated with X do
16 ubZγ (nX)← maxm∈chTγ (nX) hZγ (m)

17 end
18 else if X ∈ Cγ then // for OR SUM nodes of subunit γ...
19 ubK∗(nX)←

∑
m∈chT (nX) c(m) · hK∗(m)

20 ubZγ (nX)←
∑
m∈chT (nX) c(m) · hZγ (m)

21 end

22 else if nX ∈ AND then // for SUM or MAP AND nodes...
23 foreach γ ∈ ϕ do
24 A×Zγ (nX)← A×Zγ (nW )

25 ubZγ (nX)←
∏
m∈chTγ (nX) hZγ (m)

26 end
27 if X ∈ R then

28 ubK∗(nX)←
(
∏
m∈chR

T
(n)

hK∗ (m))(
∏
γ∈B

∏
m′∈ch

Cγ
T

(n)
hZγ (m

′))

(
∏
γ∈U

∏
m”∈ch

Cγ
T

(n)
hZγ (m”))

// ubK∗(nX) initialized by combining UB heuristic values of its
// children, dividing values corresponding to dissociate subunits

29 foreach γ ∈ ϕ associated with X do
30 A+

Zγ
(nX)← A+

Zγ
(nW ) // no new additive ancestral branching

31 end
32 else if X ∈ Cγ then
33 A+

Zγ
(nX)← A+

Zγ
(nW ) +A×Zγ (nW ) · g(nW ) · (ubZγ (nW )− c(nX) · hZγ (nX))

// update A+
Zγ

to include siblings of nX
34 end
35 end
36 chunexpT (nX)← chT (nX)
37 π ← π ∪ nX
38 return nX ;

39 end
40 end

7



Algorithm 3: AOBB-K*MAP subroutine, BACKTRACK
input : partial search tree π
output: None

1 begin
2 if π = ∅ then // backtracked all the way through root
3 return
4 else
5 nX ← tip(π) // nX is the node we’re backtracking from
6 nW ← parT (nX) // nW is the node we’re backtracking to
7 π ← π \ nX
8 if nW ∈ AND then // backtracking from OR node nX to AND node nW
9 if X ∈ Cγ s.t. γ ∈ U and W ∈ R then

10 ubK∗(nW )← ubK∗(nW ) · hK∗(nX)/ubK∗(nX) // tighten ubK∗(nW ) via update of
// denominator term nX contributes to

11 else
12 ubK∗(nW )← ubK∗(nW )/hK∗(nX) · ubK∗(nX) // tighten ubK∗(nW ) via update of

// numerator term nX contributes to
13 end
14 foreach γ ∈ ϕ associated with X do
15 ubZγ (nW )← ubZγ (nW )/hZγ (nX) · ubZγ (nX) // update upper-bound bound on Zγ at nW
16 end
17 else if nW ∈ OR then // backtracking from AND node nX to OR node nW
18 if W ∈ R then
19 ubK∗(nW )← maxm∈chT (nW )ubK∗(m) // tighten ubK∗(nW ) via reevaluation of its children
20 foreach γ ∈ ϕ associated with W do
21 ubZγ (nW )← maxchT (nW )ubZγ (m) // update upper-bound bound on Zγ at nW
22 end
23 else if W ∈ Cγ then
24 ubK∗(nW )← ubK∗(nW )− c(nX) · (hK∗(nX)−ubK∗(nX)) // tighten ubK∗(nW ) via update

// of ubK∗(nX) of summed AND child nX
25 ubZγ (nW )← ubZγ (nW )− c(nX) · (hZγ (nX)− ubZγ (nX)) // tighten ubZγ (nW ) via update

// of ubZγ (nX) of summed AND child nX
26 end
27 end
28 if chunexpT (nW ) = ∅ then // Continue Backtracking
29 BACKTRACK(π)

30 else if ∃γ ∈ ϕ s.t. UBZγ (nW ) < threshold(γ) then // Subunit-Stability Pruning (SSP)
31 PRUNE(π)

32 else if W ∈ R then
33 if ∃a ∈ ancOR(nW ) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Upper-Bound Pruning (UBP)
34 PRUNE(π)
35 end
36 end
37 end

8



Algorithm 4: AOBB-K*MAP subroutine, PRUNE
input : partial search tree π
output: None

1 begin
2 if π = ∅ then // pruned all the way through root
3 return
4 else
5 nX ← tip(π) // nX is the node we’re pruning
6 nW ← parT (nX) // nW is the node we’re backtracking to
7 π ← π \ nX // explicitly prunes nX from π

8 if nW ∈ AND then // also prune AND parent nW which will be missing pruned OR child nX
9 PRUNE(π)

10 else if nW ∈ OR then
11 if W ∈ R then
12 ubK∗(nX)← −inf // implicitly marks nX as having been pruned
13 ubK∗(nW )← maxm∈chT (nW )ubK∗(m) // recompute ubK∗(nW ) excluding pruned child
14 foreach γ ∈ ϕ associated with W do
15 ubZγ (nX)← −inf // implicitly marks nX as having been pruned
16 ubZγ (nW )← maxchT (nW )ubZγ (m) // recompute ubZγ (nW ) excluding pruned child
17 end
18 else if W ∈ Cγ then
19 PRUNE(π) // invalidity of a portion of the SUM search space implies

// invalidity of the entire corresponding SUM search space
20 end
21 if chunexpT (nW ) = ∅ then // Continue Backtracking
22 BACKTRACK(π)

23 else if ∃γ ∈ ϕ s.t. UBZγ (nW ) < threshold(γ) then // Subunit-Stability Pruning
24 PRUNE(π)

25 else if W ∈ R then
26 if ∃a ∈ ancOR(nW ) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Pruning
27 PRUNE(π)
28 end
29 end
30 end
31 end
32 end

9


	Notation and Definitions
	AOBB-K*MAP Algorithm Details

