AND/OR Branch-and-Bound for Computational Protein Design Optimizing K^{*} SUPPLEMENTAL MATERIALS

December 16, 2021

1 Notation and Definitions

 \mathcal{M} : A CPD graphical model for computing the K*MAP. More formally, $\mathcal{M} = \langle X, D, F \rangle$ where:

- X is the set of all variables in the model
- D is the set of domains for all respective variables in the model
- F is the set of all functions over the variables in the model

X:

- the set of all variables of the model
- $X = R \cup C$
 - $\cdot R$
 - · "residue variables" the set of variables corresponding to the protein residues
 - the set of variables that will be maximized over (ie. the MAP variables)
 - $\cdot C$
 - · "conformation variables" each $C \in C$ indexes the rotamer conformation of a particular $R \in R$
 - \cdot the set of variables that will be summed over (ie. the SUM variables)
 - there can be several $C \in C$ that correspond to the same $R \in R$. These different C's capture the rotamer conformations of their particular R when the protein is in different structural states...
 - $\cdot \ oldsymbol{C} = \cup_{\gamma \in arphi} oldsymbol{C}_{oldsymbol{\gamma}}$
 - $\cdot \,\, \varphi$ represents the set of all different substructures the protein's subunits can exist as

 $\cdot \varphi = B \cup U$

- $\cdot B$ is the set of substructures corresponding to bound (ie. complexed) subunits corresponding to the numerator of the K^* ratio
- $\cdot U$ is the set of substructures corresponding to the unbound (ie. dissociate) subunits corresponding to the denominator of the K^* ratio
- \cdot thus C_γ is the set of conformation variables corresponding to residues of substructure $\gamma \in arphi$
 - $\cdot C_{\gamma(i)}$ is the conformation variable for residue *i* when residue *i*'s subunit is in substructure γ

• $X_{\gamma} = R \cup C_{\gamma}$

- D:
 - the set of domains for each variable in X
 - D_{γ} is the set of domains for the variables in X_{γ}
 - for all $R_i \in \mathbf{R}$, the respective $D_i = \{$ ALA, VAL, LEU, ILE, PHE, TYR, TRP, CYS, MET, SER, THR, LYS, ARG, HIP, HIE, HID, ASP, GLU, ASN, GLN, GLY $\}$
 - for all $C_{\gamma(i)} \in C$,
 - · Formulation 1
 - · $D_{C_{\gamma(i)}} = \{1, 2, ..., M_i\}$, where M_i is the maximum number of rotamers for any possible amino acid assignment to R_i in state $\gamma \in \varphi$.
 - · the assignment to $C_{\gamma(i)}$ acts as an index to the possible side chain conformations of the amino acid assigned to R_i .
 - · Formulation 2
 - · $D_{C_{\gamma(i)}} = \{c \mid c \text{ is a rotamer in substructure } \gamma \text{ for one of the possible amino acids of residue } R_i\}$.

F:

• the set of all functions over the model

•
$$F = \bigcup_{\gamma \in \varphi} F_{\gamma}$$

· Formulation 1

 $\cdot F_{\gamma} = \boldsymbol{E}_{\gamma}^{\boldsymbol{sb}} \cup \boldsymbol{E}_{\gamma}^{\boldsymbol{pw}}$

- · E_{γ}^{sb} are the set of all single bodied energies over the residues and their conformations for substructure γ
- E_{γ}^{pw} are the set of all pair-wise energies for all pairs of residues and their conformations that interact in substructure γ
- · Formulation 2

 $\cdot F_{\gamma} = E_{\gamma}^{sb} \cup E_{\gamma}^{pw} \cup \mathscr{C}_{\gamma}$

• \mathscr{C}_{γ} are constraints ensuring that the assigned rotamer to $C_{\gamma(i)}$ belongs to the amino acid assigned to R_i .

 \mathcal{M}_{γ} : The CPD graphical model \mathcal{M} modified to include only components corresponding to substructure γ . Namely, $\mathcal{M}_{\gamma} = \langle X_{\gamma}, D_{\gamma}, F_{\gamma} \rangle$

 \mathcal{T} : Pseudo tree for \mathcal{M} constrained for K*MAP computation and providing decomposition of the various substructures $\gamma \in \varphi$.

 \mathcal{T}_{γ} : Pseudo tree for \mathcal{M}_{γ} based on a modified \mathcal{T} such that nodes corresponding to $C_{\gamma'}$, where $\gamma' \neq \gamma$, have been removed.

- T: Full AND/OR search tree based on \mathcal{T} .
- T_{γ} : Full AND/OR search tree of \mathcal{M}_{γ} based on \mathcal{T}_{γ} .
- π : Currently expanded path in T.
- π_n : Path from the root to n in T.

 $tip(\pi)$: The last node in π that was expanded to.

 $OR^R, OR^C, etc.$: The set of OR nodes whose corresponding variables belong to the variable set denoted by the superscript. (Absence of superscript corresponds to all OR nodes).

 AND^R , AND^C , etc.: The set of AND nodes of T whose corresponding variables belong to the variable set denoted by the superscript. (Absence of superscript corresponds to all AND nodes).

LEAF_T: The set of AND nodes that are leaves in T.

 n_X : Search tree node *n* corresponding to a particular variable $X \in \mathbf{X}$.

 $ch_T(n)$: Children nodes of n in the search tree indicated by its subscript.

 $ch_{\pi}(n)$: Child of *n* along the π .

 $ch_T^{unexp}(n)$: Children nodes of *n* in the search tree indicated by its subscript that have yet to be expanded to (ie. explored) by the algorithm.

 $ch_T^{solved}(n)$: Children nodes of n in the search tree indicated by its subscript who have been returned to after exploration of all of their children and provably with $lb_{K^*}(n) = ub_{K^*}(n) = v^*(n)$, $v^*(n)$ being the exact K*MAP value for the subproblem rooted at n (described further below).

 $ch_T^{unsolved}(n)$: Children nodes of n in the search tree indicated by its subscript whose $lb_{K^*}(n)$ and $ub_{K^*}(n)$ values are not yet known to be exact because not all their children have been expanded to and returned from. $ch_T^{unsolved}(n) = ch_T(n) \setminus ch_T^{solved}(n)$.

 $anc^{OR}(n), anc^{AND}(n), etc.$ Ordered ancestors of n in T, from most recent to eldest, that also belong to the set described by the superscript.

c(n): Edge cost into n in T.

g(n): Path cost from the root into n in T. Namely, $c(n) \cdot \prod_{m \in anc^{AND}(n)} c(m)$.

 $v^*(n_X)$: For $X \in \mathbf{R}$, $v^*(n_X)$ is the K*MAP value (i.e. the optimal K* value) for the problem rooted at n. For $X \in \mathbf{C}$, $v^*(n_X)$ is the partition function value of the problem rooted at n. Namely,

$$v^{*}(n) = \begin{cases} \max_{m \in ch_{T}(n)} v^{*}(m), & n \in OR^{\mathbf{R}} \\ \frac{(\prod_{m \in ch_{T}^{R}(n)} v^{*}(m))(\prod_{\gamma \in B} \prod_{m' \in ch_{T}^{C\gamma}(n)} v^{*}(m')))}{(\prod_{\gamma \in U} \prod_{m' \in ch_{T}^{C\gamma}(n)} v^{*}(m'))}, & n \in AND^{\mathbf{R}} \\ \sum_{m \in ch_{T}(n)} v^{*}(m) \cdot c(m), & n \in OR^{\mathbf{C}} \\ \prod_{m \in ch_{T}(n)} v^{*}(m), & n \in AND^{\mathbf{C}} \setminus LEAF_{T} \\ 1, & n \in LEAF_{T} \end{cases}$$

v(n): A progressively accumulated quantity based on processing of fully solved and returned children fo a node n. v(n) converges to the exact K*MAP value of the subproblem rooted at n once all of its children have been expanded to, solved, and returned from. Namely, if $ch_T^{solved}(n) = ch_T(n)$, then $v(n) = v^*(n)$. Formally,

$$v(n) = \begin{cases} \max_{m \in ch_T^{solved}(n)} v(m), & n \in OR^{\mathbf{R}} \\ \frac{(\prod_{m \in ch_T^{solved}, R_{(n)}} v(m))(\prod_{\gamma \in B} \prod_{m' \in ch_T^{solved}, C_{\gamma}_{(n)}} v(m'))}{(\prod_{\gamma \in U} \prod_{m' \in ch_T^{solved}, C_{\gamma}_{(n)}} v(m'))}, & n \in AND^{\mathbf{R}} \\ \sum_{m \in ch_T^{solved}(n)} v(m) \cdot c(m), & n \in OR^{\mathbf{C}} \\ \prod_{m \in ch_T^{solved}(n)} v(m), & n \in AND^{\mathbf{C}} \setminus LEAF_T \\ 1, & n \in LEAF_T \end{cases}$$

 $\mu_{\gamma}^*(n_X)$: For $X \in \mathbf{R}$, $\mu_{\gamma}^*(n_X)$ is the MMAP value for the problem rooted at n in T_{γ} . For $X \in C_{\gamma}$, $v^*(n_X)$ is the partition function value of the problem rooted at n in T_{γ} .

$$\mu_{\gamma}^{*}(n) = \begin{cases} \max_{m \in ch_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m), & n \in OR^{\mathbf{R}} \\ \sum_{m \in ch_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m) \cdot c(m), & n \in OR^{\mathbf{C}} \\ \prod_{m \in ch_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m), & n \in AND \setminus LEAF_{T} \\ 1, & n \in LEAF_{T} \end{cases}$$

 $\mu_{\gamma}(n)$: A progressively accumulated quantity based on the fully solved and returned children of node n in T_{γ} . $\mu_{\gamma}(n)$ converges to the exact MMAP value of the γ -subproblem rooted at n once all of its children in T_{γ} have been expanded to, solved, and returned from. Namely, if $ch_{T_{\gamma}}^{solved}(n) = ch_{T_{\gamma}}(n)$, then $\mu_{\gamma}(n) = \mu_{\gamma}^{*}(n)$. Formally,

$$\mu_{\gamma}(n) = \begin{cases} \max_{m \in ch_{T_{\gamma}^{solved}}(n)} \mu_{\gamma}(m), & n \in OR^{\mathbf{R}} \\ \sum_{m \in ch_{T_{\gamma}^{solved}}(n)} \mu_{\gamma}(m) \cdot c(m), & n \in OR^{\mathbf{C}} \\ \prod_{m \in ch_{T_{\gamma}^{solved}}(n)} \mu_{\gamma}(m), & n \in AND \setminus LEAF_{T} \\ 1, & n \in LEAF_{T} \end{cases}$$

 $h_{K^*}(n)$: Precompiled WMBE-K*MAP heuristic for the problem rooted at n.

 $h_{Z_{\gamma}}(n)$: Precompiled WMBE-MMAP heuristic for the problem rooted at n considering only $X \in X_{\gamma} = \mathbf{R} \cup \mathbf{C}_{\gamma}$.

 $ub_{K^*}(n)$: Progressively updated upper bound heuristic of the K*MAP problem rooted at n. Formally,

$$ub_{K^{*}}(n) = \begin{cases} \max(v(n), \max_{m \in ch_{T}^{unsolved}(n)} h_{K^{*}}(m)), & n \in OR^{\mathbf{R}} \\ v(n) \cdot \frac{(\prod_{m' \in ch_{T}^{unsolved},R_{(n)}} h_{K^{*}}(m'))(\prod_{\gamma \in B} \prod_{m^{*} \in ch_{T}^{unsolved},C_{\gamma_{(n)}}} h_{Z_{\gamma}}(m^{*}))}{(\prod_{\gamma \in U} \prod_{m'^{*} \in ch_{T}^{unsolved},C_{\gamma_{(n)}}} h_{Z_{\gamma}}(m'^{*}))}, & n \in AND^{\mathbf{R}} \\ v(n) + \sum_{m \in ch_{T}^{unsolved}(n)} h_{K^{*}}(m) \cdot c(m), & n \in OR^{\mathbf{C}} \\ v(n) \cdot \prod_{m \in ch_{T}^{unsolved}(n)} h_{K^{*}}(m), & n \in LEAF_{T} \end{cases}$$

 $ub_{K^*}(n,\pi)$: Progressively updated upper bound heuristic of the K^{*}MAP problem rooted at *n* consistent with the partial search tree π . Formally,

$$ub_{K^{*}}(n,\pi) = \begin{cases} ub_{K^{*}}(n), & n \in OR^{\mathbf{R}} \cap tip(\pi) \\ ub_{K^{*}}(ch_{\pi}(n),\pi), & n \in OR^{\mathbf{R}} \cap \pi \setminus tip(\pi) \\ ub_{K^{*}}(n) \cdot \prod_{m \in ch_{\pi}(n)} \frac{ub_{K^{*}}(m,\pi)}{h_{K^{*}}(m)} & n \in AND^{\mathbf{R}} \cap \pi \end{cases}$$

 $ub_{Z_{\gamma}}(n)$: Progressively updated upper bound of the MMAP problem for substructure γ rooted at n. Formally,

$$ub_{Z_{\gamma}}(n) = \begin{cases} max(\mu_{\gamma}(n), max_{m \in ch_{T_{\gamma}}^{unsolved}(n)}h_{Z_{\gamma}}(m)), & n \in OR^{\mathbf{R}} \\ \mu_{\gamma}(n) + \sum_{m \in ch_{T_{\gamma}}^{unsolved}(n)}c(m) \cdot h_{Z_{\gamma}}(m)), & n \in OR^{C_{\gamma}} \\ \mu_{\gamma}(n) \cdot \prod_{ch_{T_{\gamma}}^{unsolved}(n)}h_{Z_{\gamma}}(m), & n \in AND \end{cases}$$

 $MMAP_{\gamma}(n)$: The marginal map value of subunit γ conditioned on residue assignments consistent with the path from the root to n. Formally,

$$MMAP_{\gamma}(n) = \begin{cases} \mu_{\gamma}^{*}(n) \cdot \prod_{m \in anc^{AND}(n)} \prod_{m' \in ch_{T_{\gamma}}(m) \setminus \pi_{n}} \mu_{\gamma}^{*}(m'), & n \in \mathbf{R} \\ \mu_{\gamma}^{*}(n) \cdot \prod_{m \in anc^{AND}\mathbf{R}(n)} \prod_{m' \in ch_{T_{\gamma}}(m) \setminus \pi_{n}} \mu_{\gamma}^{*}(m'), & n \in \mathbf{C}_{\gamma} \end{cases}$$

 $A_{Z_{\gamma}}^{\times *}(n)$: Called the multiplicative ancestral branching mass, $A_{Z_{\gamma}}^{\times *}(n)$ captures the portion of $MMAP_{\gamma}(n)$ due to OR branchings off of *n*'s AND ancestors. The product of $A_{Z_{\gamma}}^{\times *}$ and the partition function of the subtree consisting of π_n and the subtree of T_{γ} rooted at *n* is the contribution to Z_{γ} from all full configurations consistent with π_n . Formally,

$$A_{Z_{\gamma}}^{\times *}(n) = \prod_{m \in anc^{AND}(n)} \prod_{m' \in ch_{T_{\gamma}(m)} \setminus \pi_n} v_{Z_{\gamma}}^*(m')$$

 $A_{Z_{\gamma}}^{\times}(n)$: Upper bound of $A_{Z_{\gamma}}^{\times *}$ for node n.

$$A_{Z_{\gamma}}^{\times}(n) = \prod_{m \in anc^{AND}(n)} v_{Z_{\gamma}}(m) \cdot \prod_{m' \in ch_{T_{\gamma}}^{unexp}(m)} h_{Z_{\gamma}}(m')$$

 $S_{Z\gamma}^*(n)$: The contribution to Z_{γ} from all configurations not consistent with π_n .

$$S^*_{Z\gamma}(n) = \sum_{m \in anc^{OR}(n)} R^*_{Z\gamma}(m) \cdot g(m) \cdot \sum_{m' \in ch_{T\gamma}(m) \backslash \pi_n} c(m') \cdot \mu^*_{\gamma}(m)$$

 $S_{Z\gamma}(n)$: Upper bound of $S^*_{Z\gamma}$.

$$S_{Z\gamma}(n) = \sum_{m \in anc^{OR}(n)} A_{Z\gamma}^{\times}(m) \cdot g(m) \cdot (\mu_{\gamma}(m) + \sum_{m' \in ch_{T\gamma}^{unexp}(m)} c(m') \cdot h_{Z\gamma}(m'))$$

 $UB_{Z_{\gamma}}(n)$: Progressively updated upper bound heuristic on the *entire* partition function of the substructure $\gamma \in \Phi$. Formally,

$$UB_{Z_{\gamma}}(n) = \begin{cases} A_{Z_{\gamma}}^{\times}(n) \cdot g(n) \cdot ub_{Z_{\gamma}}(n) + S_{Z\gamma}(n), & n \in tip(\pi) \end{cases}$$

2 AOBB-*K****MAP** Algorithm Details

Algorithm 1: AOBB-K^{*}MAP

input : CPD graphical model \mathcal{M} ; pseudo-tree \mathcal{T} ; K^* upper-bounding heuristic function $h_{K^*}^{ub}(.)$; Z_{γ} upper-bounding heuristic function $h_{K^*}^{ub}(.)$; and subunit stability threshold threshold (γ) for each		
subunit $\gamma \in \varphi$		
output: $K^*MAP(\mathcal{M})$		
1 begin		
2	Initialize $MiniSat$ with constraints from $\mathcal M$	// MiniSat initialization
3	and generate literals via constraint propagation	
4	$\pi \leftarrow \text{dummy AND node } n_D$	// initialize DFS to start from dummy root node, $n_{\cal D}$
5	$ub_{K^*}(n_D) \leftarrow \prod_{m \in ch_T(n_D)} h_{K^*}(m)$	// initialize n_D with global UB on K [*]
6	$lb_{K^*}(n_D) \leftarrow -inf$	// no solution yet found as a lower bound
7	$g(n_D) \leftarrow 1$	// initialize n - with subunit specific LIP values
0 9	$ A_{Z}^{\times}(n_{D}) \leftarrow 1 $	<i>I</i> initialize <i>n</i> _D with subunit-specific OB values
10	$\begin{array}{c} A_{2\gamma}^{+}(n_D) \leftarrow 0 \\ \end{array}$	
11	$ub_{Z_{n}}(n_{D}) \leftarrow \prod_{m \in ab_{n-1}(n_{D})} h_{Z_{n}}(m) $	/ initialize $ub_{Z_{\alpha}}(n_D)$ to the MMAP _{γ} global UB value
12	end	_, (_ ,
13	while $n_X \leftarrow EXPAND(\pi)$ do	// DFS Branch-and-Bound
14	if $MiniSat(\pi) = false$ then	// Constraint-Propagation Pruning (CPP)
15	$PRUNE(\pi)$	
16	else if $\exists \gamma \in \varphi \text{ s.t. } UB_{Z_{\tau}}(n_X) < threshold(\gamma)$	then // Subunit-Stability Pruning (SSP)
17	$ PRUNE(\pi) \rangle$	
18	else if $X \in \boldsymbol{R}$ then	
19	if $\exists a \in anc^{OR}(n) \text{ s.t. } ub_{K^*}(a, \pi) < lb_{K^*}(a, \pi)$	<i>i</i>) then // K [*] MAP Upper-Bound Pruning (UBP)
20	$PRUNE(\pi)$	
21	ena	
22	else if $ch_T^{ancxp}(n) = \emptyset$ then	// DFS Backtracking Step
23 24	end	
25	return $uh_{K^*}(n_D) - lh_{K^*}(n_D) - K^* M \Delta P(M)$	
26 end		

Algorithm 2: AOBB-K*MAP subroutine, EXPAND **input** : partial search tree π **output:** newly expanded node n_X of π 1 begin if $\pi = \emptyset$ then // signals end of DFS search 2 3 return null 4 else // n_W is the node to be expanded $n_W \leftarrow tip(\pi)$ 5 $\begin{array}{l} n_X \leftarrow \text{next unexplored child of } n_W \\ ch_T^{unexp}(n_W) \leftarrow ch_T^{unexp}(n_W) \setminus n_X \end{array}$ // n_X is the next node in the DFS 6 7 if $n_X \in OR$ then 8 for each $\gamma \in \varphi$ associated with X do 9 $A_{Z_{\gamma}}^{\times}(n_X) \leftarrow A_{Z_{\gamma}}^{\times}(n_W) \cdot ub_{Z_{\gamma}}(n_W) / h_{Z_{\gamma}}(n_X)$ // update $R_{Z_{\gamma}}$ to include siblings of n_X 10 $A_{Z_{\gamma}}^+(n_X) \leftarrow A_{Z_{\gamma}}^+(n_W)$ // no new additive ancestral branching 11 end 12 // for OR MAP nodes... if $X \in \mathbf{R}$ then 13 $ub_{K^*}(n_X) \leftarrow \max_{m \in ch_T(n_X)} h_{K^*}(m)$ 14 foreach $\gamma \in \varphi$ associated with X do 15 $ub_{Z_{\gamma}}(n_X) \leftarrow \max_{m \in ch_{T_{\gamma}}(n_X)} h_{Z_{\gamma}}(m)$ 16 end 17 else if $X \in C_{\gamma}$ then // for OR SUM nodes of subunit γ ... 18 $ub_{K^*}(n_X) \leftarrow \sum_{m \in ch_T(n_X)} c(m) \cdot h_{K^*}(m)$ 19 $ub_{Z_{\gamma}}(n_X) \leftarrow \sum_{m \in ch_{\mathcal{T}}(n_X)} c(m) \cdot h_{Z_{\gamma}}(m)$ 20 end 21 else if $n_X \in AND$ then // for SUM or MAP AND nodes... 22 for each $\gamma \in \varphi$ do 23 $A_{Z_{\sim}}^{\times}(n_X) \leftarrow A_{Z_{\sim}}^{\times}(n_W)$ 24 $ub_{Z_{\gamma}}(n_X) \leftarrow \prod_{m \in ch_{T_{\gamma}}(n_X)}^{\gamma} h_{Z_{\gamma}}(m)$ 25 end 26 if $X \in \mathbf{R}$ then 27 $ub_{K^*}(n_X) \leftarrow \frac{(\prod_{m \in ch_T^R(n)} h_{K^*}(m))(\prod_{\gamma \in B} \prod_{m' \in ch_T^{C_{\gamma}}(n)} h_{Z_{\gamma}}(m'))}{(\prod_{\gamma \in U} \prod_{m^* \in ch_T^{C_{\gamma}}(n)} h_{Z_{\gamma}}(m^*))}$ 28 // $ub_{K^*}(n_X)$ initialized by combining UB heuristic values of its // children, dividing values corresponding to dissociate subunits for each $\gamma \in \varphi$ associated with X do 29 $A_{Z_{\gamma}}^{+}(n_{X}) \leftarrow A_{Z_{\gamma}}^{+}(n_{W})$ // no new additive ancestral branching 30 end 31 else if $X \in C_{\gamma}$ then 32 $A_{Z_{\gamma}}^{+}(n_{X}) \leftarrow A_{Z_{\gamma}}^{+}(n_{W}) + A_{Z_{\gamma}}^{\times}(n_{W}) \cdot g(n_{W}) \cdot (ub_{Z_{\gamma}}(n_{W}) - c(n_{X}) \cdot h_{Z_{\gamma}}(n_{X}))$ 33 // update $A_{Z_{\sim}}^+$ to include siblings of n_X end 34 35 end $ch_T^{unexp}(n_X) \leftarrow ch_T(n_X)$ 36 37 $\pi \leftarrow \pi \cup n_X$ return n_X ; 38 39 end 40 end

Algorithm 3: AOBB-K*MAP subroutine, BACKTRACK **input** : partial search tree π output: None 1 begin if $\pi = \emptyset$ then // backtracked all the way through root 2 return 3 4 else $n_X \leftarrow tip(\pi)$ 5 $// n_X$ is the node we're backtracking from $n_W \leftarrow par_T(n_X)$ // n_W is the node we're backtracking to 6 $\pi \leftarrow \pi \setminus n_X$ 7 if $n_W \in AND$ then // backtracking from OR node n_X to AND node n_W 8 if $X \in C_{\gamma}$ s.t. $\gamma \in U$ and $W \in \mathbf{R}$ then 9 $ub_{K^*}(n_W) \leftarrow ub_{K^*}(n_W) \cdot h_{K^*}(n_X) / ub_{K^*}(n_X)$ 10 // tighten $ub_{K^*}(n_W)$ via update of // denominator term n_X contributes to 11 else $ub_{K^*}(n_W) \leftarrow ub_{K^*}(n_W)/h_{K^*}(n_X) \cdot ub_{K^*}(n_X)$ // tighten $ub_{K^*}(n_W)$ via update of 12 // numerator term n_X contributes to end 13 for each $\gamma \in \varphi$ associated with X do 14 $ub_{Z_{\gamma}}(n_W) \leftarrow ub_{Z_{\gamma}}(n_W)/h_{Z_{\gamma}}(n_X) \cdot ub_{Z_{\gamma}}(n_X)$ // update upper-bound bound on Z_{γ} at n_W 15 end 16 else if $n_W \in OR$ then // backtracking from AND node n_X to OR node n_W 17 if $W \in \mathbf{R}$ then 18 $ub_{K^*}(n_W) \leftarrow max_{m \in ch_T(n_W)} ub_{K^*}(m)$ // tighten $ub_{K^*}(n_W)$ via reevaluation of its children 19 **foreach** $\gamma \in \varphi$ *associated with* W **do** 20 $| ub_{Z_{\gamma}}(n_W) \leftarrow max_{ch_T(n_W)}ub_{Z_{\gamma}}(m)$ // update upper-bound bound on Z_{γ} at n_W 21 22 end else if $W \in C_{\gamma}$ then 23 $ub_{K^*}(n_W) \leftarrow ub_{K^*}(n_W) - c(n_X) \cdot \left(h_{K^*}(n_X) - ub_{K^*}(n_X)\right) // \text{ tighten } ub_{K^*}(n_W) \text{ via update } b_{K^*}(n_W) + b_{K$ 24 // of $ub_{K^*}(n_X)$ of summed AND child n_X $ub_{Z_{\gamma}}(n_W) \leftarrow ub_{Z_{\gamma}}(n_W) - c(n_X) \cdot (h_{Z_{\gamma}}(n_X) - ub_{Z_{\gamma}}(n_X)) //$ tighten $ub_{Z_{\gamma}}(n_W)$ via update 25 // of $ub_{Z_{\infty}}(n_X)$ of summed AND child n_X 26 end end 27 if $ch_T^{unexp}(n_W) = \emptyset$ then // Continue Backtracking 28 $BACKTRACK(\pi)$ 29 else if $\exists \gamma \in \varphi \text{ s.t. } UB_{Z_{\gamma}}(n_W) < threshold(\gamma)$ then // Subunit-Stability Pruning (SSP) 30 $PRUNE(\pi)$ 31 else if $W \in \mathbf{R}$ then 32 if $\exists a \in anc^{OR}(n_W)$ s.t. $ub_{K^*}(a, \pi) < lb_{K^*}(a)$ then // K^{*}MAP Upper-Bound Pruning (UBP) 33 $PRUNE(\pi)$ 34 35 end end 36 37 end

Algorithm 4: AOBB-K*MAP subroutine, PRUNE

```
input : partial search tree \pi
   output: None
 1 begin
 2
        if \pi = \emptyset then
                                                                                            // pruned all the way through root
            return
 3
 4
        else
            n_X \leftarrow tip(\pi)
                                                                                               // n_X is the node we're pruning
 5
            n_W \leftarrow par_T(n_X)
                                                                                     // n_W is the node we're backtracking to
 6
            \pi \leftarrow \pi \setminus n_X
 7
                                                                                                // explicitly prunes n_X from \pi
            if n_W \in AND then
                                              // also prune AND parent n_W which will be missing pruned OR child n_X
 8
                PRUNE(\pi)
 9
            else if n_W \in OR then
10
                if W \in \mathbf{R} then
11
                     ub_{K^*}(n_X) \leftarrow -inf
                                                                               // implicitly marks n_X as having been pruned
12
                                                                            // recompute ub_{K^*}(n_W) excluding pruned child
                     ub_{K^*}(n_W) \leftarrow max_{m \in ch_T(n_W)} ub_{K^*}(m)
13
                     for
each \gamma \in \varphi associated with W do
14
                          ub_{Z_{\gamma}}(n_X) \leftarrow -inf
                                                                               // implicitly marks n_X as having been pruned
 15
                         ub_{Z_{\gamma}}(n_W) \leftarrow max_{ch_T(n_W)}ub_{Z_{\gamma}}(m)
                                                                            // recompute ub_{Z_{\gamma}}(n_W) excluding pruned child
 16
                     end
17
                 else if W \in C_{\gamma} then
18
19
                     PRUNE(\pi)
                                                                 // invalidity of a portion of the SUM search space implies
                                                                // invalidity of the entire corresponding SUM search space
                 end
20
                if ch_T^{unexp}(n_W) = \emptyset then
                                                                                                      // Continue Backtracking
21
                     BACKTRACK(\pi)
22
                 else if \exists \gamma \in \varphi \text{ s.t. } UB_{Z_{\gamma}}(n_W) < threshold(\gamma) then
                                                                                                   // Subunit-Stability Pruning
23
                     PRUNE(\pi)
24
                 else if W \in \mathbf{R} then
25
                     if \exists a \in anc^{OR}(n_W) s.t. ub_{K^*}(a, \pi) < lb_{K^*}(a) then
                                                                                                             // K*MAP Pruning
26
27
                          PRUNE(\pi)
                     end
28
                 end
29
            end
30
        end
31
32 end
```