AND/OR Branch-and-Bound for Computational Protein Design Optimizing K* (Supplemental Materials)

Bobak Pezeshki Radu Marinescu Alexander Ihler Rina Dechter${ }^{1}$ University of California, Irvine${ }^{2}$ IBM Research
For updates and related files, please visit: https://www.ics.uci.edu/~dechter/publications.html
CONTENTS
1 Notation and Definitions 3
2 AOBB-K*MAP Algorithm Details 7
3 Extended Paper: Introduction 11
4 Extended Paper: Background 12
4.1 Computational Protein Design 12
$4.2 \mathrm{~K}^{*}$ and K^{*} MAP 12
4.3 Graphical Models 13
4.4 AND/OR Search Space for Mixed Inference 13
4.5 Bucket Elimination 14
5 Extended Paper: Graphical Model for K*MAP Computation 16
5.1 Formulation 1 (F1) 16
5.2 Formulation 2 (F2) 18
5.3 Resulting Pseudo Tree 20
6 Extended Paper: wMBE-K* 21
7 Extended Paper: Domain-Partitioned MBE 23
8 Extended Paper: AOBB-K* 24
9 Extended Paper: Infusing Determinism via Thresholded Underflows 26
9.1 Validity of Thresholded Underflows 26
Definitions. 26
Verifying τ satisfies condition 1 27
Verifying τ satisfies condition 2 27
Conclusion. 27
10 Extended Paper: Empirical Evaluation 28
10.1 Methods 28
10.2 Results. 28
10.3 Analysis 38
11 Extended Paper: Conclusion 39

1 NOTATION AND DEFINITIONS

$\mathcal{M}: \quad$ A CPD graphical model for computing the $\mathrm{K}^{*} \mathrm{MAP}$. More formally, $\mathcal{M}=\langle\boldsymbol{X}, \boldsymbol{D}, \boldsymbol{F}\rangle$ where:

- \boldsymbol{X} is the set of all variables in the model
- \boldsymbol{D} is the set of domains for all respective variables in the model
- \boldsymbol{F} is the set of all functions over the variables in the model
\boldsymbol{X} :
- the set of all variables of the model
- $\boldsymbol{X}=\boldsymbol{R} \cup C$
- \boldsymbol{R}
- "residue variables" - the set of variables corresponding to the protein residues
- the set of variables that will be maximized over (ie. the MAP variables)
- C
- "conformation variables" - each $C \in \boldsymbol{C}$ indexes the rotamer conformation of a particular $R \in \boldsymbol{R}$
- the set of variables that will be summed over (ie. the SUM variables)
- there can be several $C \in C$ that correspond to the same $R \in \boldsymbol{R}$. These different C 's capture the rotamer conformations of their particular R when the protein is in different structural states.
- $\boldsymbol{C}=\cup_{\gamma \in \varphi} \boldsymbol{C}_{\boldsymbol{\gamma}}$
- φ represents the set of all different substructures the protein's subunits can exist as
- $\varphi=B \cup U$
. B is the set of substructures corresponding to bound (ie. complexed) subunits corresponding to the numerator of the K^{*} ratio
- U is the set of substructures corresponding to the unbound (ie. dissociate) subunits corresponding to the denominator of the K^{*} ratio
- thus $\boldsymbol{C}_{\boldsymbol{\gamma}}$ is the set of conformation variables corresponding to residues of substructure $\gamma \in \varphi$
- $C_{\gamma(i)}$ is the conformation variable for residue i when residue i 's subunit is in substructure γ
- $\boldsymbol{X}_{\gamma}=\boldsymbol{R} \cup \boldsymbol{C}_{\gamma}$
$D:$
- the set of domains for each variable in \boldsymbol{X}
- $\boldsymbol{D}_{\boldsymbol{\gamma}}$ is the set of domains for the variables in $\boldsymbol{X}_{\boldsymbol{\gamma}}$
- for all $R_{i} \in \boldsymbol{R}$, the respective $D_{i}=\{$ ALA, VAL, LEU, ILE, PHE, TYR, TRP, CYS, MET, SER, THR, LYS, ARG, HIP, HIE, HID, ASP, GLU, ASN, GLN, GLY\}
- for all $C_{\gamma(i)} \in \boldsymbol{C}$,
- Formulation 1
- $D_{C_{\gamma(i)}}=\left\{1,2, \ldots, M_{i}\right\}$, where M_{i} is the maximum number of rotamers for any possible amino acid assignment to R_{i} in state $\gamma \in \varphi$.
- the assignment to $C_{\gamma(i)}$ acts as an index to the possible side chain conformations of the amino acid assigned to R_{i}.
- Formulation 2
- $D_{C_{\gamma(i)}}=\left\{c \mid c\right.$ is a rotamer in substructure γ for one of the possible amino acids of residue $\left.R_{i}\right\}$.

F :

- the set of all functions over the model
- $\boldsymbol{F}=\cup_{\gamma \in \varphi} F_{\gamma}$
- Formulation 1

$$
\cdot F_{\gamma}=\boldsymbol{E}_{\gamma}^{s b} \cup \boldsymbol{E}_{\gamma}^{p w}
$$

- $\boldsymbol{E}_{\gamma}^{s b}$ are the set of all single bodied energies over the residues and their conformations for substructure γ
- $\boldsymbol{E}_{\gamma}^{\boldsymbol{p w}}$ are the set of all pair-wise energies for all pairs of residues and their conformations that interact in substructure γ
- Formulation 2

$$
\cdot F_{\gamma}=\boldsymbol{E}_{\gamma}^{s b} \cup \boldsymbol{E}_{\gamma}^{p \boldsymbol{w}} \cup \mathscr{C}_{\gamma}
$$

- \mathscr{C}_{γ} are constraints ensuring that the assigned rotamer to $C_{\gamma(i)}$ belongs to the amino acid assigned to R_{i}.
\mathcal{M}_{γ} : The CPD graphical model \mathcal{M} modified to include only components corresponding to substructure γ. Namely, $\mathcal{M}_{\gamma}=\left\langle\boldsymbol{X}_{\boldsymbol{\gamma}}, \boldsymbol{D}_{\boldsymbol{\gamma}}, \boldsymbol{F}_{\boldsymbol{\gamma}}\right\rangle$
\mathcal{T} : Pseudo tree for \mathcal{M} constrained for K^{*} MAP computation and providing decomposition of the various substructures $\gamma \in \varphi$.
\mathcal{T}_{γ} : Pseudo tree for \mathcal{M}_{γ} based on a modified \mathcal{T} such that nodes corresponding to $C_{\gamma^{\prime}}$, where $\gamma^{\prime} \neq \gamma$, have been removed.
T : Full AND/OR search tree based on \mathcal{T}.
$T_{\gamma}: \quad$ Full AND/OR search tree of \mathcal{M}_{γ} based on \mathcal{T}_{γ}.
π : Currently expanded path in T.
π_{n} : Path from the root to n in T.
$\operatorname{tip}(\pi): \quad$ The last node in π that was expanded to.
$O R^{R}, O R^{C}$, etc.: The set of OR nodes whose corresponding variables belong to the variable set denoted by the superscript. (Absence of superscript corresponds to all OR nodes).
$A N D^{R}, A N D^{C}$, etc.: The set of AND nodes of T whose corresponding variables belong to the variable set denoted by the superscript. (Absence of superscript corresponds to all AND nodes).
$L E A F_{T}$: The set of AND nodes that are leaves in T.
$n_{X}: \quad$ Search tree node n corresponding to a particular variable $X \in \boldsymbol{X}$.
$c h_{T}(n)$: Children nodes of n in the search tree indicated by its subscript.
$c h_{\pi}(n): \quad$ Child of n along the π.
$c h_{T}^{\text {unexp }}(n)$: Children nodes of n in the search tree indicated by its subscript that have yet to be expanded to (ie. explored) by the algorithm.
$c h_{T}^{\text {solved }}(n)$: Children nodes of n in the search tree indicated by its subscript who have been returned to after exploration of all of their children and provably with $l b_{K^{*}}(n)=u b_{K^{*}}(n)=v^{*}(n), v^{*}(n)$ being the exact $\mathrm{K} *$ MAP value for the subproblem rooted at n (described futher below).
$c h_{T}^{\text {unsolved }}(n)$: Children nodes of n in the search tree indicated by its subscript whose $l b_{K^{*}}(n)$ and $u b_{K^{*}}(n)$ values are not yet known to be exact because not all their children have been expanded to and returned from. $\operatorname{ch}_{T}^{\text {unsolved }}(n)=$ $c h_{T}(n) \backslash \operatorname{ch}_{T}^{\text {solved }}(n)$.
$a n c^{O R}(n), a n c^{A N D}(n)$,etc:: Ordered ancestors of n in T, from most recent to eldest, that also belong to the set described by the superscript.
$c(n): \quad$ Edge cost into n in T.
$g(n): \quad$ Path cost from the root into n in T. Namely, $c(n) \cdot \prod_{m \in \operatorname{anc}^{A N D}(n)} c(m)$.
$v^{*}\left(n_{X}\right):$ For $X \in \boldsymbol{R}, v^{*}\left(n_{X}\right)$ is the K^{*} MAP value (ie. the optimal K^{*} value) for the problem rooted at n. For $X \in \boldsymbol{C}$, $v^{*}\left(n_{X}\right)$ is the partition function value of the problem rooted at n. Namely,

$$
v^{*}(n)= \begin{cases}\max _{m \in c h_{T}(n)} v^{*}(m), & n \in O R^{\boldsymbol{R}} \\ \frac{\left(\prod_{m \in c h_{T}^{R}(n)} v^{*}(m)\right)\left(\Pi_{\gamma \in B} \prod_{m^{\prime} \in c h_{T}^{C \gamma}(n)} v^{*}\left(m^{\prime}\right)\right)}{\left(\prod_{\gamma \in U} \prod_{m^{\prime \prime} \in c h_{T}^{C \gamma}(n)}^{\left.v^{*}\left(m^{\prime \prime}\right)\right)},\right.}, & n \in A N D^{\boldsymbol{R}} \\ \sum_{m \in c h_{T}(n)} v^{*}(m) \cdot c(m), & n \in O R^{\boldsymbol{C}} \\ \prod_{m \in c h_{T}(n)} v^{*}(m), & n \in A N D^{\boldsymbol{C}} \backslash L E A F_{T} \\ 1, & n \in L E A F_{T}\end{cases}
$$

$v(n)$: A progressively accumulated quantity based on processing of fully solved and returned children fo a node $n . v(n)$ converges to the exact $\mathrm{K} *$ MAP value of the subproblem rooted at n once all of its children have been expanded to, solved, and returned from. Namely, if $c h_{T}^{\text {solved }}(n)=c h_{T}(n)$, then $v(n)=v^{*}(n)$. Formally,

$$
v(n)= \begin{cases}\max _{m \in c h_{T}^{s o l v e d}(n)} v(m), & n \in O R^{\boldsymbol{R}} \\ \frac{\left(\prod_{m \in c h_{T}^{\text {solved }, R}(n)} v(m)\right)\left(\prod_{\gamma \in B} \Pi_{m^{\prime} \in c h_{T}^{\text {solved,C耳}}(n)} v\left(m^{\prime}\right)\right)}{\left(\prod_{\gamma \in U} \prod_{m^{\prime \prime} \in c h_{T}^{\text {solved,C久}}(n)} v\left(m^{\prime \prime}\right)\right)}, & n \in A N D^{\boldsymbol{R}} \\ \sum_{m \in c h_{T}^{\text {solved }}(n)} v(m) \cdot c(m), & n \in O R^{C} \\ \prod_{m \in c h_{T}^{\text {solved }}(n)} v(m), & n \in A N D^{C} \backslash L E A F_{T} \\ 1, & n \in L E A F_{T}\end{cases}
$$

$\mu_{\gamma}^{*}\left(n_{X}\right):$ For $X \in \boldsymbol{R}, \mu_{\gamma}^{*}\left(n_{X}\right)$ is the MMAP value for the problem rooted at n in T_{γ}. For $X \in \boldsymbol{C}_{\boldsymbol{\gamma}}, v^{*}\left(n_{X}\right)$ is the partition function value of the problem rooted at n in T_{γ}.

$$
\mu_{\gamma}^{*}(n)= \begin{cases}\max _{m \in c h_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m), & n \in O R^{R} \\ \sum_{m \in c h_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m) \cdot c(m), & n \in O R^{C} \\ \prod_{m \in c h_{T_{\gamma}}(n)} \mu_{\gamma}^{*}(m), & n \in A N D \backslash L E A F_{T} \\ 1, & n \in L E A F_{T}\end{cases}
$$

$\mu_{\gamma}(n): \quad$ A progressively accumulated quantity based on the fully solved and returned children of node n in $T_{\gamma} . \mu_{\gamma}(n)$ converges to the exact MMAP value of the γ-subproblem rooted at n once all of its children in T_{γ} have been expanded to, solved, and returned from. Namely, if $c h_{T_{\gamma}}^{\text {solved }}(n)=c h_{T_{\gamma}}(n)$, then $\mu_{\gamma}(n)=\mu_{\gamma}^{*}(n)$. Formally,

$$
\mu_{\gamma}(n)= \begin{cases}\max _{m \in c h_{T_{\gamma}^{\text {solved }}}(n)} \mu_{\gamma}(m), & n \in O R^{\boldsymbol{R}} \\ \sum_{m \in c h_{T_{\gamma}^{\text {solved }}(n)}} \mu_{\gamma}(m) \cdot c(m), & n \in O R^{C} \\ \prod_{m \in c h_{T_{\gamma}^{s o l v e d}}(n)} \mu_{\gamma}(m), & n \in A N D \backslash L E A F_{T} \\ 1, & n \in L E A F_{T}\end{cases}
$$

$h_{K^{*}}(n)$: Precompiled WMBE-K*MAP heuristic for the problem rooted at n.
$h_{Z_{\gamma}}(n): \quad$ Precompiled WMBE-MMAP heuristic for the problem rooted at n considering only $X \in \boldsymbol{X}_{\gamma}=\boldsymbol{R} \cup \boldsymbol{C}_{\boldsymbol{\gamma}}$.
$u b_{K^{*}}(n)$: Progressively updated upper bound heuristic of the K^{*} MAP problem rooted at n. Formally,
$u b_{K^{*}}(n, \pi)$: Progressively updated upper bound heuristic of the K^{*} MAP problem rooted at n consistent with the partial search tree π. Formally,

$$
u b_{K^{*}}(n, \pi)= \begin{cases}u b_{K^{*}}(n), & n \in O R^{\boldsymbol{R}} \cap \operatorname{tip}(\pi) \\ u b_{K^{*}}\left(c h_{\pi}(n), \pi\right), & n \in O R^{\boldsymbol{R}} \cap \pi \backslash \operatorname{tip}(\pi) \\ u b_{K^{*}}(n) \cdot \prod_{m \in c h_{\pi}(n)} \frac{u b_{K^{*}}(m, \pi)}{h_{K^{*}}(m)} & n \in A N D^{\boldsymbol{R}} \cap \pi\end{cases}
$$

$u b_{Z_{\gamma}}(n)$: Progressively updated upper bound of the MMAP problem for substructure γ rooted at n. Formally,

$$
u b_{Z_{\gamma}}(n)= \begin{cases}\max \left(\mu_{\gamma}(n), \max _{m \in h_{T_{\gamma}}^{\text {unsolved }}(n)} h_{Z_{\gamma}}(m)\right), & n \in O R^{\boldsymbol{R}} \\ \left.\mu_{\gamma}(n)+\sum_{m \in c h_{T_{\gamma}}^{u n s o l v e d}(n)} c(m) \cdot h_{Z_{\gamma}}(m)\right), & n \in O R^{C_{\gamma}} \\ \mu_{\gamma}(n) \cdot \prod_{c h_{T_{\gamma}}^{u n s o l v e d}(n)} h_{Z_{\gamma}}(m), & n \in A N D\end{cases}
$$

$M M A P_{\gamma}(n)$: The marginal map value of subunit γ conditioned on residue assignments consistent with the path from the root to n. Formally,

$$
\operatorname{MMAP}_{\gamma}(n)= \begin{cases}\mu_{\gamma}^{*}(n) \cdot \prod_{m \in \operatorname{anc}^{A N D}(n)} \prod_{m^{\prime} \in c h_{T_{\gamma}(m)} \backslash \pi_{n}} \mu_{\gamma}^{*}\left(m^{\prime}\right), & n \in \boldsymbol{R} \\ \mu_{\gamma}^{*}(n) \cdot \prod_{m \in \operatorname{anc}^{A N D^{\boldsymbol{R}}(n)}} \prod_{m^{\prime} \in c h_{T_{\gamma}(m)} \backslash \pi_{n}} \mu_{\gamma}^{*}\left(m^{\prime}\right), & n \in \boldsymbol{C}_{\gamma}\end{cases}
$$

$A_{Z_{\gamma}}^{\times *}(n)$: Called the multiplicative ancestral branching mass, $A_{Z_{\gamma}}^{\times *}(n)$ captures the portion of $M M A P_{\gamma}(n)$ due to OR branchings off of n 's AND ancestors. The product of $A_{Z_{\gamma}}^{*}$ and the partition function of the subtree consisting of π_{n} and the subtree of T_{γ} rooted at n is the contribution to Z_{γ} from all full configurations consistent with π_{n}. Formally,

$$
A_{Z_{\gamma}}^{\times *}(n)=\prod_{m \in a n c^{A N D}(n)} \prod_{m^{\prime} \in c h_{T_{\gamma}(m)} \backslash \pi_{n}} v_{Z_{\gamma}}^{*}\left(m^{\prime}\right)
$$

$A_{Z_{\gamma}}^{\times}(n)$: Upper bound of $A_{Z_{\gamma}}^{\times *}$ for node n.

$$
A_{Z_{\gamma}}^{\times}(n)=\prod_{m \in \operatorname{anc}^{A N D}(n)} v_{Z_{\gamma}}(m) \cdot \prod_{m^{\prime} \in c h_{T_{\gamma}}^{u n e x_{p}}(m)} h_{Z_{\gamma}}\left(m^{\prime}\right)
$$

$S_{Z \gamma}^{*}(n)$: The contribution to Z_{γ} from all configurations not consistent with π_{n}.

$$
S_{Z \gamma}^{*}(n)=\sum_{m \in a n c^{O R}(n)} R_{Z \gamma}^{*}(m) \cdot g(m) \cdot \sum_{m^{\prime} \in c h_{T_{\gamma}(m) \backslash \pi_{n}}} c\left(m^{\prime}\right) \cdot \mu_{\gamma}^{*}(m)
$$

$S_{Z \gamma}(n): \quad$ Upper bound of $S_{Z_{\gamma}}^{*}$.

$$
S_{Z \gamma}(n)=\sum_{m \in a n c^{O R}(n)} A_{Z_{\gamma}}^{\times}(m) \cdot g(m) \cdot\left(\mu_{\gamma}(m)+\sum_{m^{\prime} \in c h_{T_{\gamma}}^{\text {unexp }}(m)} c\left(m^{\prime}\right) \cdot h_{Z_{\gamma}}\left(m^{\prime}\right)\right)
$$

$U B_{Z_{\gamma}}(n)$: Progressively updated upper bound heuristic on the entire partition function of the substructure $\gamma \in \Phi$. Formally,

$$
U B_{Z_{\gamma}}(n)=\left\{A_{Z_{\gamma}}^{\times}(n) \cdot g(n) \cdot u b_{Z_{\gamma}}(n)+S_{Z_{\gamma}}(n), \quad n \in \operatorname{tip}(\pi)\right.
$$

2 AOBB-K*MAP ALGORITHM DETAILS

```
Algorithm 1: AOBB-K \({ }^{*}\) MAP
input : CPD graphical model \(\mathcal{M}\); pseudo-tree \(\mathcal{T} ; K^{*}\) upper-bounding heuristic function \(h_{K^{*}}^{u b}(.) ; Z_{\gamma}\) upper-bounding
        heuristic function \(h_{Z_{\gamma}}^{u b}(\).\() ; and subunit stability threshold \operatorname{threshold}(\gamma)\) for each subunit \(\gamma \in \varphi\)
output: \(K^{*} M A P(\mathcal{M})\)
begin
    Initialize MiniSat with constraints from \(\mathcal{M}\) // MiniSat initialization
    and generate literals via constraint propagation
    \(\pi \leftarrow\) dummy AND node \(n_{D} \quad / /\) initialize DFS to start from dummy root node, \(n_{D}\)
    \(u b_{K^{*}}\left(n_{D}\right) \leftarrow \prod_{m \in c h_{T}\left(n_{D}\right)} h_{K^{*}}(m) \quad / /\) initialize \(n_{D}\) with global UB on K \({ }^{*}\)
    \(l b_{K^{*}}\left(n_{D}\right) \leftarrow-i n f \quad / /\) no solution yet found as a lower bound
    \(g\left(n_{D}\right) \leftarrow 1\)
    foreach \(\gamma \in \varphi\) do // initialize \(n_{D}\) with subunit-specific UB values
        \(A_{Z_{\gamma}}^{\times}\left(n_{D}\right) \leftarrow 1\)
        \(A_{Z_{\gamma}}^{+}\left(n_{D}\right) \leftarrow 0\)
        \(u b_{Z_{\gamma}}\left(n_{D}\right) \leftarrow \prod_{m \in c h_{T_{\gamma}}\left(n_{D}\right)} h_{Z_{\gamma}}(m) \quad / /\) initialize \(u b_{Z_{\gamma}}\left(n_{D}\right)\) to the MMAP \({ }_{\gamma}\) global UB value
    end
    while \(n_{X} \leftarrow E X P A N D(\pi)\) do // DFS Branch-and-Bound
        if \(\operatorname{MiniSat}(\pi)=\) false then \(\quad / /\) Constraint-Propagation Pruning (CPP)
                PRUNE ( \(\pi\) )
        else if \(\exists \gamma \in \varphi\) s.t. \(U B_{Z_{\gamma}}\left(n_{X}\right)<\) threshold \((\gamma)\) then // Subunit-Stability Pruning (SSP)
                PRUNE \((\pi)\)
        else if \(X \in \boldsymbol{R}\) then
            if \(\exists a \in a n c^{O R}(n)\) s.t. \(u b_{K^{*}}(a, \pi)<l b_{K^{*}}(a)\) then \(/ / K^{*}\) MAP Upper-Bound Pruning (UBP)
                PRUNE \((\pi)\)
                end
        else if \(\operatorname{ch}_{T}^{\text {unexp }}(n)=\emptyset\) then \(\quad / /\) DFS Backtracking Step
                \(B A C K T R A C K(\pi)\)
    end
    return \(u b_{K^{*}}\left(n_{D}\right)=l b_{K^{*}}\left(n_{D}\right)=K^{*} M A P(\mathcal{M})\)
end
```

```
Algorithm 2: AOBB-K*MAP subroutine, EXPAND
input :partial search tree \(\pi\)
output : newly expanded node \(n_{X}\) of \(\pi\)
begin
    if \(\pi=\emptyset\) then \(\quad / /\) signals end of DFS search
    return null
    else
        \(n_{W} \leftarrow \operatorname{tip}(\pi) \quad / / n_{W}\) is the node to be expanded
        \(n_{X} \leftarrow\) next unexplored child of \(n_{W} \quad / / n_{X}\) is the next node in the DFS
        \(\operatorname{ch}_{T}^{\text {unexp }}\left(n_{W}\right) \leftarrow h_{T}^{\text {unexp }}\left(n_{W}\right) \backslash n_{X}\)
        if \(n_{X} \in O R\) then
            foreach \(\gamma \in \varphi\) associated with \(X\) do
                \(A_{Z_{\gamma}}^{\times}\left(n_{X}\right) \leftarrow A_{Z_{\gamma}}^{\times}\left(n_{W}\right) \cdot u b_{Z_{\gamma}}\left(n_{W}\right) / h_{Z_{\gamma}}\left(n_{X}\right) \quad / /\) update \(R_{Z_{\gamma}}\) to include siblings of \(n_{X}\)
                \(A_{Z_{\gamma}}^{+}\left(n_{X}\right) \leftarrow A_{Z_{\gamma}}^{+}\left(n_{W}\right) \quad\) // no new additive ancestral branching
            end
            if \(X \in \boldsymbol{R}\) then // for OR MAP nodes...
            \(u b_{K^{*}}\left(n_{X}\right) \leftarrow \max _{m \in c h_{T}\left(n_{X}\right)} h_{K^{*}}(m)\)
            foreach \(\gamma \in \varphi\) associated with \(X\) do
                \(u b_{Z_{\gamma}}\left(n_{X}\right) \leftarrow \max _{m \in c h_{T_{\gamma}}\left(n_{X}\right)} h_{Z_{\gamma}}(m)\)
            end
            else if \(X \in C_{\gamma}\) then // for OR SUM nodes of subunit \(\gamma \ldots\)
            \(u b_{K^{*}}\left(n_{X}\right) \leftarrow \sum_{m \in c h_{T}\left(n_{X}\right)} c(m) \cdot h_{K^{*}}(m)\)
            \(u b_{Z_{\gamma}}\left(n_{X}\right) \leftarrow \sum_{m \in c h_{T}\left(n_{X}\right)} c(m) \cdot h_{Z_{\gamma}}(m)\)
            end
        else if \(n_{X} \in A N D\) then // for SUM or MAP AND nodes...
            foreach \(\gamma \in \varphi\) do
                    \(A_{Z_{\gamma}}^{\times}\left(n_{X}\right) \leftarrow A_{Z_{\gamma}}^{\times}\left(n_{W}\right)\)
                    \(u b_{Z_{\gamma}}\left(n_{X}\right) \leftarrow \prod_{m \in c h_{T_{\gamma}}\left(n_{X}\right)} h_{Z_{\gamma}}(m)\)
            end
            if \(X \in \boldsymbol{R}\) then
                \(u b_{K^{*}}\left(n_{X}\right) \leftarrow \frac{\left(\prod_{m \in c h h_{T}^{R}(n)} h_{K^{*}}(m)\right)\left(\prod_{\gamma \in B} \prod_{m^{\prime} \in c h_{T}^{C \gamma}(n)} h_{Z_{\gamma}}\left(m^{\prime}\right)\right)}{\left(\prod_{\gamma \in U} \prod_{m^{\prime \prime} \in c h_{T}^{C \gamma}(n)} h_{Z_{\gamma}}\left(m^{\prime \prime}\right)\right)}\)
                            \(/ / u b_{K^{*}}\left(n_{X}\right)\) initialized by combining UB heuristic values of its
                    // children, dividing values corresponding to dissociate subunits
            foreach \(\gamma \in \varphi\) associated with \(X\) do
                    \(A_{Z_{\gamma}}^{+}\left(n_{X}\right) \leftarrow A_{Z_{\gamma}}^{+}\left(n_{W}\right) \quad / /\) no new additive ancestral branching
                end
            else if \(X \in \boldsymbol{C}_{\gamma}\) then
                \(A_{Z_{\gamma}}^{+}\left(n_{X}\right) \leftarrow A_{Z_{\gamma}}^{+}\left(n_{W}\right)+A_{Z_{\gamma}}^{\times}\left(n_{W}\right) \cdot g\left(n_{W}\right) \cdot\left(u b_{Z_{\gamma}}\left(n_{W}\right)-c\left(n_{X}\right) \cdot h_{Z_{\gamma}}\left(n_{X}\right)\right)\)
                                    // update \(A_{Z_{\gamma}}^{+}\)to include siblings of \(n_{X}\)
            end
        end
        \(\operatorname{ch}_{T}^{\text {unexp }}\left(n_{X}\right) \leftarrow c h_{T}\left(n_{X}\right)\)
        \(\pi \leftarrow \pi \cup n_{X}\)
        return \(n_{X}\);
    end
end
```

```
Algorithm 3: AOBB-K*MAP subroutine, BACKTRACK
input :partial search tree \(\pi\)
output: None
begin
    if \(\pi=\emptyset\) then \(\quad / /\) backtracked all the way through root
    return
    else
        \(n_{X} \leftarrow \operatorname{tip}(\pi) \quad / / n_{X}\) is the node we're backtracking from
        \(n_{W} \leftarrow \operatorname{par}_{T}\left(n_{X}\right) \quad / / n_{W}\) is the node we're backtracking to
        \(\pi \leftarrow \pi \backslash n_{X}\)
        if \(n_{W} \in A N D\) then
        if \(X \in \boldsymbol{C}_{\gamma}\) s.t. \(\gamma \in U\) and \(W \in \boldsymbol{R}\) then
                \(u b_{K^{*}}\left(n_{W}\right) \leftarrow u b_{K^{*}}\left(n_{W}\right) \cdot h_{K^{*}}\left(n_{X}\right) / u b_{K^{*}}\left(n_{X}\right) \quad / /\) tighten \(u b_{K^{*}}\left(n_{W}\right)\) via update of
                // denominator term \(n_{X}\) contributes to
            else
                \(u b_{K^{*}}\left(n_{W}\right) \leftarrow u b_{K^{*}}\left(n_{W}\right) / h_{K^{*}}\left(n_{X}\right) \cdot u b_{K^{*}}\left(n_{X}\right) \quad / /\) tighten \(u b_{K^{*}}\left(n_{W}\right)\) via update of
            end
            foreach \(\gamma \in \varphi\) associated with \(X\) do
                \(u b_{Z_{\gamma}}\left(n_{W}\right) \leftarrow u b_{Z_{\gamma}}\left(n_{W}\right) / h_{Z_{\gamma}}\left(n_{X}\right) \cdot u b_{Z_{\gamma}}\left(n_{X}\right) \quad / /\) update upper-bound bound on \(Z_{\gamma}\) at \(n_{W}\)
            end
        else if \(n_{W} \in O R\) then // backtracking from AND node \(n_{X}\) to OR node \(n_{W}\)
            if \(W \in \boldsymbol{R}\) then
                \(u b_{K^{*}}\left(n_{W}\right) \leftarrow \max _{m \in c h_{T}\left(n_{W}\right)} u b_{K^{*}}(m) \quad / /\) tighten \(u b_{K^{*}}\left(n_{W}\right)\) via reevaluation of its children
                    foreach \(\gamma \in \varphi\) associated with \(W\) do
                        \(u b_{Z_{\gamma}}\left(n_{W}\right) \leftarrow \max _{c h_{T}\left(n_{W}\right)} u b_{Z_{\gamma}}(m) \quad / /\) update upper-bound bound on \(Z_{\gamma}\) at \(n_{W}\)
                end
            else if \(W \in C_{\gamma}\) then
                    \(u b_{K^{*}}\left(n_{W}\right) \leftarrow u b_{K^{*}}\left(n_{W}\right)-c\left(n_{X}\right) \cdot\left(h_{K^{*}}\left(n_{X}\right)-u b_{K^{*}}\left(n_{X}\right)\right) \quad / /\) tighten \(u b_{K^{*}}\left(n_{W}\right)\) via update
                                    // of \(u b_{K^{*}}\left(n_{X}\right)\) of summed AND child \(n_{X}\)
                    \(u b_{Z_{\gamma}}\left(n_{W}\right) \leftarrow u b_{Z_{\gamma}}\left(n_{W}\right)-c\left(n_{X}\right) \cdot\left(h_{Z_{\gamma}}\left(n_{X}\right)-u b_{Z_{\gamma}}\left(n_{X}\right)\right) \quad / /\) tighten \(u b_{Z_{\gamma}}\left(n_{W}\right)\) via update
                                    // of \(u b_{Z_{\gamma}}\left(n_{X}\right)\) of summed AND child \(n_{X}\)
            end
        end
        if \(c h_{T}^{\text {unexp }}\left(n_{W}\right)=\emptyset\) then \(\quad / /\) Continue Backtracking
            BACKTRACK \((\pi)\)
        else if \(\exists \gamma \in \varphi\) s.t. \(U B_{Z_{\gamma}}\left(n_{W}\right)<\) threshold \((\gamma)\) then // Subunit-Stability Pruning (SSP)
            PRUNE ( \(\pi\) )
        else if \(W \in \boldsymbol{R}\) then
            if \(\exists a \in a n c^{O R}\left(n_{W}\right)\) s.t. \(u b_{K^{*}}(a, \pi)<l b_{K^{*}}(a)\) then \(\quad / / K^{*}\) MAP Upper-Bound Pruning (UBP)
                PRUNE \((\pi)\)
            end
        end
end
```

```
Algorithm 4: AOBB-K*MAP subroutine, PRUNE
input :partial search tree \(\pi\)
output: None
begin
    if \(\pi=\emptyset\) then \(\quad / /\) pruned all the way through root
        return
    else
        \(n_{X} \leftarrow \operatorname{tip}(\pi) \quad / / n_{X}\) is the node we're pruning
        \(n_{W} \leftarrow \operatorname{par}_{T}\left(n_{X}\right) \quad / / n_{W}\) is the node we're backtracking to
        \(\pi \leftarrow \pi \backslash n_{X} \quad\) // explicitly prunes \(n_{X}\) from \(\pi\)
        if \(n_{W} \in A N D\) then \(\quad / /\) also prune AND parent \(n_{W}\) which will be missing pruned OR child \(n_{X}\)
            PRUNE ( \(\pi\) )
        else if \(n_{W} \in O R\) then
            if \(W \in \boldsymbol{R}\) then
                \(u b_{K^{*}}\left(n_{X}\right) \leftarrow-i n f \quad / /\) implicitly marks \(n_{X}\) as having been pruned
                \(u b_{K^{*}}\left(n_{W}\right) \leftarrow \max _{m \in c h_{T}\left(n_{W}\right)} u b_{K^{*}}(m) \quad / /\) recompute \(u b_{K^{*}}\left(n_{W}\right)\) excluding pruned child
                foreach \(\gamma \in \varphi\) associated with \(W\) do
                    \(u b_{Z_{\gamma}}\left(n_{X}\right) \leftarrow-i n f \quad / /\) implicitly marks \(n_{X}\) as having been pruned
                    \(u b_{Z_{\gamma}}\left(n_{W}\right) \leftarrow \max _{c h_{T}\left(n_{W}\right)} u b_{Z_{\gamma}}(m) \quad / /\) recompute \(u b_{Z_{\gamma}}\left(n_{W}\right)\) excluding pruned child
                end
            else if \(W \in C_{\gamma}\) then
                \(\operatorname{PRUNE}(\pi) \quad / /\) invalidity of a portion of the SUM search space implies
                                    // invalidity of the entire corresponding SUM search space
            end
            if \(h_{T}^{\text {unexp }}\left(n_{W}\right)=\emptyset\) then // Continue Backtracking
            BACKTRACK \((\pi)\)
            else if \(\exists \gamma \in \varphi\) s.t. \(U B_{Z_{\gamma}}\left(n_{W}\right)<\operatorname{threshold}(\gamma)\) then // Subunit-Stability Pruning
                    PRUNE ( \(\pi\) )
            else if \(W \in \boldsymbol{R}\) then
                if \(\exists a \in a n c^{O R}\left(n_{W}\right)\) s.t. \(u b_{K^{*}}(a, \pi)<l b_{K^{*}}(a)\) then \(\quad / / \mathrm{K}^{*}\) MAP Pruning
                PRUNE \((\pi)\)
            end
            end
        end
    end
end
```


3 EXTENDED PAPER: INTRODUCTION

Graphical models provide a powerful framework for reasoning about conditional dependency structures over many variables. The Marginal MAP (MMAP) query asks for the optimal configuration of a subset of variables, called MAP variables, that have the highest marginal probability. We define a new related task, K^{*} MAP, which instead asks for the configuration of MAP variables that maximizes a quotient of the marginalization of conditionally disjoint subsets of the remaining variables. This ratio is known as K^{*}. In the context of computational protein design (CPD), K^{*} estimates binding affinity between interacting subunits. Thus, maximizing K^{*} corresponds to maximizing the likelihood that the subunits will associate Hallen and Donald 2019.

Like MMAP, K^{*} MAP distinguishes between maximization (MAP) variables and summation (SUM) variables. Moreover, the SUM variables are further partitioned into a subset whose marginal corresponds to the numerator of the K^{*} ratio and a subset corresponding to the denominator. Like MMAP, the K^{*} MAP problem is a mixed inference task and more difficult than either pure max- or sum- inference tasks as its summation and maximization operations do not commute. In terms of processing of variables for inference, this forces constrained variable orderings that may have significantly higher induced widths Dechter [1999, 2019]. This in turn also implies larger search spaces when using search algorithms or larger messages when using message-passing schemes. Even the simpler case of MMAP is $\mathrm{NP}^{\mathrm{PP}}$-complete and it can be NP-hard even on tree structured models Park [2002]. In terms of bounded approximations, bounding the K^{*} ratio requires both upper and lower bounding of marginals, producing an additional challenge over bounding of a MMAP value.

Nevertheless, over the last several years, there have been several advances in algorithms for solving the MMAP task Marinescu et al. [2018], many of which have potential for being adapted for the K*MAP query. In order to set the framework for leveraging these advances for $\mathrm{K}^{*} \mathrm{MAP}$, this work presents four main contributions:

1. Two formulations of K^{*} MAP as a graphical model

2. A Weighted Mini-Bucket Elimination K^{*} MAP heuristic, wMBE-K*
3. Proof-of-concept for Domain-Partitioned Weighted Mini-Bucket Elimination K*MAP heuristic

4. AOBB-K*, a depth-first branch-and-bound algorithm over AND/OR search spaces for solving CPD formulated as a K*MAP problem

5. A thresholding scheme to exploit determinism accompanied with performance guarantees

4 EXTENDED PAPER: BACKGROUND

4.1 COMPUTATIONAL PROTEIN DESIGN

Computational Protein Design (CPD) is the task of mutating a known protein's amino acid sequence in hopes of achieving a desired objective such as improving the protein's energetics, improving protein-ligand interactions, or reducing interactions of a protein with inhibitors. In CPD, certain amino acid positions (or residues) of a protein-of-interest are deemed as mutable - these are amino acid positions where different amino acid mutations will be considered - and through a computational process, a preferred sequence is determined.

Typically, throughout the computational process, various sets of mutations are explored, each comprising a particular amino acid sequence. Given a particular sequence (or in some methods, even partial sequence) an estimate of the resulting protein's goodness can be determined. This goodness is determined by considering the possible conformations of the resulting protein, namely considering possible positioning of its backbone and side-chains. The state space for these conformations is continuous (and even when discretized, is extremely large) leading to an intractable problem.

As such, many simplifications can be made to allow for a more tractable problem:

- Consider a subset of Mutable Residues: consideration of only a subset of the residues involved in the interactions as mutable.
- Predetermined Side-Chain Rotamers: discretization of side-chain conformations as rotamers.
- Fixed Backbone Structure: assumption of a fixed protein backbone conformation.

With these simplifying assumptions, many algorithms have been designed to find mutations that can potentially result in improved protein functionality Hallen and Donald [2019], Zhou et al. [2016].

4.2 K* AND K*MAP

The affinity between two interacting protein subunits P and L is correlated to an equilibrium of the chemical reaction forming their complexed state $P L$:

$$
\begin{equation*}
P+L \rightleftharpoons P L \tag{1}
\end{equation*}
$$

This said equilibrium is associated with a constant, K_{a}, and can be determined in vivo by observing the persisting concentrations of each species defined by

$$
\begin{equation*}
K_{a}=\frac{[P L]}{[P][L]} \tag{2}
\end{equation*}
$$

However, in order to compare K_{a} values of various designs in vivo, it is necessary to synthesize the interacting subunits through molecular processes that are both timely and costly.
K_{a} can also be approximated as

$$
\begin{equation*}
K^{\int}=\frac{Z_{P L}^{\int}}{Z_{P}^{\int} Z_{L}^{\int}}, \quad Z_{\gamma}^{\int}=\int_{\mathcal{C}} e^{-\frac{E_{\gamma}(c)}{\mathscr{R} T}} d c \tag{3}
\end{equation*}
$$

where $Z_{P L}^{\int}, Z_{P}^{\int}$, and Z_{L}^{\int} are partition functions of the bound and unbound states that capture the entropic contributions of their various conformations $\mathcal{C} .\left(E_{\gamma}(c)\right.$ represents the energy of a particular conformation c of state $\gamma \in \varphi$ where $\varphi=\{P, L, P L\}, \mathscr{R}$ is the universal gas constant, and T is temperature (in Kelvin). We can further use a model that discretizes the conformation space. This computed estimate is denoted as K^{*} Ojewole et al. [2018]:

$$
\begin{equation*}
K^{*}=\frac{Z_{P L}}{Z_{P} Z_{L}}, \quad Z_{\gamma}=\sum_{c \in \boldsymbol{D}(\boldsymbol{C})} e^{-\frac{E_{\gamma}(c)}{R T}} \tag{4}
\end{equation*}
$$

Due to the independence between the interaction of residues with each other across the dissociate subunits, we can generalize further expressing K^{*} as:

$$
\begin{equation*}
K^{*}=\frac{Z_{B}}{Z_{U}} \tag{5}
\end{equation*}
$$

where B respresents the bound (complexed) state(s) and U represents the unbound (dissociate) states. (For the two-subunit system in our example, $B=\{P L\}$ and $U=\{P\} \cup\{L\}$). This more generalized representation, can be used directly for K^{*} computations involving more than two subunits.

A common goal in protein design is to maximize protein-ligand interaction. Previously, this was done by minimizing an objective called the GMEC (global minimum energy conformation) over only the complexed protein state PL Ruffini et al. [2021], Hallen and Donald [2019], Zhou et al. [2016]. The GMEC, being a pure minimum over the energies of the complex's conformations, ignores the realization that protein structures are dynamic. Furthermore, by the GMEC focusing only on the protein's complexed state, it ignores the dynamicity of the subunit interactions. However, since minimizing the GMEC results in a pure optimization task - a task much easier than that of mixed inference, many solvers use this objective. On the other hand, the stronger K^{*} objective captures both the dynamicity of protein conformations and subunit interactions. K^{*} MAP is the formalization of computational protein design as a task to maximize K^{*},

$$
\begin{equation*}
K^{*} \mathrm{MAP}=\underset{\boldsymbol{R}}{\operatorname{argmax}} K^{*}(r) \tag{6}
\end{equation*}
$$

where we look for amino acid assignments $\boldsymbol{R}=r$ that maximize K^{*}. Thus, the goal of recent work and the work presented here is to develop efficient algorithms for computing K^{*} MAP, from which one can predict a small set of promising sequences to experiment on in vivo, saving great time and cost. Our work taps into recent algorithms developed for the marginal map task defined over graphical models.

4.3 GRAPHICAL MODELS

A graphical model, such as a Bayesian or a Markov network Pearl [1988], Darwiche [2009], Dechter [2013], can be defined by a 3-tuple $\mathcal{M}=(\mathbf{X}, \mathbf{D}, \mathbf{F})$, where $\mathbf{X}=\left\{X_{i}: i \in V\right\}$ is a set of variables indexed by a set V and $\mathbf{U}=\left\{D_{i}: i \in V\right\}$ is the set of finite domains of values for each X_{i}. Each function $f_{\alpha} \in \mathbf{F}$ is defined over a subset of the variables called its scope, X_{α}, where $\alpha \subseteq V$ are the indices of variables in its scope and D_{α} denotes the Cartesian product of their domains, so that $f_{\alpha}: D_{\alpha} \rightarrow R^{\geq 0}$. The primal graph $\mathcal{G}=(\mathbf{V}, \mathbf{E})$ of a graphical model associates each variable with a node $(\mathbf{V}=\mathbf{X})$, while $\operatorname{arcs} e \in \mathbf{E}$ connect nodes whose variables appear in the scope of the same local function. Graphical models can be used to represent a global function, often a probability distribution, defined by $\operatorname{Pr}(X) \propto \prod_{\alpha} f_{\alpha}\left(X_{\alpha}\right)$.

4.4 AND/OR SEARCH SPACE FOR MIXED INFERENCE

A graphical model can be transformed into a weighted state space graph. In an OR search space, which is constructed layer-by-layer relative to a variable ordering, paths from the root to the leaves represent full configurations - or assignments to all variables - where each successive level corresponds to an assignment of the next variable in the ordering. A more compact AND/OR search space can also be constructed by capturing conditional independencies, thus facilitating more effective algorithms Dechter and Mateescu (2007].
An AND/OR search space is defined relative to a pseudo tree of a primal graph which can capture conditional independences. A pseudo tree $\mathcal{T}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ of a primal graph $\mathcal{G}=(\mathbf{V}, \mathbf{E})$ is a directed rooted tree that spans \mathcal{G} such that every arc of \mathcal{G} not in \mathbf{E}^{\prime} is a back-arc in \mathcal{T} connecting a node to one of its ancestors (Figure 11a),(b)). For mixed inference problems where a subset of variables are to be maximized (MAP variables) and the remaining variables (SUM variables) marginalized, the pseudo tree must be constrained such that the MAP variables precede SUM variables in the variable ordering Lee et al. [2016], Marinescu et al. 2018].
Given a pseudo tree \mathcal{T} of a primal graph \mathcal{G}, the AND/OR search tree $T_{\mathcal{T}}$ guided by \mathcal{T} has alternating levels of OR nodes corresponding to variables, and AND nodes corresponding to assignments from its domain with edge costs extracted from the original functions Dechter and Mateescu [2007]. Each arc into an AND node n has a cost $c(n)$ defined to be the product of all factors f_{α} in \mathcal{M} that are instantiated at n but not before.
A solution tree is a subtree of $T_{\mathcal{T}}$ satisfying: (1) it contains the root of $T_{\mathcal{T}}$; (2) if an OR node is in the solution tree, exactly one of its AND child nodes is in the solution tree; (3) if an AND node is in the tree then all of its OR children are in the solution tree. Dechter and Mateescu [2007].

(c) AND/OR Search Tree

Figure 1: A full AND/OR tree representing all 16 solutions.

(a) A primal graph.

(b) Bucket elimination example

Figure 2: (a) A primal graph of a graphical model with 7 variables. (b) Illustration of $B E$ with an ordering A B C E D F G.

4.5 BUCKET ELIMINATION

Given a variable ordering d, Bucket Elimination Dechter [1999], or BE, is an inference scheme that processes variables one by one with respect to the reverse of d. For any next variable X_{p}, all the functions in bucket B_{p} - namely the original functions in the graphical model and any messages passed to B_{p} from previous buckets - are processed by marginalizing X_{p} from the product of the functions. This generates a new bucket function or message, denoted $\lambda_{p \rightarrow a}$, or λ_{p} for short.

$$
\begin{equation*}
\lambda_{p \rightarrow a}=\sum_{X_{p}} \prod_{f_{\alpha} \in B_{i}} f_{\alpha} \tag{7}
\end{equation*}
$$

where X_{a} is the latest variable in λ 's scope along d. The λ function is placed in the bucket of X_{a}, B_{a}. Once all the variables are processed, $B E$ outputs all the messages and the exact value of Z by taking the product of all the functions present in the bucket of the first variable. Figure $2 \mathbf{a}$ shows a primal graph of a graphical model with variables indexed from A to G with functions over pairs of variables that are connected by an edge. In this particular example $F=\{f(A), f(A, B), f(A, D)$, $f(A, G), f(B, C), f(B, D), f(B, E), f(B, F), f(C, D), f(C, E), f(F, G)\}$.
Bucket-Elimination can be viewed as a 1-iteration message-passing algorithm along its bucket-tree (bottom-up). The nodes of the tree are the different buckets. Each bucket of a variable contains a set of the model's functions depending on the given order of processing. There is an arc from bucket B_{p} to a parent bucket B_{a}, if the function created at bucket B_{p} is placed in bucket B_{a}. We illustrate $B E$ message flow on our example problem in Figure $2 \mathbf{2 b}$

Complexity. Both the time and space complexity of $B E$ are exponential in the induced-width, which can be computed as a graph parameter based on the ordered primal graph Dechter [2019]. The induced width is the size of the largest number of variables, in the scope of any message. $B E$ becomes impractical if the induced-width is large and approximation schemes have been developed to address this Dechter and Rish [2002], Liu and Ihler [2011].

5 EXTENDED PAPER: GRAPHICAL MODEL FOR K*MAP COMPUTATION

As the first main contribution of this work, we describe two formulations of CPD problems as graphical models for use in computing K*MAP. These build upon previous work from MMAP (see Marinescu et al. [2018]) and CPD graphical model formulations for optimizing a weaker objective called the GMEC Zhou et al. [2016].

5.1 FORMULATION 1 (F1)

Formulation 1 distinguishes itself by using an indexing scheme for identifying residue rotamers. For any amino acid assignment to a residue $i, R_{i}=a a$, the assignment to its associated conformation variable, $C_{\gamma(i)}=c$, indexes the particular rotamer of amino acid $a a$ that is being considered. We elaborate below.

Variables and Domains We introduce a set of residue variables, $\boldsymbol{R}=\left\{R_{i} \mid i \in\{1,2, \ldots, N\}\right\}$, representing the N different residues (ie. positions) of the proteins. Each R_{i} has corresponding domain $D_{R_{i}}=\{a a \mid a a$ is a possible amino acid assignment to residue $i\}$. For residues that are being considered for mutation (mutable residues), each R_{i} considers one of ~ 20 possible amino acid assignments. These are the MAP variables maximized over in the K*MAP task.

We also introduce a set of conformation variables, $\boldsymbol{C}_{\gamma}=\left\{C_{\gamma(i)} \mid i \in\{1,2, \ldots, N\}\right\}$, each indexing discretized spacial conformations (ie. rotamers) of the amino acid at residue R_{i} when the protein is in state $\gamma \in \varphi$, where $\varphi=B \cup U$. Each $C_{\gamma(i)}$ has corresponding domain $D_{C_{\gamma(i)}}=\left\{1,2, \ldots, M_{i}\right\}$, where M_{i} is the maximum number of rotamers for any possible amino acid assignment to R_{i} in state γ. Since each amino acid assignment to R_{i} has a different side chain with different possible rotamers, the assignment to $C_{\gamma(i)}$ acts as an index to the possible side chain conformations of the amino acid assigned to R_{i}. The $\boldsymbol{C}_{\boldsymbol{\gamma}}$ are the SUM variables which we marginalize over.

Functions There are two sets of functions in F1.
$E_{\gamma}^{s b}=\left\{E_{\gamma(i)}^{s b}\left(R_{i}, C_{\gamma(i)}\right) \mid i \in\{1,2, \ldots, N\}\right\}$ is a set of functions that captures the energies of interaction of the amino acid at each residue i with itself and the surrounding backbone. For any assignment to $C_{\gamma(i)}$ (which corresponds to an index for the rotamers of the amino acid assigned to R_{i}) that is out of range of the assigned amino acid's possible rotamers, an infinite energy value is assigned as an implicit constraint.
$E_{\gamma}^{p w}=\left\{E_{\gamma(i j)}^{p w}\left(R_{i}, C_{\gamma(i)}, R_{j}, C_{\gamma(j)}\right) \mid\right.$ for i, j s.t. R_{i} and R_{j} interact $\}$ is a set of functions that captures the pair-wise energies of interaction between the amino acids of residues that are in close spacial proximity. For any assignment to $C_{\gamma(i)}$ (which corresponds to an index for the rotamers of the amino acid assigned to R_{i}) that is out of the range of its residue's assigned amino acid's possible rotamers, an infinite energy value is assigned as an implicit constraint.

Objective Function The K^{*} objective can thus be expressed as $K^{*}\left(R_{1} \ldots R_{N}\right)=\frac{Z_{B}\left(R_{1} \ldots R_{N}\right)}{Z_{U}\left(R_{1} \ldots R_{N}\right)}$, where we assume temperature T in Kelvin and Universal Gas Constant \mathscr{R} where

$$
\begin{align*}
& Z_{\gamma}\left(R_{1} \ldots R_{N}\right)= \sum_{C_{\gamma(1)}, \ldots, C_{\gamma(N)}} \prod_{E_{\gamma(i)}^{s b} \in E_{\gamma}^{s b}} e^{-\frac{E_{\gamma(i)}^{s b}\left(R_{i}, C_{\gamma(i)}\right)}{\Re T}} \tag{8}\\
& \quad \cdot \prod_{E_{\gamma(i j)}^{p w} \in E_{\gamma}^{p w}} e^{-\frac{E_{\gamma(i j)}^{p w}\left(R_{i}, C_{\gamma(i)}, R_{j}, C_{\gamma(j)}\right)}{\Re T}}
\end{align*}
$$

F1's graphical formulation can be seen in Figure 3 .

Figure 3: Illustration of F1.

Problem Formulation: Graphical Model

Due to interactions when dissociated

5.2 FORMULATION 2 (F2)

Formulation 2 was inspired by the works of Viricel et al. [2018] and Vucinic et al. [2019] and distinguishes itself by using explicit constraints to restrict invalid amino acid - rotamer combinations. For each corresponding residue - conformation variable pair, there exists a constraint to ensure the assignment to the residue variable matches the rotamer assignment of its conformation variable. We elaborate below.

Variables and Domains As in F1, we introduce a set of residue variables, $R=\left\{R_{i} \mid i \in\{1,2, \ldots, N\}\right\}$, representing the N different residues (ie. positions) of the proteins. Each R_{i} has corresponding domain $D_{R_{i}}=\{a a \mid a a$ is a possible amino acid assignment to residue $i\}$. For mutable residues, each R_{i} considers one of ~ 20 possible amino acid assignments. As before, these are the MAP variables maximized over in the K^{*} MAP task.
We also introduce a set of conformation variables, $\boldsymbol{C}_{\gamma}=\left\{C_{\gamma(i)} \mid i \in\{1,2, \ldots, N\}\right\}$, this time each representing the specific amino acid and conformation of the N different residues. Namely, each each $C_{\gamma(i)}$ has corresponding domain $D_{C_{\gamma(i)}}=\left\{c \mid c\right.$ is a rotamer for one of the possible amino acids of residue $\left.R_{i}\right\}$. Since each amino acid (ie. assignment to R_{i}) has a different side chain with different possible rotamers, the amino acid assignment to R_{i} will act as a selector into the possible assignments to $C_{\gamma(i)}$. These are the SUM variables which we marginalize over.

Functions There are three sets of functions in F2.
$\mathscr{C}=\left\{\mathscr{C}_{\gamma(i)}\left(R_{i}, C_{\gamma(i)}\right) \mid i \in\{1,2, \ldots, N\}, \gamma \in \varphi\right\}$ is a set of constraints ensuring that the assigned rotamer to $C_{\gamma(i)}$ belongs to the amino acid assigned to R_{i}.
$E_{\gamma}^{s b}=\left\{E_{\gamma(i)}^{s b}\left(C_{\gamma(i)}\right) \mid i \in\{1,2, \ldots, N\}\right\}$ is a set of functions that captures the energies of interaction of the amino acid at each residue i with itself and the surrounding backbone.
$E_{\gamma}^{p w}=\left\{E_{\gamma(i j)}^{p w}\left(C_{\gamma(i)}, C_{\gamma(j)}\right) \mid\right.$ for i, j s.t. R_{i} and R_{j} interact $\}$ is a set of functions that captures the pair-wise energies of interaction between the amino acids of residues that are in close spacial proximity.

Objective Function As before, the K^{*} objective can be expressed as $K^{*}\left(R_{1} \ldots R_{N}\right)=\frac{Z_{B}\left(R_{1} \ldots R_{N}\right)}{Z_{U}\left(R_{1} \ldots R_{N}\right)}$, where we assume temperature T and Universal Gas Constant \mathscr{R} where

$$
\begin{align*}
& Z_{\gamma}\left(R_{1} \ldots R_{N}\right)=\sum_{C_{1}, \ldots, C_{N}} \prod_{\mathscr{C}_{\gamma(i)} \in \mathscr{C}} \mathscr{C}_{\gamma(i)}\left(R_{i}, C_{\gamma(i)}\right) \\
& \quad \prod_{E_{\gamma(i)}^{s b} \in \boldsymbol{E}_{\gamma}^{s b}} e^{-\frac{E_{\gamma(i)}^{s b}\left(C_{\gamma(i)}\right)}{\Re T}} \cdot \prod_{E_{\gamma(i j)}^{p w} \in \boldsymbol{E}_{\gamma}^{p w}} e^{-\frac{E_{\gamma(i j)}^{p w}\left(C_{\gamma(i)}, C_{\gamma(j)}\right)}{\mathscr{R} T}} \tag{9}
\end{align*}
$$

F2's graphical formulation can be seen in Figure 4.

Figure 4: Illustration of F2.

Problem Formulation: Graphical Model

5.3 RESULTING PSEUDO TREE

A general schematic for a guiding pseudo tree for both the F1 and F2 formulations showing the decomposition that results can be seen in Figure 5

Figure 5: Schematic of resulting pseudo tree for CPD formulated as F1 or F2.

The resulting decomposition enables the AND/OR search space to have independent sub-tree branchings allowing for a more compact search space and enabling more efficient search algorithms.

6 EXTENDED PAPER: WMBE-K*

We present a weighted mini-bucket scheme for K^{*}, which is an adaptation of the mini-bucket scheme to the new K^{*} objective. The algorithm, called wMBE-K*, is described in Algorithm 5 .

```
Algorithm 5: wMBE-K*
input : Graphical model \(\boldsymbol{\mathcal { M }}=\{\boldsymbol{X}, \boldsymbol{D}, \boldsymbol{F}\}\); evidence \(e\); constrained variable order \(o=\left[X_{1}, \ldots, X_{n}\right]\) with MAP
        variables first; a partition of \(\boldsymbol{X}\). an i-bound \(i\)
output : upper bound on the \(\mathrm{K}^{*}\) MAP value
begin
        Condition each \(f \in \boldsymbol{F}\) according to the provided evidence \(e\) and remove the corresponding variables from the
        scopes of the functions.
        Partition the conditioned \(f \mathrm{~s}\) into buckets \(B_{n}, \ldots, B_{1}\) s.t. each function is placed in the greatest bucket corresponding
        to a variable in its scope.
    foreach \(k=n \ldots 1\) do
            Generate a mini-bucket partitioning of the bucket functions \(\boldsymbol{M} \boldsymbol{B}_{\boldsymbol{k}}=\left\{M B_{k}^{1}, \ldots, M B_{k}^{T}\right\}\) s.t. the number of
            variables in the scopes of the functions of any mini bucket \(M B_{k}^{t} \in \boldsymbol{M} \boldsymbol{B}_{\boldsymbol{k}}\) is \(\leq i\)
        if \(X_{k} \in \boldsymbol{M A P}\) then
            foreach \(M B_{k}^{t} \in M \boldsymbol{B}_{\boldsymbol{k}}\) do
                        \(\lambda_{k}^{t} \leftarrow \max _{X_{k}} \prod_{f \in M B_{k}^{t}} f\)
            end
        else
            if \(X_{k} \in C_{B}\) then
                Select a set of positive weights \(\boldsymbol{w}=\left\{w_{1}, \ldots, w_{T}\right\}\) s.t. \(\sum_{w_{t} \in \boldsymbol{w}} w_{t}=1\)
                    foreach \(M B_{k}^{t} \in \boldsymbol{M} \boldsymbol{B}_{\boldsymbol{k}}\) do
                        \(\lambda_{k}^{t} \leftarrow\left(\sum_{X_{k}} \prod_{f \in M B_{k}^{t}} f^{w_{t}}\right)^{1 / w_{t}}\)
            end
            else if \(X_{k} \in \boldsymbol{C}_{\boldsymbol{U}}\) then
                Select a negative weight for \(w_{1}\)
                Select a set of positive weights \(\boldsymbol{w}=\left\{w_{2}, \ldots, w_{T}\right\}\) s.t. \(\sum_{w_{t} \in \boldsymbol{w}} w_{t}=1\)
                foreach \(M B_{k}^{t} \in \boldsymbol{M} \boldsymbol{B}_{\boldsymbol{k}}\) do
                        \(\lambda_{k}^{t} \leftarrow\left(\sum_{X_{k}} \prod_{f \in M B_{k}^{t}} f^{w_{t}}\right)^{1 / w_{t}}\)
                        if \(\operatorname{scope}\left(\lambda_{k}^{t}\right) \cap \boldsymbol{C}_{\boldsymbol{U}}=\emptyset\) then
                        \(\lambda_{k}^{t} \leftarrow 1 / \lambda_{k}^{t}\)
                end
            end
            end
        end
        Add each \(\lambda_{k}^{t}\) to the bucket of the highest-index variable in its scope.
    end
    return \(\lambda_{1}\)
end
```

wMBE-K ${ }^{*}$ operates similarly to wMBE-MMAP Dechter and Rish 2002], Ping et al. 2015], ?. Two key similarities are that (1) it takes a variable ordering that constrains buckets of MAP variables to be processed last (line 4) for which maximization (instead of summation) occurs, and (2) for any bucket that has a width larger than a provided i-bound, a bounded approximation is made by partitioning the bucket functions into mini-buckets (line 5) and taking the product of their power-sums over the bucket variable (lines 11, 15, 16, 20, leveraging Holder's Inequality Hardy et al. [1988]. The power sum is defined as follows:

$$
\begin{equation*}
\sum_{x}^{w} f(x)=\left(\sum_{x} f(x)^{\frac{1}{w}}\right)^{w} \tag{10}
\end{equation*}
$$

The power sum reduces to a standard summation when $w=1$ and approaches max when $w \rightarrow 0^{+}$.
Proposition 6.1 (Holder inequality). Let $f_{i}(x), i=1$..r be a set of functions and w_{1}, \ldots, w_{r} be a set of positive weights, s.t., $w=\sum_{i=1}^{r} w_{i}$ then,

$$
\begin{equation*}
\sum_{x}^{w} \prod_{i=1}^{r} f_{i}(x) \leq \prod_{i=1}^{r} \sum_{x}^{w_{i}} f_{i}(x) \tag{11}
\end{equation*}
$$

In order to adapt wMBE-MMAP for K^{*} MAP, two key innovations are required: (1) buckets corresponding to variables in $\boldsymbol{C}_{\boldsymbol{U}}$, whose marginal belongs to the denominator of the K^{*} expression, are lower-bounded (to lead to an upper bound on K^{*}) by using a modification to Holder's inequality that incorporates negative weights Liu and Ihler [2011] (lines 16|20), and (2) when messages are passed from buckets corresponding to variables in $\boldsymbol{C}_{\boldsymbol{U}}$ to that of \boldsymbol{R}, the messages are inverted to accommodate being part of the denominator (line 22).

Although details are omitted here, wMBE-K ${ }^{*}$ can also employ cost shifting to tighten its bounds (see Liu and Ihler [2011]). In our empirical evaluation cost-shifting is implemented as well.

Complexity. Like wMBE-MMAP Dechter and Rish 2002, Ping et al. 2015], ?, wMBE-K* is exponential in the i-bound parameter both in time and memory.

Challenges in the Quality of the Bound. As can be expected, bounding a ratio of functions (as in the case for K^{*}) is particularly challenging, relying on both upper and lower bounds. Lower bounding of functions is particularly challenging. For larger problems and low i-bounds, this can often yield relatively weak bounds. We provide an improvement to help remedy this next.

7 EXTENDED PAPER: DOMAIN-PARTITIONED MBE

Until now, we have been using a [weighted] mini-bucket heuristic that is blind to explicit hard constraints and any consistency issues. This can be potentially handicapping when lower-bounding given that constraints are represented as zero's in functions and can cause premature deflation of lower bounds. In particular, in mini-bucket elimination Dechter and Rish [2003] where lower bounds are created via minimizing over function values any zeros in the functions being minimized will cause the resulting lower bound itself to drop to zero. However in the CPD domain, where functions represent protein energetics, we can guarantee that the partition function for every subunit is positive (ie. every configuration is "satisfiable"), we can guarantee a positive lower bound by using the following simple remedy.

Given variables X, Y, and Z, and objective

$$
o b j=\sum_{X} f(x, y) \cdot g(x, z)
$$

Lets identify a set

$$
X^{\prime}=\{x \in X \mid g(x, z) \neq 0\}
$$

and

$$
\epsilon_{X^{\prime}}=\min _{x \in X^{\prime}} g(x, z)
$$

Clearly $\epsilon_{X^{\prime}}>0$. Therefore we can derive:

$$
\begin{gathered}
o b j=\sum_{x \in X^{\prime}} f(x, y) \cdot g(x, z)+\sum_{x \in X \backslash X^{\prime}} f(x, y) \cdot g(x, z)= \\
\sum_{X \in X^{\prime}} f(x, y) \cdot g(x, z)>= \\
\sum_{X \in X^{\prime}} f(x, y) \cdot \min _{x \in X^{\prime}} g(x, z)=\epsilon_{X^{\prime}} \cdot \sum_{X \in X^{\prime}} f(x, y)>0 .
\end{gathered}
$$

The last quantity is greater than zero unless $\mathrm{f}(\mathrm{x}, \mathrm{z})$ is identically zero over X^{\prime}.

8 EXTENDED PAPER: AOBB-K*

We now present the key algorithmic contribution of this work: AOBB-K* (Algorithm6), a depth-first AND/OR branch-and-bound ($\mathbf{B n B}$) scheme for solving the K^{*} MAP task. With state-of-the-art K^{*} optimizers employing memory intensive best-first search Ojewole et al. [2018], Hallen et al. [2018], depth-first algorithms provide a search methodology linear in space allowing for solving problems unable to be solved by best-first methodologies due to memory Zhou et al. [2016].

At a high level, AOBB- K^{*} adapts AOBB-MMAP ? for the K^{*} MAP task for CPD by (1) guiding search using a K^{*} upper-bounding heuristic such as wMBE- K^{*}, (2) adjusting computations to be appropriate for computing K^{*} values, (3) incorporating subunit-stability constraints (SSC's) which enforce the partition function of each protein subunit, Z_{γ}, to be greater than an inputted biologically-relevant threshold S_{γ} Ojewole et al. [2018], and (4) by using the SAT-solver MiniSat Eén and Sörensson [2004] to identify, and avoid searching, provably invalid configurations such as those with inconsistent amino-acid - rotamer pairs.
AOBB-K* traverses the underlying AND/OR search tree guided by the provided pseudo tree \mathcal{T}, expanding nodes in a depth-first manner (line 11, and pruning whenever any of three conditions are triggered: (1) the resulting variable assignments violate a constraint established by MiniSat (constraint-propagation pruning, CPP) (line 12, (2) a subunitstability constraint is violated (subunit-stability pruning, SSP) (line 14), or (3) it can be asserted that the current amino acid configuration cannot produce a K^{*} better than any previously found (upper-bound pruning, UBP) (line 17). Backtracking occurs when all of the node's children have been explored and returned from (line 20, at which point the K^{*} value of the sub problem the node roots is known exactly and the bounds of its parents are tightened accordingly.

The algorithm progresses in this manner until it finally returns to, and updates, the dummy root of the tree with the maximal K^{*} value corresponding to an amino acid configuration that also satisfies the subunit-stability thresholds.

More specifically, the algorithm begins with a two-step initialization. First, constraint literals are generated by MiniSat through applying full constraint propagation to the problem (line 3). Second, the depth-first search is initialized to start at a dummy AND node that roots the AND/OR search space corresponding to \mathcal{T} (line 4).

Throughout search, each node n maintains a progressive upper bound $u b_{K^{*}}(n)$ on the $\mathrm{K}^{*} \mathrm{MAP}$ of the sub problem it root $\1. When a node is first expanded, this value is initialized based on upper-bounding heuristic function $h_{K^{*}}^{u b}$ (.) (line5 . As search progresses, $u b_{K^{*}}(n)$ decreases, converging towards the K^{*} MAP of the sub problem rooted at n.
Each node n also maintains a progressively improved upper bound on the partition function of each subunit γ consistent with the path to $n, U B_{Z_{\gamma}}(n)^{11}$, (line 9). At each step in the search, $U B_{Z_{\gamma}}(n)$ is recomputed to ensure that it is greater than the given S_{γ}, thus satisfying the SSC's) and enforcing consideration of only biologically relevant solutions Ojewole et al. [2018].

Theorem 8.1 (AOBB-K* Correctness and Completeness). $A O B B-K^{*}$ is sound and complete, returning the optimal K^{*} value of all amino-acid configurations that do not violate the inputted subunit-stability constraints.

Complexity. The algorithm is linear in space and exponential in time with respect to the height of \mathcal{T}. (However a powerful guiding heuristic can lead to early UBP, reducing time greatly in practice).

Exploiting Depth-First Branch-and-Bound Properties. As the core of AOBB-K* is a depth-first BnB algorithm, well known properties can also be exploited such as (1) the ability to extract anytime-solutions (ie. intermediate solutions that satisfy the subunit-stability constraints) and (2) the ability to apply bounded approximations.

Although best-first search algorithms, such as those used in current state-of-the-art software OSPREY 3.0 Hallen et al. [2018], can begin exploring potential solutions quickly, they may take a long time completing the exploration of any one solution as search is spread among a breadth of optimistic contenders. On the other hand, AOBB-K* is sure to compute the K^{*} of its most optimistic solutions immediately, yielding K^{*} values for potential designs early on.

Furthermore, the search can easily be relaxed to an ϵ-approximation (for $\epsilon \in\left[0,1\right.$) by multiplying $h_{K^{*}}$ by a factor of $(1-\epsilon)$. It can be shown that the resulting solution will be at worst $(1-\epsilon) \cdot K^{*} M A P$. We explore the performance of applying such approximations in Section 10 .

It is worthy to note that this ϵ-approximation framework can also be extended to the summation space and also to the estimation of Z_{γ}, though this is beyond the scope of this work and left for future exploration.

[^0]```
Algorithm 6: AOBB-K*
 heuristic function \(h_{Z_{\gamma}}(\).\() ; and subunit stability threshold S_{\gamma}\) for each subunit \(\gamma\)
output : \(K^{*} M A P(\mathcal{M})\)
begin
 Initialize MiniSat with constraints from \(\mathcal{M}\)
 and generate literals via constraint propagation
 \(\pi \leftarrow\) dummy AND node \(n_{D}\)
 \(u b_{K^{*}}\left(n_{D}\right) \leftarrow \prod_{m \in c h_{T}\left(n_{D}\right)} h_{K^{*}}(m)\)
 \(l b_{K^{*}}\left(n_{D}\right) \leftarrow-i n f\)
 \(g\left(n_{D}\right) \leftarrow 1\)
 foreach \(\gamma \in \varphi\) do
 \(U B_{Z_{\gamma}}\left(n_{D}\right) \leftarrow \prod_{m \in c h_{T_{\gamma}}\left(n_{D}\right)} h_{Z_{\gamma}}(m)\)
 end
 while \(n_{X} \leftarrow E X P A N D(\pi)\) do
 if \(\operatorname{MiniSat}(\pi)=\) false then
 PRUNE (\(\pi\))
 else if \(\exists \gamma \in \varphi\) s.t. \(U B_{Z_{\gamma}}\left(n_{X}\right)<S_{\gamma}\) then
 PRUNE(\(\pi\))
 else if \(X \in \boldsymbol{R}\) then
 if \(\exists a \in a n c^{O R}(n)\) s.t. \(u b_{K^{*}}(a, \pi)<l b_{K^{*}}(a)\) then
 PRUNE \((\pi)\)
 end
 else if \(c h_{T}^{\text {unexp }}(n)=\emptyset\) then
 \(B A C K T R A C K(\pi)\)
 end
 return \(u b_{K^{*}}\left(n_{D}\right)=l b_{K^{*}}\left(n_{D}\right)=K^{*} M A P(\mathcal{M})\)
end
```

input : CPD graphical model $\mathcal{M}$; pseudo-tree $\mathcal{T} ; K^{*}$ upper-bounding heuristic function $h_{K^{*}}(.) ; Z_{\gamma}$ upper-bounding

## 9 EXTENDED PAPER: INFUSING DETERMINISM VIA THRESHOLDED UNDERFLOWS

During search in the presence of determinism, constraint propagation (CP) can be a powerful tool by helping to prune invalid configurations. In the context of protein design, such invalid configurations correspond to inconsistent amino acid rotamer pairs or configurations that will have no contribution to the a subunit's partition function. The more determinism that is present, the more CP can be leveraged to speed up search. Until now, problems were formulated as accurately as possible using 64-bit floating point values. However, some function values can be extremely small, corresponding to very unfavorable side-chain conformations that would not appear in feasible solutions. By underflowing these values, namely replacing them with zero, we can allow CP to exclude configurations containing those tuples and, thus, speed up search.

Definition 9.1 (Thresholded-underflow of a function). Given a non-negative function $f$, and a non-negative real number $\tau$, we define the $\tau$-underflow of a function $f$ as

$$
f^{\tau}(x)= \begin{cases}f(x), & f(x)>=\tau \\ 0, & \text { otherwise }\end{cases}
$$

Definition 9.2 (Thresholded-underflow of a problem). Given a graphical model $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}\rangle$, and a non-negative real number $\tau$, we define the $\tau$-underflow of a $\mathcal{M}$ as

$$
\mathcal{M}^{\tau}=\left\langle\mathbf{X}, \mathbf{D}, \mathbf{F}^{\tau}\right\rangle, \text { where } \mathbf{F}^{\tau}=\left\{f^{\tau} \mid f \in \boldsymbol{F}\right\}
$$

In the next subsections, we describe conditions such that $K^{*} M A P\left(\mathcal{M}^{\tau}\right)=K^{*} M A P(\mathcal{M})$. In Section 10 we demonstrate the speed up that results empirically. Furthermore, these conditions can be trivially extended to the tasks of MMAP task and computing the partition. We now elaborate.

### 9.1 VALIDITY OF THRESHOLDED UNDERFLOWS

## Definitions.

tuples $_{\gamma}(\tau, r)$ : the set of all tuples of assignments [to all variables in $\boldsymbol{C}_{\boldsymbol{\gamma}}$ ] that are consistent with $\boldsymbol{R}=r$ and that will be affected by a $\tau$-underflow
$f_{\gamma}^{\max }(r)$ : the maximum value in the functions associated with subunit $\gamma$ consistent with configuration $\boldsymbol{R}=r$
$\left|\boldsymbol{f}_{\gamma}\right|$ : denotes the number of functions included in the partition function computation for the protein subunit $\gamma$, excluding explicit constraints
$\left|\boldsymbol{\tau}_{\gamma}\left(c_{\gamma}, r\right)\right|$ : the number of functions associated with subunit $\gamma$ whose function values are less than $\tau$ given the assignment $\boldsymbol{C}_{\boldsymbol{\gamma}}=c_{\gamma}$ and $\boldsymbol{R}=r$
$\left|\boldsymbol{C}_{\boldsymbol{\gamma}}(r)\right|$ : the cardinality of the Cartesian product of assignments to the variables in $\boldsymbol{C}_{\boldsymbol{\gamma}}$ that are consistent with the assignment $\boldsymbol{R}=r$
$\left|\boldsymbol{C}_{\gamma}\right|^{\Uparrow}$ : the cardinality of the Cartesian product of greatest number of assignments to each variable in $\boldsymbol{C}_{\gamma}$ that are individually consistent with any assignment $\boldsymbol{R}=r^{\prime}$
$Z_{B}^{m i n}$ : the smallest $Z_{B}$ that can lead to a valid $K^{*}>K^{*(w t)}$. Formally, $\left.Z_{B}^{\min }=K^{*(w t)} \cdot \prod_{\gamma \in U} S_{\gamma}\right)$ $\operatorname{precison}(x)$ : the smallest decimal place for which the value of $x$ is recorded

Noting that underflows can only potentially decrease partition function values (and never increase them), intuitively there are two sufficient conditions that, when upheld, allow us to assert $K^{*} M A P\left(\mathcal{M}^{\tau}\right)=K^{*} M A P(\mathcal{M})$ :

1. $\tau$-underflows do not alter subunit partition functions that satisfy SSC's. Namely,
$\forall r \in \boldsymbol{R}$ s.t. $Z_{\gamma}^{\mathcal{M}}(r) \geq S_{\gamma}, Z_{\gamma}^{\mathcal{M}}(r)=Z_{\gamma}^{\mathcal{M}^{\tau}}(r)$
2. $\tau$-underflows do not alter any $Z_{B}>Z_{B}^{m i n}$. More formally, $\quad \forall r \in \boldsymbol{R}$ s.t. $Z_{B}^{\mathcal{M}}(r) \geq Z_{B}^{m i n}, Z_{B}^{\mathcal{M}}(r)=Z_{B}^{\mathcal{M}^{\tau}}(r)$

## Verifying $\tau$ satisfies condition 1

Theorem 9.1 ( $\tau$ that will not violate SSC's). A problem created via $\tau$-underflows such that, for every $\boldsymbol{R}=r$ and $\forall \gamma \in \varphi$,

$$
\begin{array}{r}
\sum_{c_{\gamma} \in \text { tuples }_{\gamma}(\tau)}\left[\left(f_{\gamma}^{\max }(r)\right)^{\left(\left|\boldsymbol{f}_{\gamma}\right|-\left|\boldsymbol{\tau}_{\gamma}\left(c_{\gamma}, r\right)\right|\right.}\right] \cdot\left[(\tau)^{\left|\boldsymbol{\tau}_{\gamma}\left(c_{\gamma}, r\right)\right|}\right] \\
<0.5 \cdot \operatorname{precision}\left(S_{\gamma}\right)
\end{array}
$$

will not violate any subunit stability constraints.
Complexity. Testing the condition in Theorem 9.1 is exponential in the number of variables in $\boldsymbol{R} \cup \boldsymbol{C}_{\boldsymbol{B}}$.
Corollary 9.2. A problem created with underflows using an underflow threshold $\tau$ such that for every $\boldsymbol{R}=r$ and $\forall \gamma \in \varphi$

$$
\left|\boldsymbol{C}_{\gamma}(r)\right| \cdot\left(f_{\gamma}^{\max }(r)\right)^{\left|\boldsymbol{f}_{\gamma}\right|} \cdot(\tau)<0.5 \cdot \operatorname{precision}\left(S_{\gamma}\right)
$$

will not violate any subunit stability constraints.
Complexity. Testing the condition in Corollary 9.2 is exponential in the number of variables in $\boldsymbol{R}$.
Corollary 9.3. A problem created with underflows using an underflow threshold $\tau$ and $\forall \gamma \in \varphi$

$$
\left|\boldsymbol{C}_{\gamma}\right|^{\Uparrow} \cdot\left(f_{\gamma}^{\max }\right)^{\left|\boldsymbol{f}_{\gamma}\right|} \cdot(\tau)<0.5 \cdot \operatorname{precision}\left(S_{\gamma}\right)
$$

will not violate any subunit stability constraints.
Complexity. Testing the condition in Corollary 9.3 is can be done in linear time.

## Verifying $\tau$ satisfies condition 2

Theorem 9.4 ( $\tau$ that will not alter $\mathrm{K}^{*} \mathrm{MAP}$ ). A problem created with underflows using an underflow threshold $\tau$ such that $\tau$ is known not to violate the SSC's and such that for every $\boldsymbol{R}=r$

$$
\begin{array}{r}
\sum_{c_{B} \in \text { tuples }_{B}(\tau, r)}\left[\left(f_{B}^{\max }(r)\right)^{\left|\boldsymbol{f}_{\boldsymbol{B}}\right|-\left|\boldsymbol{\tau}_{\boldsymbol{B}}\left(c_{B}, r\right)\right|}\right] \cdot\left[(\tau)^{\left|\boldsymbol{\tau}_{B}\left(c_{B}, r\right)\right|}\right] \\
<0.5 \cdot \operatorname{precision}\left(Z_{B}^{\min }\right)
\end{array}
$$

will also not alter the $K^{*}$ MAP solution.

Complexity. Testing the condition in Theorem 9.4 is exponential in the number of variables in $\boldsymbol{R} \cup \boldsymbol{C}_{\boldsymbol{B}}$.
Corollary 9.5. A problem created with underflows using an underflow threshold $\tau$ such that $\tau$ is known not to violate the SSC's and such that for every $\boldsymbol{R}=r$

$$
\left|\boldsymbol{C}_{\boldsymbol{B}}(r)\right| \cdot\left(f_{B}^{\max }(r)\right)^{\left|\boldsymbol{f}_{\boldsymbol{B}}\right|} \cdot(\tau)<0.5 \cdot \operatorname{precision}\left(Z_{B}^{\min }\right)
$$

will also not alter the $K^{*}$ MAP solution.
Complexity. Testing the condition in Corollary 9.5 is exponential in the number of variables in $\boldsymbol{R}$.
Corollary 9.6. A problem created with underflows using an underflow threshold $\tau$ such that $\tau$ is known not to violate the SSC's and such that

$$
\left|\boldsymbol{C}_{\boldsymbol{B}}\right|^{\Uparrow} \cdot\left(f_{B}^{\max }\right)^{\left|\boldsymbol{f}_{\boldsymbol{B}}\right|} \cdot(\tau)<0.5 \cdot \operatorname{precision}\left(Z_{B}^{\min }\right)
$$

will also not alter the $K^{*}$ MAP solution.
Complexity. Testing the condition in Corollary 9.6 is can be done in linear time.

## Conclusion.

If a chosen $\tau$ satisfies Theorem 9.1 and Theorem 9.4 (or any of their corollaries), then it is a valid underflow threshold and AOBB- $\mathrm{K}^{*}$ is guaranteed to find the optimal $\mathrm{K}^{*}$ MAP given the $\tau$-underflowed problem.

## 10 EXTENDED PAPER: EMPIRICAL EVALUATION

### 10.1 METHODS

Benchmarks. We experimented on a total of 48 protein design benchmark problems, 30 of which encoded two mutable residues (provided by ANONYMOUS and denoted "original") and 12 of which were made harder by expanding to three mutable residues (denoted "expanded"), and six modified to have four mutable residues (denoted "hard"). CPD problems were then generated using OSPREY 3.0 Hallen et al. [2018] to compute interaction energies and then formulated into both F1 and F2 in UAI format for AOBB-K* to be run on. Each UAI problem was also formulated with underflows using a threshold of $1 \times 10^{-5}$.

Algorithms. Experiments were run using AOBB-K* (implemented in $\mathrm{C}++$ ) using a BnB-factor of 1 and 0.001 (corresponding to $\epsilon 0$ and 0.999 , respectively). For comparison, problems were also run using BBK* Ojewole et al. [2018], a state-of-the-art best-first search algorithm as part of the comprehensive protein design software package OSPREY 3.0 Hallen et al. 2018 that has been developed for over a decade. BBK (implemented in Java) was used with rigid side chains and a bound-tightness parameter of $1 \times 10^{-200}$. Being native to OSPREY, BBK* used OSPREY's native problem formulation. Experiments were run for a maximum of 1 hr on a 2.66 GHz processor with 4 GB of memory with the same subunit-stability threshold as $\mathrm{BBK}^{*}$ of $S_{\gamma}=Z_{\gamma}^{(w t)} \cdot e^{-\frac{5}{\Re T}}$ where $Z_{\gamma}^{(w t)}$ is the partition function given the wild-type amino acid sequence. As $\mathrm{BBK}^{*}$ can take advantage of parallelism, it was also run with access to 4 CPU cores.

Heuristic. AOBB-K ${ }^{*}$ was run using wMBE-K with moment matching Liu and Ihler [2011]) for guiding and bounding search on all problems. For hard problems, versions of MBE-K* and wMBE-K ${ }^{*}$ were tested that avoided consideration of zeros during lower-bounding approximations ( $\mathrm{MBE}^{+}-\mathrm{K}^{*}$ and $w \mathrm{MBE}^{+}-\mathrm{K}^{*}$, respectively). For all experiments, wMBE-MMAP was used to upper-bound the partition function of each subunit. BBK* uses a dynamic greedy heuristic based on the most optimistic values for all variables not yet instantiated Ojewole et al. [2018].

### 10.2 RESULTS

Data Tables. Table 1 displays aggregated results from experiments across all benchmarks using AOBB-K ${ }^{1}$ (with wMBE$\mathrm{K}^{*}$, run on F 1 and F 2 ) compared to $\mathrm{BBK}^{*} . K^{*} \geq$ counts the number of times the $\mathrm{K}^{*}$ value found by AOBB-K* was greater than that of $\mathrm{BBK}^{*}, K^{*}>$ counts the number of times the $\mathrm{K}^{*}$ value found by AOBB-K* was strictly greater than that of $\mathrm{BBK}^{*}$, and $t^{\text {total }}<$ counts the number of times AOBB-K* found its solution faster than BBK ${ }^{*}$.
Table 2 shows select results $\int^{2}$ on original benchmarks and Table 3 on the expanded benchmarks. $F$ denotes the UAI formulation type, $\omega$ is the weight multiplied to the $\mathrm{K}^{*}$ MAP heuristic, $\tau$ currently $f^{<}$is the underflow-threshold used, $i B$ is the i-bound used, $w^{*}$ is the induced width due to the generated constrained variable ordering, $d$ is the depth of the resulting pseudo tree, $|X|$ is the total number of variables, $U B$ is the wMBE- $\mathrm{K}^{*}$ bound (with empty cells representing no finite bound), $O R^{R}$ and $A N D^{R}$ display the number of each type of each type of node visited in the MAP search space, $O R^{\text {all }}$ and $A N D^{\text {all }}$ display the total number of each type of node visited, $C P P$ are the number of nodes pruned due being deemed a deadend by MiniSat, UBP are nodes pruned due to $\mathrm{K}^{*}$ bounding, $S S P$ are the nodes pruned due to subunit-stability constraint violations, $E H$ counts the number of times an exact heuristic was used instead of search, $t^{p r e}$ is the pre-processing time of the algorithm (in seconds) - the majority of which is for compiling the heuristic, $t^{\text {search }}$ is the time spend during search, $t^{\text {total }}$ is the total elapsed algorithm time, $K^{*} M A P$ is the returned $\mathrm{K}^{*} \mathrm{MAP}$ solution (in $\log _{10}$ ), $B B K^{*} t$ is $\mathrm{BBK}^{*}$ 's runtime (in seconds), and $B B K^{*} \operatorname{sln}$ is $\mathrm{BBK}^{*}$ 's highest valid $\mathrm{K}^{*}$ value found (in $\log _{10}$ ). Missing rows indicate the inability to solve the problem within the hour limit. Highlighted $U B$ 's indicate when the fastest way to solve the problem was by using the exactly computed $\mathrm{K}^{*}$ MAP via BE. Highlighted $t^{\text {total }}$ indicate when AOBB-K*'s runtime was faster than $\mathrm{BBK}^{*}$ 's. Highlighted $\mathrm{K}^{*}$ MAP values indicate when AOBB- $\mathrm{K}^{*}$ 's reported $\mathrm{K}^{*}$ MAP value is greater than the solution reported by BBK*.
Table 11 show sample results ${ }^{22}$ on a hard benchmarks using modified [w]MBE-BBK* heuristics. The columns are labeled as before with the addition of $H$ denoting the type of $\mathrm{K}^{*}$ heuristic used, and Anytime- $K^{*}$ denoting the best valid $\mathrm{K}^{*}$ value found.

Domain Sizes. Each mutable residues considers 21 different amino acid assignments. Conformation variables corresponding to non-mutable residues had a domain size of 2-14 rotamers (with most having domain sizes 4-9). Conformation

[^1]variables corresponding to mutable residues had a domain size of 34-35 when formulated as F1 and 203-205 when formulated as F2.

Table 1: Aggregated Statistics on F1,F2 (exact) vs. BBK*.

| Dataset | $\mathbf{K}^{*} \geq$ | $\mathbf{K}^{*}>$ | $\mathbf{t}^{\text {total }}<$ |
| :--- | :---: | :---: | :---: |
| Original (30) | 30,30 | 2,2 | 23,28 |
| Expanded (12) | 11,12 | 1,4 | 2,4 |
| Hard (6) | 2,3 | 0,2 | 0,0 |

Table 2: Original problems with two MAP variables.

| benchmark | F | $\omega$ | $\tau$ | iB | w* | \|X| | UB | OR ${ }^{\text {R }}$ | $\mathrm{AND}^{\text {R }}$ | OR ${ }^{\text {all }}$ | AND ${ }^{\text {all }}$ | CPP | UBP | SSP | EH | $t^{\text {pre }}$ | $t^{\text {search }}$ | $t^{\text {total }}$ | K*MAP | BBK* | BBK* sln |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 1a00r_00031 } \\ \text { P=5, L=2, } \\ \text { PL=7 } \end{gathered}$ | F1 | 1 | 0 | 3 | 8 | 16 |  | 12 | 23 | 300184 | 1784305 | 1243743 | 0 | 151 | 1 | 0.9 | 226.0 | 226.9 | 7.88 | 109.1 | 7.88 |
|  |  | 1 | 1E-05 | 3 | 8 | 16 |  | 12 | 23 | 8886 | 18057 | 105692 | 0 | 44 | 1 | 1.1 | 4.9 | 5.9 |  |  |  |
|  |  | 0.001 | 0 | 7 | 8 | 16 | 10.17 | 2 | 3 | 12379 | 72187 | 57871 | 22 | 4 | 2 | 146.2 | 10.4 | 156.5 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 3 | 8 | 16 |  | 12 | 23 | 8886 | 18057 | 105692 | 0 | 44 | 1 | 1.3 | 4.9 | 6.2 |  |  |  |
|  | F2 | 1 | 0 | 3 | 6 | 16 |  | 2 | 12 | 304309 | 1798801 | 937451 | 0 | 52 | 1 | 0.7 | 92.3 | 93.0 |  |  |  |
|  |  | 1 | 1E-05 | 3 | 6 | 16 |  | 2 | 12 | 9066 | 18310 | 78238 | 0 | 19 | 1 | 0.7 | 0.8 | 1.5 |  |  |  |
|  |  | 0.001 | 0 | 5 | 6 | 16 | 9.95 | 2 | 3 | 11777 | 71585 | 33739 | 21 | 5 | 2 | 23.8 | 4.6 | 28.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 6 | 16 |  | 2 | 12 | 9066 | 18310 | 78238 | 0 | 19 | 1 | 0.6 | 0.7 | 1.3 |  |  |  |
| $\begin{gathered} \text { 1gwc_00021 } \\ P=4, L=1, \\ P L=5 \end{gathered}$ | F1 | 1 | 0 | 6 | 6 | 12 | 10.28 | 4 | 9 | 41049 | 158841 | 378716 | 76 | 0 | 6 | 69.2 | 32.0 | 101.2 | 9.79 | 152.3 | 9.79 |
|  |  | 1 | 1E-05 | 6 | 6 | 12 | 10.28 | 4 | 9 | 2511 | 7875 | 39530 | 66 | 0 | 6 | 68.0 | 2.0 | 70.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 6 | 12 | 10.28 | 2 | 3 | 3282 | 9492 | 52507 | 40 | 0 | 2 | 69.3 | 1.9 | 71.2 | 9.76 |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 6 | 12 | 10.28 | 2 | 3 | 255 | 579 | 5700 | 34 | 0 | 2 | 67.5 | 0.2 | 67.7 |  |  |  |
|  | F2 | 1 | 0 | 4 | 4 | 12 | 10.29 | 3 | 7 | 28766 | 134930 | 77823 | 55 | 2 | 5 | 6.8 | 8.9 | 15.7 | 9.79 |  |  |
|  |  | 1 | $1 \mathrm{E}-05$ | 4 | 4 | 12 | 10.23 | 3 | 7 | 1259 | 5687 | 7234 | 46 | 1 | 5 | 6.2 | 0.3 | 6.5 |  |  |  |
|  |  | 0.001 | 0 | 4 | 4 | 12 | 10.29 | 2 | 3 | 7289 | 34775 | 19392 | 39 | 1 | 2 | 6.8 | 2.2 | 8.9 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 4 | 12 | 10.23 | 2 | 3 | 279 | 1251 | 1862 | 34 | 0 | 2 | 6.2 | 0.1 | 6.3 |  |  |  |
| $\begin{gathered} 2 \mathrm{rlO}=00008 \\ \mathrm{P}=2, \mathrm{~L}=2, \\ \mathrm{PL}=4 \end{gathered}$ | F1 | 1 | 0 | 5 | 5 | 10 | 11.60 | 2 | 3 | 2385 | 43767 | 1978 | 40 | 0 | 2 | 2.5 | 3.3 | 5.9 | 11.16 | 261.9 | 9.46 |
|  |  | 1 | 1E-05 | 4 | 5 | 10 | 12.03 | 4 | 7 | 232 | 2077 | 2532 | 71 | 0 | 4 | 1.0 | 0.3 | 1.2 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 10 | 12.03 | 2 | 3 | 2385 | 43767 | 1978 | 40 | 0 | 2 | 1.0 | 3.3 | 4.3 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 4 | 5 | 10 | 12.03 | 2 | 3 | 48 | 393 | 574 | 37 | 0 | 2 | 1.3 | 0.1 | 1.4 |  |  |  |
|  | F2 | 1 | 0 | 4 | 3 | 10 | 11.16 | 2 | 3 | 2 | 3 | 0 | 40 | 0 | 3 | 2.6 | 0.0 | 2.6 |  |  |  |
|  |  | 1 | $1 \mathrm{E}-05$ | 3 | 3 | 10 | 11.59 | 2 | 3 | 47 | 392 | 1387 | 37 | 0 | 2 | 0.7 | 0.0 | 0.7 |  |  |  |
|  |  | 0.001 | 0 | 5 | 3 | 10 | 11.16 | 2 | 3 | 2 | 3 | 0 | 40 | 0 | 3 | 2.6 | 0.0 | 2.6 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 3 | 3 | 10 | 11.59 | 2 | 3 | 47 | 392 | 1387 | 37 | 0 | 2 | 1.0 | 0.0 | 1.0 |  |  |  |

Table 3: Expanded problems with three MAP variables.

| benchmark | F | $\omega$ | $\tau$ | iB |  |  | UB | OR ${ }^{\text {R }}$ | AND ${ }^{\text {R }}$ | OR ${ }^{\text {all }}$ | AND ${ }^{\text {all }}$ | CPP | UBP | SSP | EH | $t^{\text {pre }}$ | $t^{\text {search }}$ | ${ }^{\text {total }}$ | K*MAP | BBK* t | BBK* $\sin$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \mathrm{gwc} \_00021^{*} \\ \mathrm{P}=4, \mathrm{~L}=1, \\ \mathrm{PL}=5 \end{gathered}$ | F2 | 1 | 0 | 4 | 4 | 13 | 12.51 | 20 | 27 | 33881 | 590621 | 473189 | 388 | 6 | 8 | 123.8 | 81.3 | 205.1 | 11.92 | 551.3 | 11.72 |
|  |  | 1 | 1E-05 | 4 | 4 | 13 | 12.51 | 20 | 27 | 3194 | 25973 | 110351 | 362 | 6 | 8 | 117.1 | 3.5 | 120.7 |  |  |  |
|  |  | 0.001 | 0 | 4 | 4 | 13 | 12.51 | 3 | 4 | 4882 | 84496 | 75745 | 60 | 0 | 2 | 124.3 | 12.1 | 136.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 4 | 13 | 12.51 | 3 | 4 | 349 | 2698 | 15569 | 54 | 0 | 2 | 116.8 | 0.4 | 117.2 |  |  |  |
| $\begin{gathered} \text { 2xgy_00020* } \\ \text { P=3, L=3, } \\ \text { PL=6 } \end{gathered}$ | F1 | 1 | 0 | 6 | 8 | 15 | 12.28 | 35 | 64 | 425512 | 2552281 | 7259396 | 652 | 226 | 30 | 122.0 | 653.2 | 775.2 | 10.96 | 1388.1 | 10.96 |
|  |  | 1 | 1E-05 | 6 | 8 | 15 | 12.28 | 35 | 64 | 66457 | 186650 | 1324450 | 652 | 109 | 30 | 121.1 | 62.0 | 183.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 15 | 12.28 | 3 | 4 | 13639 | 81575 | 233365 | 60 | 0 | 2 | 121.3 | 14.4 | 135.7 |  |  |  |
|  |  | 0.001 | 1E-05 | 6 | 8 | 15 | 12.28 | 3 | 4 | 2351 | 6575 | 46989 | 60 | 0 | 2 | 121.2 | 1.5 | 122.7 |  |  |  |
|  | F2 | 1 | 0 | 5 | 5 | 15 | 11.39 | 3 | 22 | 398102 | 2383318 | 7422285 | 42 | 0 | 20 | 81.8 | 278.9 | 360.7 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 5 | 15 | 11.83 | 3 | 24 | 66355 | 185683 | 1579935 | 40 | 0 | 22 | 60.1 | 23.8 | 83.9 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 15 | 11.83 | 3 | 4 | 13627 | 81563 | 254094 | 60 | 0 | 2 | 60.4 | 8.2 | 68.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 5 | 15 | 11.83 | 3 | 4 | 2352 | 6576 | 55979 | 60 | 0 | 2 | 61.1 | 0.8 | 61.9 |  |  |  |
| $\begin{gathered} \text { 4wwi_00019* } \\ \text { P=3, L=3, } \\ \text { PL=6 } \end{gathered}$ |  | 1 | 0 | 6 | 8 | 15 | 16.93 | 152 | 303 | 1257591 | 4864928 | 2446418 | 2672 | 865 | 152 | 119.6 | 1375.4 | 1494.9 | 14.99 | 34.0 | 14.99 |
|  | F1 | 1 | 1E-05 | 6 | 8 | 15 |  | 219 | 530 | 90584 | 188534 | 480735 | 3232 | 2035 | 312 | 118.8 | 74.7 | 193.5 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 15 | 16.93 | 3 | 4 | 8047 | 30727 | 16189 | 59 | 1 | 2 | 119.4 | 5.2 | 124.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 6 | 8 | 15 |  | 87 | 92 | 859 | 1686 | 4419 | 1547 | 35 | 6 | 119.1 | 1.3 | 120.4 |  |  |  |
|  | F2 | 1 | 0 | 5 | 5 | 15 | 16.05 | 11 | 15 | 22945 | 87485 | 91677 | 176 | 75 | 5 | 169.2 | 12.1 | 181.3 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 5 | 15 |  | 25 | 56 | 17779 | 35282 | 396450 | 397 | 84 | 32 | 54.2 | 8.4 | 62.7 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 15 | 16.48 | 5 | 8 | 14938 | 57354 | 54826 | 59 | 105 | 4 | 62.0 | 7.2 | 69.2 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 4 | 5 | 15 |  | 5 | 8 | 893 | 1774 | 19843 | 54 | 61 | 4 | 61.9 | 0.5 | 62.4 |  |  |  |

Table 4: Modified [w]MBE run on hard problems with 4 MAP variables.

| benchmark | H | F | iB | $\omega$ | $\tau$ | w* | d | \|X| | UB | $t^{\text {total }}$ | Anytime-K* | K*MAP | BBK* t | BBK* $\sin$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1gwc_00021** | wMBE | F1 | 6 | 0.001 | $1 \mathrm{E}-05$ | 8 | 8 | 14 |  | timeout | 11.72 |  | 625.4 | 11.72 |
|  | MBE* | F1 | 6 | 0.001 | 1E-05 | 8 | 8 | 14 | 20.53 | 2090.5 | 11.92 | 11.92 |  |  |
| $\mathrm{PL}=5$ | wMBE* | F1 | 6 | 0.001 | 1E-05 | 8 | 8 | 14 | 19.92 | 1511.9 | 11.92 | 11.92 |  |  |
|  | wMBE | F2 | 3 | 0.001 | 1E-05 | 4 | 8 | 14 |  | timeout | 6.24 |  |  |  |


| benchmark | F | bnb | $f<$ | iB | $\mathrm{w}^{*}$ | d | \|x| | UB | OR* | AND* | OR-all | AND-all | CPP | UBP | SSP | EH | pre-t | Time | K*MAP | BBK* t | BBK* sln |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1aOr_00031 | F1 | 1 | 0 | 3 | 8 | 8 | 16 |  | 12 | 23 | 300184 | 1784305 | 1243743 | 0 | 151 | 1 | 0.9 | 226.9 | 7.88 | 109.1 | 7.88 |
|  |  | 1 | $1 \mathrm{E}-05$ | 3 | 8 | 8 | 16 |  | 12 | 23 | 8886 | 18057 | 105692 | 0 | 44 | 1 | 1.1 | 5.9 |  |  |  |
|  |  | 0.001 | 0 | 7 | 8 | 8 | 16 | 10.17 | 2 | 3 | 12379 | 72187 | 57871 | 22 | 4 | 2 | 146.2 | 156.5 |  |  |  |
|  |  | 0.001 | 1--05 | 3 | 8 | 8 | 16 |  | 12 | 23 | 8886 | 18057 | 105692 | 0 | 44 | 1 | 1.3 | 6.2 |  |  |  |
|  | F2 | 1 | 0 | 3 | 6 | 8 | 16 |  | 2 | 12 | 304309 | 1798801 | 937451 | 0 | 52 | 1 | 0.7 | 93.0 |  |  |  |
|  |  | 1 | $1 \mathrm{E}-05$ | 3 | 6 | 8 | 16 |  | 2 | 12 | 9066 | 18310 | 78238 | 0 | 19 | 1 | 0.7 | 1.5 |  |  |  |
|  |  | 0.001 | 0 | 5 | 6 | 8 | 16 | 9.95 | 2 | 3 | 11777 | 71585 | 33739 | 21 | 5 | 2 | 23.8 | 28.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 6 | 8 | 16 |  | 2 | 12 | 9066 | 18310 | 78238 | 0 | 19 | 1 | 0.6 | 1.3 |  |  |  |
| 1gwc_00021 | F1 | 1 | 0 | 6 | 6 | 6 | 12 | 10.28 | 4 | 9 | 41049 | 158841 | 378716 | 76 | 0 | 6 | 69.2 | 101.2 | 9.79 | 152.3 | 9.79 |
|  |  | 1 | 1E-05 | 6 | 6 | 6 | 12 | 10.28 | 4 | 9 | 2511 | 7875 | 39530 | 66 | 0 | 6 | 68.0 | 70.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 6 | 6 | 12 | 10.28 | 2 | 3 | 3282 | 9492 | 52507 | 40 | 0 | 2 | 69.3 | 71.2 | 9.76 |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 6 | 6 | 12 | 10.28 | 2 | 3 | 255 | 579 | 5700 | 34 | 0 | 2 | 67.5 | 67.7 |  |  |  |
|  | F2 | 1 | 0 | 4 | 4 | 6 | 12 | 10.29 | 3 | 7 | 28766 | 134930 | 77823 | 55 | 2 | 5 | 6.8 | 15.7 |  |  |  |
|  |  | 1 | 1--05 | 4 | 4 | 6 | 12 | 10.23 | 3 | 7 | 1259 | 5687 | 7234 | 46 | 1 | 5 | 6.2 | 6.5 | 9.79 |  |  |
|  |  | 0.001 | 0 | 4 | 4 | 6 | 12 | 10.29 | 2 | 3 | 7289 | 34775 | 19392 | 39 | 1 | 2 | 6.8 | 8.9 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 4 | 6 | 12 | 10.23 | 2 | 3 | 279 | 1251 | 1862 | 34 | 0 | 2 | 6.2 | 6.3 |  |  |  |
| 1gwc_00033 | F1 | 1 | 0 | 3 | 9 | 9 | 18 |  | 4 | 7 | 46660 | 183409 | 321999 | 0 | 47 | 1 | 1.0 | 30.2 | 10.48 | 512.5 | 10.48 |
|  |  | 1 | 1E-05 | 4 | 9 | 9 | 18 |  | 4 | 7 | 14176 | 26101 | 140121 | 0 | 0 | 1 | 1.4 | 5.6 |  |  |  |
|  |  | 0.001 | 0 | 3 | 9 | 9 | 18 |  | 4 | 7 | 46660 | 183409 | 321999 | 0 | 47 | 1 | 1.1 | 34.5 |  |  |  |
|  |  | 0.001 | 1-05 | 3 | 9 | 9 | 18 |  | 4 | 7 | 14176 | 26101 | 140121 | 0 | 0 | 1 | 1.1 | 5.4 |  |  |  |
|  | F2 | 1 | 0 | 3 | 7 | 9 | 18 |  | 2 | 5 | 56498 | 193247 | 178597 | 0 | 19 | 1 | 1.3 | 12.3 |  |  |  |
|  |  | 1 | 1E-05 | 3 | 7 | 9 | 18 |  | 2 | 5 | 18176 | 30101 | 100362 | 0 | 0 | 1 | 1.5 | 2.8 |  |  |  |
|  |  | 0.001 | 0 | 3 | 7 | 9 | 18 |  | 2 | 5 | 56498 | 193247 | 178597 | 0 | 19 | 1 | 1.3 | 12.4 |  |  |  |
|  |  | 0.001 | 1--05 | 3 | 7 | 9 | 18 |  | 2 | 5 | 18176 | 30101 | 100362 | 0 | 0 | 1 | 1.2 | 2.5 |  |  |  |
| 2hnu_00026 | F1 | 1 | 0 | 6 | 7 | 7 | 14 | 15.18 | 4 | 8 | 20896 | 104681 | 72450 | 77 | 37 | 5 | 14.6 | 25.0 | 13.18 | 436.9 | 13.18 |
|  |  | 1 | 1E-05 | 6 | 7 | 7 | 14 | 15.18 | 4 | 8 | 4702 | 15353 | 25692 | 48 | 13 | 5 | 14.7 | 16.5 |  |  |  |
|  |  | 0.001 | 0 | 6 | 7 | 7 | 14 | 15.18 | 2 | 3 | 8686 | 42886 | 30172 | 40 | 0 | 2 | 14.7 | 16.5 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 7 | 7 | 14 | 15.18 | 2 | 3 | 1592 | 5204 | 8640 | 30 | 0 | 2 | 14.4 | 14.7 |  |  |  |
|  | F2 | 1 | 0 | 4 | 5 | 7 | 14 | 15.08 | 2 | 5 | 22010 | 105458 | 76657 | 38 | 0 | 4 | 1.7 | 7.3 |  |  |  |
|  |  | 1 | 1-05 | 4 | 5 | 7 | 14 | 15.08 | 2 | 5 | 4972 | 15584 | 29869 | 30 | 0 | 4 | 1.8 | 2.6 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 7 | 14 | 15.08 | 2 | 3 | 9250 | 43450 | 33091 | 40 | 0 | 2 | 1.7 | 3.8 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 5 | 7 | 14 | 15.08 | 2 | 3 | 1696 | 5308 | 10143 | 32 | 0 | 2 | 1.6 | 1.8 |  |  |  |
| 2hnv_00025 | F1 | 1 | 0 | 6 | 8 | 8 | 16 | 14.97 | 4 | 7 | 128010 | 332754 | 87628 | 78 | 0 | 4 | 15.6 | 45.8 | 13.65 | 962.1 | 13.65 |
|  |  | 1 | 1E-05 | 6 | 8 | 8 | 16 | 14.97 | 4 | 7 | 11242 | 26138 | 22473 | 53 | 0 | 4 | 15.3 | 18.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 8 | 16 | 14.97 | 2 | 3 | 59796 | 155100 | 41420 | 40 | 0 | 2 | 15.6 | 22.8 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 8 | 8 | 16 | 14.97 | 2 | 3 | 4140 | 9572 | 8415 | 30 | 0 | 2 | 15.3 | 15.9 |  |  |  |
|  |  | 1 | 0 | 4 | 6 | 8 | 16 | 15.04 | 2 | 4 | 115194 | 297138 | 84882 | 39 | 0 | 3 | 1.7 | 16.6 |  |  |  |
|  | F2 | 1 | 1E-05 | 4 | 6 | 8 | 16 | 15.04 | 2 | 4 | 9383 | 21423 | 22246 | 33 | 0 | 3 | 1.6 | 2.6 |  |  |  |
|  |  | 0.001 | 0 | 4 | 6 | 8 | 16 | 15.04 | 2 | 3 | 60606 | 155910 | 46451 | 40 | 0 | 2 | 1.7 | 8.8 |  |  |  |
|  |  | 0.001 | 1--05 | 4 | 6 | 8 | 16 | 15.04 | 2 | 3 | 4278 | 9710 | 10479 | 34 | 0 | 2 | 1.6 | 2.0 |  |  |  |
| 2rf9_00007 | F1 | 1 | 0 | 7 | 9 | 9 | 18 |  | 17 | 33 | 111674 | 380720 | 453549 | 0 | 410 | 1 | 3.0 | 74.6 | 14.08 | 45.5 | 14.08 |
|  |  | 1 | 1E-05 | 5 | 9 | 9 | 18 |  | 18 | 35 | 45551 | 103794 | 273804 | 0 | 32 | 1 | 1.3 | 21.9 |  |  |  |
|  |  | 0.001 | 0 | 7 | 9 | 9 | 18 |  | 17 | 33 | 111674 | 380720 | 453549 | 0 | 410 | 1 | 3.0 | 74.6 |  |  |  |
|  |  | 0.001 | 1-05 | 7 | 9 | 9 | 18 |  | 17 | 33 | 43248 | 99153 | 254219 | 0 | 39 | 1 | 2.6 | 19.6 |  |  |  |
|  | F2 | 1 | 0 | 6 | 7 | 9 | 18 | 14.52 | 2 | 3 | 4264 | 11559 | 9772 | 36 | 5 | 1 | 4.1 | 4.7 |  |  |  |
|  |  | 1 | 1E-05 | 3 | 7 | 9 | 18 |  | 2 | 19 | 52616 | 109733 | 123399 | 0 | 31 | 1 | 0.5 | 4.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 7 | 9 | 18 | 14.52 | 2 | 3 | 4264 | 11559 | 9772 | 41 | 0 | 1 | 4.1 | 4.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 7 | 9 | 18 |  | 2 | 19 | 52616 | 109733 | 123399 | 0 | 31 | 1 | 0.5 | 4.1 |  |  |  |
| 2rf9_00013 | F1 | 1 | 0 | 6 | 8 | 8 | 16 | 14.57 | 3 | 5 | 4074 | 19034 | 15979 | 61 | 0 | 3 | 6.6 | 9.0 | 13.25 | 11.8 | 13.25 |
|  |  | 1 | 1E-05 | 3 | 8 | 8 | 16 |  | 22 | 43 | 7668 | 12012 | 47855 | 0 | 20 | 1 | 1.1 | 3.2 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 8 | 16 | 14.57 | 2 | 3 | 1691 | 7851 | 6697 | 41 | 0 | 2 | 5.9 | 6.5 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 8 | 8 | 16 |  | 22 | 43 | 7668 | 12012 | 47855 | 0 | 20 | 1 | 1.0 | 3.2 |  |  |  |
|  | F2 | 1 | 0 | 5 | 6 | 8 | 16 | 14.12 | 2 | 3 | 1691 | 7851 | 7275 | 41 | 0 | 2 | 1.4 | 1.9 |  |  |  |
|  |  | 1 | 1--05 | 4 | 6 | 8 | 16 | 14.57 | 2 | 4 | 619 | 931 | 5204 | 19 | 0 | 3 | 0.8 | 0.8 |  |  |  |
|  |  | 0.001 | 0 | 4 | 6 | 8 | 16 | 14.57 | 2 | 3 | 1691 | 7851 | 7275 | 41 | 0 | 2 | 0.8 | 1.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 6 | 8 | 16 | 14.57 | 2 | 3 | 153 | 225 | 1411 | 20 | 0 | 2 | 0.8 | 0.8 |  |  |  |
| 2rf9_00018 | F1 | 1 | 0 | 8 | 9 | 9 | 18 | 16.68 | 2 | 5 | 19927 | 84823 | 98124 | 39 | 0 | 4 | 66.5 | 76.1 | 15.79 | 187.2 | 15.79 |
|  |  | 1 | $1 \mathrm{E}-05$ | 4 | 9 | 9 | 18 |  | 2 | 20 | 32834 | 78293 | 278613 | 0 | 68 | 1 | 1.3 | 15.5 |  |  |  |
|  |  | 0.001 | 0 | 8 | 9 | 9 | 18 | 16.68 | 2 | 3 | 7241 | 28745 | 37652 | 41 | 0 | 2 | 66.5 | 69.6 |  |  |  |
|  |  | 0.001 | 1-05 | 3 | 9 | 9 | 18 |  | 3 | 24 | 34358 | 82814 | 293945 | 0 | 104 | 1 | 0.9 | 14.0 |  |  |  |
|  |  | 1 | 0 | 6 | 7 | 9 | 18 | 16.68 | 4 | 7 | 20137 | 85033 | 87306 | 78 | 0 | 4 | 8.4 | 15.1 |  |  |  |
|  | F2 | 1 | 1-05 | 3 | 7 | 9 | 18 |  | 18 | 35 | 45584 | 99045 | 218730 | 0 | 269 | 1 | 0.7 | 6.8 |  |  |  |
|  |  | 0.001 | 0 | 6 | 7 | 9 | 18 | 16.68 | 2 | 3 | 7323 | 28827 | 33772 | 40 | 0 | 2 | 8.4 | 10.5 |  |  |  |
|  |  | 0.001 | 1--05 | 3 | 7 | 9 | 18 |  | 18 | 35 | 45584 | 99045 | 218730 | 0 | 269 | 1 | 0.7 | 6.8 |  |  |  |
| 2rf9_00042 | F1 | 1 | 0 | 7 | 111 | 11 | 22 |  | 2 | 8 | 459950 | 2342453 | 1816775 | 0 | 77 | 1 | 4.3 | 307.5 | 22.65 | 897.1 | 22.65 |
|  |  | 1 | 1-05 | 5 | 111 | 11 | 22 |  | 2 | 9 | 31661 | 53664 | 241548 | 0 | 35 | 1 | 1.6 | 8.9 |  |  |  |
|  |  | 0.001 | 0 | 7 | 111 | 11 | 22 |  | 2 | 8 | 459950 | 2342453 | 1816775 | 0 | 77 | 1 | 4.9 | 352.0 |  |  |  |
|  |  | 0.001 | 1E-05 | 5 | 111 | 11 | 22 |  | 2 | 9 | 31661 | 53664 | 241548 | 0 | 35 | 1 | 1.7 | 9.0 |  |  |  |
|  |  | 1 | 0 | 6 |  | 11 | 22 |  | 6 | 11 | 366672 | 1835478 | 1320278 | 0 | 162 | 1 | 15.8 | 148.8 |  |  |  |
|  |  |  | 1E-05 | 3 |  |  | 22 |  | 8 |  | 32902 | 55385 | 195925 | 0 |  | 1 | 1.0 | 3.0 |  |  |  |

Table 5: Small problems (two mutable residues, ie. MAP variables).


Table 6: Small problems (two mutable residues, ie. MAP variables).


Table 7: Small problems (two mutable residues, ie. MAP variables).

| 4hem 00028 |  | 0.001 | 1E-05 | 3 | 8 | 8 | 16 |  | 2 | 4 | 1809 | 4206 | 15090 | 0 | 13 | 1 | 1.1 | 1.5 | 15.27 | 34.5 | 15.27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 0 | 3 | 6 | 8 | 16 |  | 3 | 5 | 3177 | 11537 | 13051 | 0 | 41 | 1 | 0.9 | 1.8 |  |  |  |
|  | F2 | 1 | 1E-05 | 3 | 6 | 8 | 16 |  | 3 | 5 | 1589 | 3981 | 9282 | 0 | 2 | 1 | 0.9 | 1.0 |  |  |  |
|  |  | 0.001 | 0 | 3 | 6 | 8 | 16 |  | 3 | 5 | 3177 | 11537 | 13051 | 0 | 41 | 1 | 0.9 | 1.8 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 6 | 8 | 16 |  | 3 | 5 | 1589 | 3981 | 9282 | 0 | 2 | 1 | 0.9 | 1.0 |  |  |  |
| 4kt6_00023 | F1 | 1 | 0 | 7 | 8 | 8 | 16 | 18.24 | 10 | 12 | 17300 | 58100 | 363924 | 168 | 28 | 3 | 20.7 | 40.7 | 12.69 | 136.5 | 12.69 |
|  |  | 1 | $1 \mathrm{E}-05$ | 6 | 8 | 8 | 16 | 14.80 | 10 | 13 | 5251 | 10171 | 117045 | 41 | 31 | 4 | 11.1 | 16.6 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 8 | 16 | 18.68 | 2 | 3 | 8647 | 22567 | 188442 | 33 | 4 | 2 | 11.3 | 19.5 |  |  |  |
|  |  | 0.001 | 1E-05 | 6 | 8 | 8 | 16 | 14.80 | 2 | 3 | 1749 | 2709 | 39669 | 16 | 2 | 2 | 11.0 | 12.5 |  |  |  |
|  | F2 | 1 | 0 | 4 | 6 | 8 | 16 | 14.80 | 2 | 5 | 38186 | 101546 | 23877 | 16 | 19 | 4 | 2.1 | 7.3 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 6 | 8 | 16 | 14.80 | 2 | 5 | 3163 | 8083 | 4889 | 9 | 7 | 4 | 2.0 | 2.3 |  |  |  |
|  |  | 0.001 | 0 | 4 | 6 | 8 | 16 | 14.80 | 2 | 3 | 8388 | 22308 | 5231 | 35 | 2 | 2 | 2.1 | 2.9 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 6 | 8 | 16 | 14.80 | 2 | 3 | 618 | 1578 | 999 | 16 | 2 | 2 | 2.0 | 2.1 |  |  |  |
| 4kt6_00024 | F1 | 1 | 0 | 7 | 8 | 8 | 16 | 19.87 | 4 | 5 | 8649 | 22569 | 188442 | 52 | 25 | 2 | 20.8 | 29.7 | 12.93 | 120.7 | 12.93 |
|  |  | 1 | $1 \mathrm{E}-05$ | 6 | 8 | 8 | 16 | 16.94 | 8 | 10 | 4174 | 8782 | 92775 | 18 | 13 | 3 | 11.1 | 15.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | 8 | 16 | 20.30 | 2 | 3 | 8647 | 22567 | 188442 | 27 | 10 | 2 | 11.3 | 20.8 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 8 | 8 | 16 | 16.94 | 2 | 3 | 2085 | 3237 | 47497 | 12 | 2 | 2 | 11.0 | 12.7 |  |  |  |
|  | F2 | 1 | 0 | 4 | 6 | 8 | 16 | 14.87 | 2 | 4 | 21980 | 58460 | 13622 | 17 | 19 | 3 | 2.1 | 5.1 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 6 | 8 | 16 | 14.87 | 2 | 4 | 2848 | 7456 | 3193 | 10 | 3 | 3 | 2.0 | 2.3 |  |  |  |
|  |  | 0.001 | 0 | 4 | 6 | 8 | 16 | 14.87 | 2 | 3 | 8388 | 22308 | 5231 | 34 | 3 | 2 | 2.1 | 3.0 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 6 | 8 | 16 | 14.87 | 2 | 3 | 714 | 1866 | 902 | 13 | 1 | 2 | 2.0 | 2.1 |  |  |  |
| 4wwi_00019 | F1 | 1 | 0 | 7 | 7 | 7 | 14 | 15.43 | 2 | 3 | 8046 | 30726 | 16164 | 40 | 0 | 2 | 58.4 | 61.0 | 14.99 | 26.3 | 14.99 |
|  |  | 1 | 1E-05 | 5 | 7 | 7 | 14 | 16.30 | 21 | 87 | 25831 | 53574 | 133265 | 273 | 19 | 67 | 3.2 | 11.9 |  |  |  |
|  |  | 0.001 | 0 | 5 | 7 | 7 | 14 | 16.30 | 2 | 3 | 8046 | 30726 | 16164 | 40 | 0 | 2 | 3.0 | 5.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 5 | 7 | 7 | 14 | 16.30 | 2 | 3 | 475 | 964 | 2493 | 36 | 0 | 2 | 3.2 | 3.4 |  |  |  |
|  | F2 | 1 | 0 | 5 | 5 | 7 | 14 | 15.43 | 2 | 3 | 8094 | 30774 | 17888 | 40 | 0 | 2 | 5.6 | 7.9 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 5 | 7 | 14 | 15.86 | 6 | 26 | 10670 | 20946 | 100937 | 97 | 0 | 21 | 1.0 | 3.3 |  |  |  |
|  |  | 0.001 | 0 | 3 | 5 | 7 | 14 | 16.30 | 2 | 3 | 8094 | 30774 | 17888 | 40 | 0 | 2 | 0.5 | 2.8 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 5 | 7 | 14 | 16.30 | 2 | 3 | 521 | 1010 | 4649 | 36 | 0 | 2 | 0.5 | 0.6 |  |  |  |

Table 8: Small problems (two mutable residues, ie. MAP variables).

| benchmark | F | bnb | f< | iB w | $\mathrm{w}^{*}$ d | d \|X| | UB | OR* | AND* | OR-all | AND-all | CPP | UBP | SSP | EH | pre-t | Time | K*MAP | BBK* | BBK* $\sin$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1gwc_00021_1_0_4_3 | F2 | 1 | 0 | 4 | 47 | 713 | 12.51 | 20 | 27 | 33881 | 590621 | 473189 | 388 | 6 | 8 | 123.8 | 205.1 | 11.92 | 551.3 | 11.72 |
|  |  | 1 | 1E-05 | 4 | 7 | 713 | 12.51 | 20 | 27 | 3194 | 25973 | 110351 | 362 | 6 | 8 | 117.1 | 120.7 |  |  |  |
|  |  | 0.001 | 0 | 4 | 47 | 713 | 12.51 | 3 | 4 | 4882 | 84496 | 75745 | 60 | 0 | 2 | 124.3 | 136.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 4 | $7 \quad 13$ | 12.51 | 3 | 4 | 349 | 2698 | 15569 | 54 | 0 | 2 | 116.8 | 117.2 |  |  |  |
| 2hnv_00025_3_0_4_3 | F1 | 1 | $1 \mathrm{E}-05$ | 5 | 9 | 917 |  | 247 | 1029 | 1001206 | 2687713 | 6118892 | 0 | 7839 | 1 | 11.9 | 1433.6 | 16.18 | 880.5 | 13.65 |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 5 | 99 | $9 \quad 17$ |  | 247 | 1029 | 1001206 | 2687713 | 6118892 | 0 | 7839 | 1 | 11.9 | 1430.7 |  |  |  |
|  | F2 | 1 | 0 | 4 | 69 | 917 | 18.38 | 4 | 7 | 215171 | 550559 | 220825 | 77 | 0 | 4 | 109.8 | 153.8 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 6 | 917 | 18.38 | 4 | 7 | 11158 | 25046 | 44795 | 63 | 0 | 4 | 100.8 | 102.4 |  |  |  |
|  |  | 0.001 | 0 | 4 | 69 | 917 | 18.38 | 3 | 4 | 72135 | 184463 | 74753 | 59 | 0 | 2 | 109.3 | 121.5 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 6 | $9 \quad 17$ | 18.38 | 3 | 4 | 3539 | 7907 | 14703 | 46 | 0 | 2 | 100.7 | 101.2 |  |  |  |
| 2rf9_00007_1_0_7_3 | F1 | 0.001 | 1E-05 | 81 | 1010 | 19 |  | 379 | 738 | 1694883 | 6536479 | 24664824 | 0 | 529 | 1 | 57.9 | 3611.5 | 14.73 | 369.4 | 14.73 |
|  | F2 | 1 | $1 \mathrm{E}-05$ | 3 | 710 | 019 |  | 22 | 442 | 4353727 | 9503674 | 15149348 | 0 | 659 | 1 | 6.0 | 725.8 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 710 | $0 \quad 19$ |  | 22 | 442 | 4353727 | 9503674 | 15149348 | 0 | 659 | 1 | 6.0 | 733.9 |  |  |  |
| 2rf9_00013_3_0_4_3 | F1 | 1 | 1E-05 | 3 | 99 | 917 |  | 441 | 881 | 427301 | 783693 | 3444343 | 21 | 317 | 1 | 3.0 | 408.5 | 15.03 | 39.2 | 15.03 |
|  |  | 0.001 | 1E-05 | 3 | 99 | 917 |  | 441 | 881 | 427301 | 783693 | 3444343 | 21 | 317 | 1 | 3.0 | 407.1 |  |  |  |
|  | F2 | 1 | 0 | 4 | 69 | 917 | 16.36 | 3 | 10 | 36574 | 172094 | 184989 | 55 | 0 | 8 | 83.0 | 100.8 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 69 | 917 | 16.36 | 3 | 10 | 2638 | 3934 | 38141 | 34 | 0 | 8 | 71.4 | 71.8 |  |  |  |
|  |  | 0.001 | 0 | 4 | 69 | 917 | 16.36 | 3 | 4 | 3328 | 15648 | 16891 | 61 | 0 | 2 | 82.8 | 84.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 69 | 917 | 16.36 | 3 | 4 | 296 | 440 | 4283 | 40 | 0 | 2 | 80.3 | 80.4 |  |  |  |
| 2rfe_00012_3_0_3_3 | F1 | 1 | 0 | 3 | 88 | 815 |  | 21 | 77 | 17726 | 60980 | 112686 | 1 | 518 | 1 | 2.9 | 24.5 | 13.93 | 11.8 | 13.93 |
|  |  | 1 | 1E-05 | 3 | 88 | 815 |  | 21 | 77 | 5402 | 12005 | 48249 | 1 | 397 | 1 | 2.9 | 8.8 |  |  |  |
|  |  | 0.001 | 0 | 3 | 8 | $8 \quad 15$ |  | 21 | 77 | 17726 | 60980 | 112686 | 1 | 518 | 1 | 2.9 | 24.4 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 88 | $8 \quad 15$ |  | 21 | 77 | 5402 | 12005 | 48249 | 1 | 397 | 1 | 2.9 | 8.8 |  |  |  |
|  | F2 | 1 | 0 | 4 | 58 | 815 | 14.80 | 5 | 9 | 5239 | 18227 | 58358 | 96 | 0 | 5 | 58.3 | 60.9 |  |  |  |
|  |  | 1 | 1E-05 | 3 | 58 | 815 |  | 35 | 321 | 18964 | 44087 | 1487077 | 0 | 1180 | 1 | 5.5 | 20.3 |  |  |  |
|  |  | 0.001 | 0 | 4 | 58 | 815 | 14.80 | 3 | 4 | 641 | 2045 | 6710 | 58 | 0 | 2 | 58.6 | 58.9 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 5 | $8 \quad 15$ |  | 35 | 321 | 18964 | 44087 | 1487077 | 0 | 1180 | 1 | 5.4 | 21.0 |  |  |  |
| 2rfe_00014_3_0_3_3 | F1 | 1 | 0 | 3 | 88 | 815 |  | 22 | 85 | 27154 | 90364 | 170428 | 1 | 532 | 1 | 3.0 | 34.3 | 13.96 | 44.9 | 14.36 |
|  |  | 1 | 1E-05 | 3 | 8 | $8 \quad 15$ |  | 22 | 85 | 5243 | 12262 | 48900 | 1 | 449 | 1 | 2.9 | 9.2 |  |  |  |
|  |  | 0.001 | 0 | 3 | 8 | 815 |  | 22 | 85 | 27154 | 90364 | 170428 | 1 | 532 | 1 | 2.9 | 34.3 |  |  |  |
|  |  | 0.001 | 1E-05 | 3 | 88 | $8 \quad 15$ |  | 22 | 85 | 5243 | 12262 | 48900 | 1 | 449 | 1 | 2.9 | 9.3 |  |  |  |
|  |  | 1 | 0 | 4 | 58 | 815 | 15.23 | 5 | 8 | 5882 | 18770 | 62846 | 94 | 0 | 4 | 58.2 | 60.6 | 14.36 |  |  |
|  | F2 | 1 | 1E-05 | 3 | 5 | 815 |  | 41 | 381 | 19834 | 46560 | 1681191 | 0 | 1413 | 1 | 4.9 | 20.0 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | $8 \quad 15$ | 15.23 | 3 | 4 | 3305 | 10601 | 31370 | 58 | 0 | 2 | 58.2 | 59.4 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 3 | 58 | $8 \quad 15$ |  | 41 | 381 | 19834 | 46560 | 1681191 | 0 | 1413 | 1 | 5.5 | 22.9 |  |  |  |
| 2rfe_00017_2_0_4_3 | F1 | 1 | 1E-05 | 6 | 8 | 815 |  | 292 | 1951 | 372617 | 1038706 | 10337795 | 0 | 6797 | 1 | 37.6 | 1041.4 | 10.86 | 78.0 | 10.80 |
|  |  | 0.001 | 1E-05 | 6 | 8 | $8 \quad 15$ |  | 292 | 1951 | 372617 | 1038706 | 10337795 | 0 | 6797 | 1 | 38.0 | 1063.2 |  |  |  |
|  | F2 | 1 | 0 | 5 | 5 | 815 | 11.46 | 16 | 58 | 245894 | 1063198 | 6389737 | 227 | 25 | 43 | 166.8 | 334.6 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 58 | 815 | 11.89 | 39 | 189 | 15748 | 32709 | 606708 | 411 |  |  | 85.7 | 92.8 |  |  |  |
|  |  | 0.001 | 0 | 4 | 58 | 815 | 11.89 | 4 | 17 | 7328 | 31941 | 194059 | 57 | 151 | 14 | 89.1 | 94.1 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 5 | $8 \quad 15$ | 11.89 | 4 | 17 | 480 | 871 | 24031 | 50 | 51 | 14 | 85.7 | 86.0 |  |  |  |
| 2rfe_00030_4_3_2_0 | F1 | 1 | 1E-05 | 6 | 8 | 815 |  | 245 | 1002 | 134024 | 432910 | 3963332 | 0 | 5708 | 1 | 117.2 | 613.3 | 11.12 | 275.4 | 10.97 |
|  |  | 0.001 | 1E-05 | 6 | 88 | $8 \quad 15$ |  | 245 | 1002 | 134024 | 432910 | 3963332 | 0 | 5708 | 1 | 117.0 | 617.5 |  |  |  |
|  | F2 | 1 | 0 | 4 | 5 | 815 | 13.61 | 48 | 124 | 256957 | 1327425 | 2816050 | 726 | 83 | 77 | 115.2 | 276.6 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 58 | 815 | 13.21 | 30 | 106 | 5948 | 14903 | 245173 | 355 | 27 | 77 | 105.4 | 108.9 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 815 | 13.61 | 3 | 4 | 890 | 4082 | 11901 | 54 | 2 | 2 | 101.4 | 101.9 | 10.95 |  |  |
|  |  | 0.001 | 1E-05 | 4 | 5 | $8 \quad 15$ | 13.21 | 3 | 4 | 18 | 36 | 1128 | 45 | 1 | 2 | 106.0 | 106.0 | 11.03 |  |  |
| 2xgy_00020_3_0_3_3 | F1 | 1 | 0 | 6 | 8 | 815 | 12.28 | 35 | 64 | 425512 | 2552281 | 7259396 | 652 | 226 | 30 | 122.0 | 775.2 | 10.96 | 1388.1 | 10.96 |
|  |  | 1 | 1E-05 | 6 | 8 | $8 \quad 15$ | 12.28 | 35 | 64 | 66457 | 186650 | 1324450 | 652 | 109 | 30 | 121.1 | 183.1 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | $8 \quad 15$ | 12.28 | 3 | 4 | 13639 | 81575 | 233365 | 60 | 0 |  | 121.3 | 135.7 |  |  |  |
|  |  | 0.001 | 1E-05 | 6 | 88 | $8 \quad 15$ | 12.28 | 3 | 4 | 2351 | 6575 | 46989 | 60 | 0 | 2 | 121.2 | 122.7 |  |  |  |
|  | F2 | 1 | 0 | 5 | 58 | 815 | 11.39 | 3 | 22 | 398102 | 2383318 | 7422285 | 42 | 0 | 20 | 81.8 | 360.7 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 58 | 815 | 11.83 | 3 | 24 | 66355 | 185683 | 1579935 | 40 | 0 | 22 | 60.1 | 83.9 |  |  |  |
|  |  | 0.001 | 0 | 4 | 5 | 815 | 11.83 | 3 | 4 | 13627 | 81563 | 254094 | 60 | 0 | 2 | 60.4 | 68.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 5 | $8 \quad 15$ | 11.83 | 3 | 4 | 2352 | 6576 | 55979 | 60 | 0 | 2 | 61.1 | 61.9 |  |  |  |
| $347 \mathrm{~S}_{-} 00009$ _2_0_3_3 | F1 | 1 | 0 | 6 | 7 | 713 | 5.39 | 118 | 325 | 221684 | 1419747 | 921627 | 1792 | 175 | 208 | 118.6 | 574.4 | 4.51 | 215.8 | 4.51 |
|  |  | 1 | 1E-05 | 6 | 77 | $7 \quad 13$ |  | 129 | 382 | 45828 | 231276 | 302283 | 1322 | 252 | 254 | 118.1 | 191.0 |  |  |  |
|  |  | 0.001 | 0 | 6 | 7 | $7 \quad 13$ | 5.39 | 3 | 4 | 2587 | 16257 | 11133 | 57 | 0 |  | 119.5 | 122.2 |  |  |  |
|  |  | 0.001 | $1 \mathrm{E}-05$ | 6 | 77 | 713 |  | 3 | 4 | 40 | 232 | 254 | 48 | 1 | 2 | 118.1 | 118.2 | 3.07 |  |  |
|  | F2 | 1 | 0 | 4 | 47 | 713 | 4.95 | 12 | 39 | 36760 | 228568 | 564654 | 204 | 7 | 28 | 62.6 | 99.5 | 4.51 |  |  |
|  |  |  | 1E-05 | 4 | 47 | $7 \quad 13$ |  | 12 | 39 | 7147 | 32753 | 222131 | 169 | 4 | 28 | 61.3 | 66.4 |  |  |  |
|  |  | 0.001 | 0 | 4 | 4 | 713 | 4.95 | 3 | 4 | 2648 | 16318 | 37313 | 57 | 0 | 2 | 62.5 | 64.7 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 47 | $7 \quad 13$ |  | 3 | 4 | 554 | 2490 | 15834 | 47 | 1 | 2 | 61.2 | 61.5 |  |  |  |
| 3u7y_00011_2_0_3_3 | F1 | 1 | 0 | 5 | 77 | 713 |  | 41 | 77 | 23893 | 81707 | 183381 | 0 | 939 | 1 | 12.9 | 45.1 | 11.85 | 26.6 | 11.85 |
|  |  |  | 1E-05 | 4 | 7 | $7 \quad 13$ |  | 58 | 111 | 8367 | 30329 | 124844 | 0 | 904 | 1 |  | 21.3 |  |  |  |
|  |  | 0.001 | 0 | 5 | 7 | $7 \quad 13$ |  | 41 | 77 | 23893 | 81707 | 183381 | 0 | 939 | 1 | 12.8 | 45.1 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 77 | $7 \quad 13$ |  | 58 | 111 | 8367 | 30329 | 124844 | 0 | 904 | 1 | 2.9 | 21.4 |  |  |  |
|  | F2 | 1 | 0 | 4 | 47 | 713 | 12.29 | 3 | , | 5758 | 16108 | 68579 | 50 | , | 5 | 74.0 | 76.1 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 47 | 713 | 12.29 | 3 | 7 | 1173 | 1935 | 40256 | 39 | 0 | 5 | 80.7 | 81.2 |  |  |  |
|  |  | 0.001 | 0 | 4 | 47 | 713 | 12.29 | 3 | 4 | 221 | 617 | 2751 | 53 | 0 | 2 | 83.4 | 83.5 |  |  |  |
|  |  | 0.001 | 1E-05 | 4 | 47 | $7 \quad 13$ | 12.29 | 3 | 4 | 50 | 80 | 1775 | 42 | 0 | 2 | 80.8 | 80.8 |  |  |  |
| 4wwi_00019_3_0_3_3 | F1 | 1 | 0 | 6 | 8 | 815 | 16.93 | 152 | 303 | 1257591 | 4864928 | 2446418 | 2672 | 865 | 152 | 119.6 | 1494.9 | 14.99 | 34.0 | 14.99 |
|  |  | 1 | 1E-05 | 6 | 8 | $8 \quad 15$ |  | 219 | 530 | 90584 | 188534 | 480735 | 3232 | 2035 | 312 | 118.8 | 193.5 |  |  |  |
|  |  | 0.001 | 0 | 6 | 8 | $8 \quad 15$ | 16.93 | 3 | 4 | 8047 | 30727 | 16189 | 59 | 1 | 2 | 119.4 | 124.6 |  |  |  |
|  |  | 0.001 | 1E-05 | 6 | 88 | $8 \quad 15$ |  | 87 | 92 | 859 | 1686 | 4419 | 1547 | 35 | 6 | 119.1 | 120.4 |  |  |  |
|  | F2 | 1 | 0 | 5 | 58 | 815 | 16.05 | 11 | 15 | 22945 | 87485 | 91677 | 176 | 75 | 5 | 169.2 | 181.3 |  |  |  |
|  |  | 1 | 1E-05 | 4 | 58 | 815 |  | 25 | 56 | 17779 | 35282 | 396450 | 397 | 84 | 32 | 54.2 | 62.7 |  |  |  |
|  |  | 0.001 | 0 | 4 | 58 | 815 | 16.48 | 5 | 8 | 14938 | 57354 | 5482 | 59 | 105 | 4 | 62.0 | 69.2 |  |  |  |

Table 9: Expanded problems (three mutable residues, ie. MAP variables).

Table 10: Expanded problems (three mutable residues, ie. MAP variables).

| benchmark | H | F | iB | bnb | f< | w* d | d | \|X| | UB | Time | Anytime-K* | K*MAP | BBK* | BBK* $\operatorname{sln}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1gwc_00021_1_0_4_4 | wMBE | F1 | 6 | 0.001 | 1E-05 | 8 | 8 | 14 |  | timeout | 11.72 |  | 625.4 | 11.72 |
|  | MBE* | F1 | 6 | 0.001 | 1E-05 | 8 | 8 | 14 | 20.53 | 2090.5 | 11.92 | 11.92 |  |  |
|  | wMBE* | F1 | 6 | 0.001 | 1E-05 | 8 | 8 | 14 | 19.92 | 1511.9 | 11.92 | 11.92 |  |  |
|  | wMBE | F2 | 3 | 0.001 | 1E-05 | 4 | 8 | 14 |  | timeout | 6.24 |  |  |  |
| 2hnv_00025_3_0_4_4 | wMBE | F1 | 6 | 0.001 | 1E-05 | 10 | 10 | 18 |  | timeout | 11.52 |  | 1013.2 | 13.65 |
|  | MBE* | F1 | 6 | 0.001 | 1E-05 | 10 | 10 | 18 | 21.91 | 2038.1 | 16.18 | 16.18 |  |  |
|  | wMBE* | F1 | 6 | 0.001 | 1E-05 | 10 | 10 | 18 | 21.81 | 2085.6 | 16.18 | 16.18 |  |  |
|  | wMBE | F2 | 4 | 0.001 | 1E-05 | 6 | 10 | 18 |  | 3384.4 | 16.18 | 16.18 |  |  |
|  | MBE* | F2 | 4 | 0.001 | 0 | 6 | 10 | 18 | 1017.56 | timeout | 14.32 |  |  |  |
|  | wMBE* | F2 | 4 | 0.001 | 0 | 6 | 10 | 18 | 1016.46 | timeout | 14.32 |  |  |  |
| 2rf9_00007_1_0_7_4 | wMBE | F1 | 8 | 0.001 | 0 | 11 | 11 | 20 |  | timeout | 12.02 |  | 399.6 | 14.73 |
|  | MBE* | F1 | 8 | 0.001 | 0 | 11 | 11 | 20 | 516.51 | timeout | 13.41 |  |  |  |
|  | wMBE* | F1 | 8 | 0.001 | 0 | 11 | 11 | 20 | 515.99 | timeout | 13.41 |  |  |  |
|  | wMBE | F2 | 3 | 0.001 | 0 | 7 | 11 | 20 |  | timeout |  |  |  |  |
| 2rf9_00013_3_0_4_4 | wMBE | F1 | 6 | 0.001 | 1E-05 | 10 | 10 | 18 |  | 1686.5 | 15.03 | 15.03 | 43.8 | 15.03 |
|  | MBE* | F1 | 5 | 0.001 | 1E-05 | 10 | 10 | 18 | 17.78 | 105.1 | 15.03 | 15.03 |  |  |
|  | wMBE* | F1 | 5 | 0.001 | 1E-05 | 10 | 10 | 18 | 17.68 | 62.3 | 15.03 | 15.03 |  |  |
|  | wMBE | F2 | 4 | 0.001 | 1E-05 | 6 | 10 | 18 |  | timeout | 15.03 |  |  |  |
| 2rfe_00017_2_0_4_4 | wMBE | F1 | 5 | 0.001 | 1E-05 | 9 | 9 | 16 |  | timeout | 10.33 |  | 91.2 | 10.80 |
|  | MBE* | F1 | 5 | 0.001 | 1E-05 | 9 | 9 | 16 | 22.70 | timeout | 10.86 |  |  |  |
|  | wMBE* | F1 | 5 | 0.001 | 1E-05 | 9 | 9 | 16 | 23.00 | timeout | 10.86 |  |  |  |
|  | wMBE | F2 | 4 | 0.001 | 1E-05 | 5 | 9 | 16 |  | timeout | 10.86 |  |  |  |
| 2rfe_00030_4_4_2_0 | wMBE | F1 | 6 | 0.001 | 0 | 9 | 9 | 16 |  | timeout | 10.27 |  | 248.3 | 10.97 |
|  | MBE* | F1 | 6 | 0.001 | 0 | 9 | 9 | 16 | 515.44 | timeout | 10.29 |  |  |  |
|  | wMBE* | F1 | 6 | 0.001 | 0 | 9 | 9 | 16 | 515.23 | timeout | 10.29 |  |  |  |
|  | wMBE | F2 | 3 | 0.001 | 0 | 5 | 9 | 16 |  | timeout |  |  |  |  |

Table 11: Adjusted [w]MBE on Large problems (4 mutable residues, ie. MAP variables).

### 10.3 ANALYSIS

Formulation 1 vs. Formulation 2. The aggregated statistics in Table 1 show that F2 is generally superior to F1. One aspect of F1 that is particularly handicapping is that, due to it using an indexing scheme between amino-acids and their rotamers, all interaction functions need to include both residue and conformation variables, thus leeding to a more densely connected graph (as can seen by the greater $\mathrm{w}^{*}$ for F1 in Tables $2 \sqrt{4}$. That being said, a strength of F1 vs. F2 is its smaller domain sizes in the presence of MAP variables, which comes into play during the heuristic evaluation. When looking at the highest iB able to be used for each formulation (not explicitly shown) across the different expansions of a benchmark, the highest iB possible by F2 drops more quickly as MAP variables are added (due to the great increase in domain sizes incurred by adding additional MAP variables). An open question is how to combine the strengths of both formulations, perhaps in conjunction with other potential innovations (as will be highlighted).

AOBB-K ${ }^{2}$ vs BBK* ${ }^{*}$ K solution. AOBB-K* and BBK $^{*}$ find the same $K^{*}$ solution for all but two of the original problems solved. However, as problems are expanded, the frequency that the two algorithms find different solutions increases. In each exception, AOBB-K* outputted a $K^{*}$ solution was greater than that outputted by BBK*. These results are captured in Table 1 and concrete examples can be seen in Tables 2 and 3 where cases where the $K^{*}$ solution differ are highlighted in the $\mathrm{K}^{*}$ MAP columns. Through further analysis, AOBB- $\mathrm{K}^{*}$ 's solutions were verified to be valid based on the problem formulations.

AOBB-K" ${ }^{1}$ vs BBK*: Speed. AOBB-K* showed powerful performance on the original benchmarks solving nearly every problem faster than $\mathrm{BBK}^{*}$. As the problems were expanded, however, we see AOBB-K's performance begin to drop more rapidly than $\mathrm{BBK}^{*}$ 's. In the expanded problems, $\mathrm{AOBB}-\mathrm{K}^{*}$ was able to surpass $\mathrm{BBK}^{*}$ on four problems, but not the other eight. For the hard problems, AOBB-K ${ }^{*}$ was only able to confirm a $K^{*}$ MAP value on one problem in the allotted hour (not explicitly shown). These results are captured in Table 1 . Concrete examples can be seen in Tables 2, 3, and 4 where we can also see AOBB-K* taking advantage of $w M B E-K^{*}$, using the heuristic value when it is known to be exact rather than searching the underlying subspace (see column EH ). That being said, it is important to note that: (1) AOBB-K* finds solutions greater than that of $\mathrm{BBK}^{*}$ (which may partially account for the increased time) and (2) AOBB-K* returns intermediate anytime solutions, some of which exceeded the $K^{*}$ value returned by BBK*. Nevertheless, improving scalability is an important future direction, and potential directions illuminated by this work will be discussed in the final section.

Weighted Heuristic Search. As an initial venture into an approximate version of AOBB-K* we modified the algorithm to employ a weighted heuristic (see Tables 2, 3, $\omega=0.001$ vs. $\omega=1$ ). In nearly all cases, moving to approximate search reduced the MAP search space and thus improved the time. As would be expected however, applying a weighted heuristic did not help as much when the heuristic was particularly weak or few MAP nodes were already being searched. In some cases, it was more beneficial to spend longer computing a more accurate heuristic so that it could be taken advantage of during search when using a weighted heuristic (notice the increase in iB used for benchmark 2rl0_00008 when using $\omega=0.001$ ).

Infusing Determinism. To observe the effects of infusing determinism, we applied thresholded-underflow using a $\tau=1 \times 10^{-5}$ and compared to base problems $(\tau=0)$. In all cases, we see that the thresholded-underflows improved search times (see columns $t^{\text {search }}$ in Tables 2 and 3), sometimes so much so that the best time corresponded to allowing for a more crudely computed heuristic to enter search more quickly (notice the iB drop, yet shorter ${ }^{\text {search }}$, on benchmarks $2 \mathrm{rl0} 00000$, 2xyg_00020*, and 4wwi_00019*). Even when the same iB is used, interestingly, the speedup due to underflows does not always correspond to a reduced search of the MAP space (see OR 4wwi_00019*). Here we see that the heuristic is adversely affected by the underflow (see Section 7 ) resulting in less efficient pruning of the MAP space. Next we present initial exploration into a potential remedy.
$\mathbf{M B E}^{+}-\mathbf{K}^{*}$ and wMBE ${ }^{+} \mathbf{K}^{*}$. As described in Section 7 , bounding a ratio of functions such as $\mathrm{K}^{*}$ is especially difficult - particularly because it relies on lower-bounding, which can be especially problematic in the presence of determinism. However, in domains such as CPD where we are guaranteed non-zero solutions for the lower bounded portions, it can be safe to ignore certain tuples that correspond to zeros in computations. To empirically test the effects of such a modification, we applied $\mathrm{MBE}^{+}-\mathrm{K}^{*}$ and $w \mathrm{MBE}^{+}-\mathrm{K}^{*}$ to particularly large F 1 problems for which wMBE-K ${ }^{*}$ was unbounded (Table 4). In every case, the modified heuristics were able to provide a bounded estimate, in four of the six problems enabling AOBB-K* to find an anytime solution better than $\mathrm{BBK}^{*}$, and in two of the five problem that previously could not be solved exactly, allowing the algorithm to find a solution within the hour. As we will outline further in the conclusion, these results, motivate incorporating constraints into the heuristic evaluation and exploring new internal representations.

## 11 EXTENDED PAPER: CONCLUSION

Conclusion. In summary, this work provides (1) two distinct graphical model formulations (with strengths and weaknesses explored) for use with $\mathrm{K}^{*}$ MAP-adapted algorithms over AND/OR search spaces. (2) a new wMBE-K* heuristic and exploration into innovations to improve the quality of $\mathrm{K}^{*}$ MAP heuristic bounds by considering constraints. (3) AOBB-K* a depth-first AND/OR branch-and-bound algorithm for optimizing $\mathrm{K}^{*}$ (and an accompanying approximate $\omega$-AOBB- $\mathrm{K}^{*}$ ), that shows great promise - outperforming the state-of-the-art $\mathrm{BBK}^{*}$ on many problems - yet leaves room for advancement to address scaling to larger problems. And (4) a scheme to exploit determinism safely introducing underflows into problem formulations with theoretical guarantees, which provided significant speed-up.

As a foundation. Although it is rewarding that our algorithms and modifications performed well on modest problems, the purpose of this work is foundational and lays an initial framework from which to explore new innovations. From this initial exploration, three directions that have immediately illuminated are: (1) research into methodologies and problem representations that exploiting determinism applicable to the K*MAP task such as the work of Larkin and Dechter [2003], (2) generation of new schemes to incorporate constraints - both local and global - into the $\mathrm{K}^{*}$ heuristic or new heuristic schemes in general (such as using an alternate bucket elimination methods such as Deep Bucket Elimination Razeghi et al. [2021]), and (3) adaptation of advanced state-of-the-art mixed-inference algorithms to solving the K*MAP query, including sophisticated exact algorithms such as Recursive Best-First AND/OR Search Marinescu et al. [2018], anytime approximation schemes such as Learning Depth-First or Stochastic Best-First AND/OR Search Marinescu et al. [2018], and incorporating state-of-the-art sampling methods such as Dynamic Importance Sampling Lou et al. [2019] or Abstraction Sampling Kask et al. 2020].

More applicably, this framework can now be tuned more specifically for the protein domain by: (1) forming designs containing independencies that can be exploited by an AND/OR scheme, (2) integrating the many optimizations present in well established optimized CPD software, such as BBK* via OSPREY, and extending the complexity of problems addressed, such as to include backbone ensembles.

## References

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.
R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113:41-85, 1999.
R. Dechter and I Rish. Mini-buckets: A general scheme for approximating inference. Journal of the ACM, pages 107-153, 2002.

Rina Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan \& Claypool Publishers, 2013. doi: 10.2200/ S00529ED1V01Y201308AIM023. URL http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023

Rina Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algorithms, second edition. Synthesis Lectures on Artificial Intelligence and Machine Learning, 13:1-199, 02 2019. doi: 10.2200/ S00893ED2V01Y201901AIM041.

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial Intelligence, 171(2-3):73-106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. J. ACM, 50(2):107-153, 2003. doi: 10.1145/636865.636866. URL http://doi.acm.org/10.1145/636865.636866.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, pages 502-518, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Mark Hallen, Jeffrey Martin, Adegoke Ojewole, Jonathan Jou, Anna Lowegard, Marcel Frenkel, Pablo Gainza, Hunter Nisonoff, Aditya Mukund, Siyu Wang, Graham Holt, David Zhou, Elizabeth Dowd, and Bruce Donald. Osprey 3.0: Open-source protein redesign for you, with powerful new features. Journal of Computational Chemistry, 39, 102018. doi: 10.1002/jcc. 25522 .

Mark A. Hallen and Bruce R. Donald. Protein design by provable algorithms. Commun. ACM, 62(10):76-84, sep 2019. ISSN 0001-0782. doi: 10.1145/3338124. URL https://doi.org/10.1145/3338124.
G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge University Press, 1988. ISBN 9781107647398. URL https://books.google.com/books?id=EfvZAQAAQBAJ

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler, and Rina Dechter. Scaling up and/or abstraction sampling. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 4266-4274. International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/589. URL https://doi.org/10.24963/ijcai.2020/589. Main track.
D. Larkin and R. Dechter. Bayesian inference in the presence of determinism. AI and Statistics(AISTAT03), 2003.

Junkyu Lee, Radu Marinescu, Rina Dechter, and Alexander Ihler. From exact to anytime solutions for marginal map. AAAI' 16, page 3255-3262. AAAI Press, 2016.

Qiang Liu and Alexander Ihler. Bounding the partition function using Hölder's inequality. In International Conference on Machine Learning (ICML), pages 849-856, New York, NY, USA, June 2011. ACM.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave variational optimization with monte carlo sampling: A tale of two approximate inference paradigms. 2019.

Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander Ihler. And/or search for marginal map. J. Artif. Int. Res., 63(1): 875-921, sep 2018. ISSN 1076-9757. doi: 10.1613/jair.1.11265. URL/https://doi.org/10.1613/jair.1.11265

Adegoke Ojewole, Jonathan D. Jou, Vance G. Fowler, and Bruce Randall Donald. BBK* (Branch and Bound Over $K^{*}$ ): A provable and efficient ensemble-based protein design algorithm to optimize stability and binding affinity over large sequence spaces. J. Comput. Biol., 25(7):726-739, 2018. doi: 10.1089/cmb.2017.0267. URL https://doi.org/10.1089/cmb. 2017.0267

James D. Park. Map complexity results and approximation methods. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI'02, page 388-396, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1558608974.
J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Wei Ping, Qiang Liu, and Alexander T Ihler. Decomposition bounds for marginal MAP. In Advances in Neural Information Processing Systems 28, pages 3267-3275. Curran Associates, Inc., 2015.

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi, Sakshi Agarwal, and Rina Dechter. Deep bucket elimination. In ZhiHua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4235-4242. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/582. URL https://doi.org/10.24963/ijcai.2021/582 Main Track.

Manon Ruffini, Jelena Vucinic, Simon de Givry, George Katsirelos, Sophie Barbe, and Thomas Schiex. Guaranteed diversity and optimality in cost function network based computational protein design methods. Algorithms, 14(6), 2021. ISSN 1999-4893. URL https://www.mdpi.com/1999-4893/14/6/168.

Clement Viricel, Simon de Givry, Thomas Schiex, and Sophie Barbe. Cost function network-based design of proteinprotein interactions: predicting changes in binding affinity. Bioinformatics (Oxford, England), 34, 02 2018. doi: 10.1093/bioinformatics/bty092.

Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie Barbe, and Thomas Schiex. Positive multistate protein design. Bioinformatics (Oxford, England), 36, 06 2019. doi: 10.1093/bioinformatics/btz497.

Yichao Zhou, Yuexin Wu, and Jianyang Zeng. Computational protein design using and/or branch-and-bound search. Journal of computational biology : a journal of computational molecular cell biology, 23, 05 2016. doi: 10.1089/cmb.2015.0212.


[^0]:    ${ }^{1}$ Additional details provided in the supplemental materials

[^1]:    ${ }^{1} \mathrm{AOBB}-\mathrm{K}^{*}$ without use of a weighted heuristic and without added determinism through thresholded-underflows
    ${ }^{2}$ Additional results available in the supplementary materials.

