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Abstract

A major limiting factor in graphical model infer-
ence is the complexity of computing the partition
function. Exact message-passing algorithms such
as Bucket Elimination (BE) require exponential
memory to compute the partition function; there-
fore, approximations are necessary. In this paper,
we build upon a recently introduced methodology
called Deep Bucket Elimination (DBE) that uses
classical Neural Networks to approximate mes-
sages generated by BE for large buckets. The main
feature of our new scheme, renamed NeuroBE, is
that it customizes the architecture of the neural
networks, their learning process and in particular,
adapts the loss function to the internal form or
distribution of messages. Our experiments demon-
strate significant improvements in accuracy and
time compared with the earlier DBE scheme.

1 INTRODUCTION

Two of the critical goals of probabilistic modeling are the
compact representation of probability distributions and the
efficient computation of their marginals and modes. Proba-
bilistic graphical models, such as Markov networks [Pearl,
1988, Darwiche, 2009, Dechter, 2013] provide a framework
to represent distributions compactly as normalized products
or factors : P (X) = 1

Z

∏
α fα(Xα), where X is a set of

variables, each potential fα is a function over a subset Xα

of the variables (its scope) and Z =
∑

X

∏
α fα(Xα) is

the partition function. Computing the partition function is
exponential in the induced width of the model’s graph even
for distributions that admit a compact representation.

The partition function Z is defined by two types of oper-
ations: sums and products. It can be evaluated efficiently
if
∑

X

∏
α fα(Xα) can be reorganized using the distribu-

tive law along a variable ordering [Dechter, 2003]. This

organization can be described using buckets as data struc-
tures, one for each variable in the ordering. When a bucket
is processed, its associated variable is removed, creating a
bucket output function, also called a message, that is passed
to a subsequent bucket. The time and space complexity of
computing this function is exponential in its number of argu-
ments, called scope or the bucket’s width. Overall, Bucket
Elimination (BE) [Dechter, 1999b] is time and memory ex-
ponential in the induced-width of the model’s graph along
the ordering.

Providing good approximations to BE is important not only
because it generates an answer to a query, but primarily
because it compiles a structure and a set of messages that
can be used to answer multiple queries (e.g., the probabil-
ity of evidence for various evidence variables Darwiche
[2009]). Also, the messages can be used as building blocks
for generating heuristics for search to further improve per-
formance. We therefore consider and evaluate NeuroBE in
the context of approximate BE, generating approximation
to its messages.

Schemes that approximate BE include (weighted) mini-
bucket (WMB) [Dechter and Rish, 2003, Liu and Ihler, 2012]
and generalized belief propagation schemes [Yedidia et al.,
2000, Mateescu et al., 2010]. A recently introduced scheme,
Deep Bucket Elimination (DBE) [Razeghi et al., 2021] ap-
proximates each bucket function with a neural network (NN).
While this approach is inherently time consuming, requiring
the independent training of many NNs to solve the parti-
tion function of a single problem, it has yielded more accu-
rate approximations on several benchmarks when compared
against competing schemes. Both WMB and DBE are re-
stricted by memory. Yet the memory demanded by WMB
(notwithstanding recent work [Forouzan and Ihler, 2015])
increases exponentially with its i-bound not accommodating
refined steps of memory increase. In contrast, NN architec-
tures can grow more gradually and may facilitate a more
flexible memory-accuracy balance.
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Contributions. We present NeuroBE, a re-design of DBE,
that addresses the shortcomings of its one size fits all policy
by customizing the NN construction and training sample
size to each bucket separately, in proportion to its message
size. We also introduce a new loss function that is sensitive
to a bucket’s message distribution, also called local struc-
ture. We also provide an analysis relating the local errors to
an upper bound on the global error. In an extensive empirical
evaluation we show that NeuroBE outperforms DBE across
all benchmarks using far less resources, such as training sam-
ples and NN size, while yielding higher accuracy with less
time. We provided the source code to reproduce the results
of this paper at https://github.com/dechterlab/NeuroBE.

The paper is organized as follows. We first provide a back-
ground to BE , WMB and DBE; then we present NeuroBE;
followed by error analysis; lastly, we demonstrate the effi-
ciency of NeuroBE empirically.

Related work. As noted, approximating and bounding
Bucket Elimination has been carried out extensively over
the years for all probabilistic queries. Well known is the
Mini-Bucket Elimination scheme [Dechter and Rish, 2003]
and its variants, such as Weighted Mini-Bucket Elimination
(WMB), augmented with message-passing cost-shifting [Liu
and Ihler, 2011b].

Neural network approximation to BE was introduced in
Razeghi et al. [2021]. The idea is closest in spirit to the
Neuro-Dynamic Programming scheme as outlined in Bert-
sekas and Tsitsiklis [1996] where the cost-to-go functions
(similar to messages) generated by dynamic programming
can be approximated by NNs. This technique is also highly
related to Deep Reinforcement Learning (DRL) [Mnih et al.,
2015] where, in the absence of a model, the value function
is approximated by NNs learned from temporal trajectories.

Recently, Graph Neural Networks (GNNs) [Scarselli et al.,
2009] are used to learn messages following the message-
passing reasoning methods in graphical models [Abboud
et al., 2020, Yoon et al., 2018, Heess et al., 2013]. However,
Yoon et al. [2018], Heess et al. [2013] is restricted to small
instances (i.e., ∼40 variables) and Abboud et al. [2020]
tackles problems with a known polynomial-time approxima-
tion. GNN based methods derive a supervised end-to-end
learning algorithm, generalizing across different problem
instances. In contrast, we consider a different class of al-
gorithms, where we confine learning to within a problem
instance only.

2 BACKGROUND

A graphical model can be defined by a 3-tuple M =
(X,D,F), where X = {Xi : i ∈ V, V = {1, ..., n}} is
a set of n variables indexed by V , and D = {Di : i ∈ V } is
the set of finite domains for each Xi (i.e. each Xi can only
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(a) A primal Graph

(b) Bucket Elimination example

Figure 1: (a) A primal graph of a GM with 7 variables. (b)
Illustration of BE with an ordering A B C E D F G.

assume values in Di, and each Di is finite). Each function
fα ∈ F is defined over a subset of the variables called its
scope, Xα, where α ⊆ V are the indices of variables in
its scope, and Dα denotes the Cartesian product of their
domains so that fα : Dα → R≥ 0.

The primal graph of a graphical model associates each
variable with a node. An edge between node i and node j is
created if and only if there is a function containing Xi and
Xj in its scope. Figure 1a shows a primal graph of a graphi-
cal model with variables indexed from A to G and functions
over pairs of variables are connected by an edge. Graphical
models can be used to represent a global function, often a
probability distribution, defined by Pr(X) ∝

∏
α fα(Xα).

An important task is to compute the normalizing constant,
also known as the partition function Z =

∑
X

∏
α fα(Xα).

2.1 BUCKET ELIMINATION

Bucket Elimination (BE) [Dechter, 1999a] is a universal ex-
act algorithm for probabilistic inference. It is a variable elim-
ination algorithm that can answer a wide-range of queries,
including the partition function ranging from constraint sat-
isfaction, to pure combinatorial optimization (e.g., Most
Probable Explanation (MPE/MAP)), and weighted counting
(Partition Function, Probability of Evidence).

Given a variable ordering d, BE (presented in Algorithm
1, omitting steps 9-12) creates a bucket tree where each
node is a bucket representing a variable in the ordering d.
Figure 1b shows a bucket tree for the primal graph in Figure



1a along an ordering. Each bucket in this tree contains a
set of the model’s functions depending on the given order
of processing. For example, Bucket G in Figure 1b has
functions {f(A,G), f(F,G)}, an exhaustive set of model’s
functions with variable G in its scope. There is an arc from
a bucket, say Bc, to a parent bucket, Bp, if Xp is the latest
variable in bucket Bc’s message scope along the ordering
(constants are placed in B1). In the same example, there is
an arc from Bucket G to Bucket F.

BE performs inference along the bucket tree as a 1-iteration
message-passing algorithm (bottom-up). It processes each
bucket from leaves to the root passing messages from child
(c) to parent (p). For a child variable Xc, BE encompasses
all the functions in bucket Bc. This includes the original
functions in the graphical model as well as the messages
received by processing previous variables. It then marginal-
izes Xc out from the product of functions in Bc generating
a new, so called, bucket function or message, denoted λc→p,
or λc for short:

λc =
∑
Xc

∏
fα∈Bc

fα (1)

The λc function is placed in Bp, the bucket of Xp. Once all
the variables are processed, BE outputs all the messages and
the exact value of Z by taking the product of all the constants
present in the bucket of the first variable. We illustrate BE
message flow in our example problem in Figure 1b.

Complexity. Both the time and space complexity of BE
are exponential in the induced width, which is the size of
the largest number of variables in the scope of any mes-
sage over all buckets [Dechter, 2013]. Clearly, BE becomes
impractical if the induced width is large.

2.2 WEIGHTED MINI-BUCKET

Given a variable ordering d, Weighted Mini-Bucket (WMB)
[Dechter and Rish, 2003, Liu and Ihler, 2011b] approxi-
mates BE by partitioning each bucket Bc with high width
into several disjoint “mini-buckets” Bj

c to ensure that indi-
vidual Bj

c has low (≤ i−bound) width. The method also
assigns a weight pcj to each mini-bucket Bj

c . WMB then
eliminates the bucket’s variable X in the jth mini-bucket
Bj

c using the power sum following Holder’s inequality [Liu
and Ihler, 2011a]:

µj
c =

( ∑
X

∏
fα∈Bj

c

f
1

pcj
α

)pcj

,

and µj
c is passed to a parent bucket Bp. For example, using

an i-bound = 2 in Figure 1b, WMB approximates the exact
message λD→C(A, B, C), passed from bucket D to bucket
C, by three messages corresponding to partitioning bucket
BD into three mini-buckets each with a single function

f(A,D), f(B,D), f(C,D). Based on Holder’s inequality
[Liu and Ihler, 2011a], the exact message is bounded by the
product of the mini-bucket messages when the weights pcj’s
are non-negative and sum to one. Thus, for any i-bound
WMB generates an upper bound of the partition function.

Generally, time and accuracy in WMB increases with the
i-bound. Yet, due to memory constraints it can run with a
maximum i-bound of about 20 and therefore, the generated
bounds can be extremely loose when a problem’s induced-
width is high. Interestingly, when it is run, WMB terminates
quickly, taking a few seconds and up to a minute.

2.3 DEEP BUCKET ELIMINATION

Given a variable ordering d, Deep Bucket Elimination (DBE)
approximates each message generated in the bucket tree
whenever the scope (S) of a message is high (> i-bound)
using a neural network (NN). Following the previous ex-
ample of i-bound = 2 in Figure 1b, rather than sending the
exact message from bucket D to bucket C, DBE sends a NN
µθ,D→C(A,B,C) parameterized by θ that approximates
the exact message λD→C(A,B,C), as we elaborate next.

We use µ∗
c→p to denote the local exact message computed

using all functions in bucket c, regardless of the local func-
tions being exact or approximate (as defined by the right
side of Eq. (1)). However, if we execute exact BE, in which
case the bucket contains exact messages only, we denote the
output message as λc→p and refer to it as the global exact
message.

Let B be a bucket with width w > i-bound and µ∗(S) be
its local exact message having scope S whose size is the
bucket’s width, w. DBE constructs a fully-connected feed-
forward NN having w nodes in the input layer, followed by
L hidden layers each having h hidden nodes with ReLU
activation function. The output layer contains one node
with a real-valued output. Subsequently, DBE generates a
training set {(sn, µ∗(sn))} of size N, where sn is the nth

configuration of S , sampled uniformly at random and where
µ∗(sn) is the local exact message value defined in Eq. (1).
The NN function µθ(S) approximating µ∗(S) is trained to
minimize the mean square error loss :

L(θ) =
1

N

N∑
n=1

(
µ∗(sn)− µθ(sn)

)2
.

Once training is complete, DBE passes the trained NN, µθ

to its parent bucket.

While DBE showed superior quality of solutions compared
with WMB, its time performance was quite inferior. In par-
ticular, training each bucket message used the same fixed
architecture and the same sample size (quite large), need-
lessly resulting in a high total time. This paper is devoted



to a redesign of the algorithm, aiming to improve both time
and accuracy, as we elaborate in the following section.

3 NEUROBE

Algorithm NeuroBE advances DBE, and is described in this
section, focused on the partition function task. However,
extension to other queries is straightforward, and requires
altering only the message definition in Eq. (1) to fit the corre-
sponding task (e.g., replacing summation by maximization
in Eq. (1) for the MAP query.)

We rename DBE to NeuroBE since we use mostly shallow
neural networks (up to 2 layers). Algorithm 1 describes
NeuroBE. The algorithm first creates a bucket tree along a
given ordering (line 2). It then processes buckets one by one
along the ordering from last to first. If the current processed
bucket has width w ≤ i-bound, then the message, µ∗

c→p is
computed exactly (line 7). Otherwise, the bucket’s message
is approximated by a neural net (line 9). The message is
placed in the appropriate parent bucket in the bucket tree.
Finally, line 13 calculates the partition function using the
functions in bucket B1. Note that if a bucket contains a NN
function, then computing µ∗ (line 7 or 9) requires evaluating
the trained NN (see Algorithm 3, line 4).

The difference between NeuroBE and DBE is solely in the
individual message approximation scheme, NN-train. In
contrast to DBE, NeuroBE dynamically customizes the NN
architecture and training set size to the bucket’s message
complexity, and it modifies the loss function to depend on
the message distribution. These modifications are described
in the sequel.

Algorithm 1 NeuroBE
Input: Graphical model M = (X,D,F), Ordering d =
X1, ..., Xn

Parameters: i-bound i; #layers L; constants b, η;
Output: the partition function constant and bucket mes-
sages

1: for c in n...1 do
2: (Initialize buckets) put all unplaced functions men-

tioning Xc in Bc.
3: end for
4: for c in n...1 do
5: Let Xp be the parent variable of Xc in the bucket-tree
6: if width(Bc) < i then
7: compute µ∗

c→p ←
∑

Xc

∏
fα∈Bc

fα,
8: else
9: µθ,c→p ← NN-train

(
{fα|fα ∈ Bc}, L, b, η

)
10: end if
11: Put µ∗

c→p or µθ,c→p in Bp

12: end for
13: Ẑ =

∑
X0

∏
fα∈B1

fα

14: return Ẑ and all messages generated

Figure 2: For a bucket of width w, we illustrate a NN ar-
chitecture with L(= 2) layers and b · w hidden-units with
b ≥ 1.

NN Architecture selection. Clearly, the NN size should
depend on both the approximated function’s complexity
and, especially, its dimensionality. Since a bucket message’s
scope size is the induced-width, w, we make the number of
hidden units, h, a function of w while keeping the number
of layers, L, constant. Specifically, we use a simple function
h = b · w, where b ≥ 1 to fit the NN’s architecture to the
message size. Figure 2 is an example NN model architec-
ture with an input layer of size w and 2 hidden layers with
dimension h. Next, we provide a rule to determine sample
sizes to train a NN, depending on a notion of its complexity.

NN complexity. The notion of a Pseudo-dimension [Pol-
lard, 1984, Anthony and Bartlett, 2002] is often used to
measure the expressive power of a set of functions that
can be learned by any statistical regression algorithm. The
work in Bartlett et al. [2019] derived lower bounds to the
pseudo-dimension for NNs with ReLU activation function
(an architecture used in our work). We use the derived lower
bound to estimate the pseudo-dimension (ρ) of a NN (µθ),
having an architecture of L layers and b · w hidden units,
yielding (see Appendix for derivation):

ρ ∝ (L ∗ b ∗ w)2 log(b ∗ w). (2)

Since in our experiments, the pair (L, b) are fixed for a given
problem instance, our ρ estimate only varies with w and is
used to determine the sample complexity.

Sample Complexity. As suggested in Vapnik [1999], we
choose a sample size for training a NN, µθ, proportional to
its pseudo-dimension, Eq. (2). We therefore select a number
of samples N satisfying the expression

N = η ∗ (L ∗ b ∗ w)2 log(b ∗ w), (3)

where η is a constant allowing us to tweak N linearly. Since
the triplet (L, b, η) of a problem is fixed, the number of
samples for training, N , is a function of w only.

Sample Generation Let B be a generic bucket where
variable X is eliminated; let F be the set of functions from



Algorithm 2 generate-samples(X,F,N )
Input: X , a variable to be eliminated, F , a set of functions
over scope S ∪ {X}, N , an integer,
Output: D, a set of N samples

1: initialize D = {},
2: for i = 1..N do
3: s← sample uniformly from domain(S)
4: µ∗(s)←

∑
x

∏
f∈F f(s, x) {Eq. (1)}

5: Add (s, µ∗(s)) to D
6: Update µ∗

min, µ
∗
max

7: end for
8: Normalize D (Eq 4)
9: return D

the graphical model (initialized in line 2, Algorithm 1) as
well as messages from the previous buckets (line 11, Al-
gorithm 1) residing in B and S be the scope of the output
message function µ∗. Then, Algorithm 2 generates a dataset
D containing a given number of samples N . The algorithm
iteratively and uniformly at random, samples a configura-
tion {S = s} from the domain of S and computes the exact
local bucket function value for s using Eq 1 (lines 3,4). The
pair <s, µ∗(s)> is added to the dataset D (line 5). A nor-
malization step occurs in line 10, where each sample s is
shifted and scaled to the range [−1, 1] and µ∗(s) is shifted
and scaled to [0, 1], to accelerate training of the NN [Le Cun
et al., 1991], by:

µ∗
norm(s) =

µ∗(s)− µ∗
min

µ∗
max − µ∗

min

(4)

where µ∗
min, µ∗

max (line 6) are defined relative to the dataset
D by µ∗

min = mins∈Dµ∗(s) and µ∗
max = maxs∈Dµ∗(s).

Loss Function Algorithm DBE sampled each message in-
put configuration uniformly and uses the mean square error
loss function for training. However, it seems intuitive that
generating the samples by taking into account the message
distribution could lead to more effective training of the func-
tion. Since sampling directly from the message distribution
is hard, we instead weight each sample by an importance
weight within the loss function, described next.

Definition 1 (I.m.s.e loss). Let µθ be the NN for approxi-
mating the function µ∗

norm. Let D = DTrain be the training
set. Then, the I.m.s.e loss function for a given mini-batch,
Di ∈ D of size #Di is defined by:

LDi
(µ∗

norm, µθ) =
1

#Di

∑
s∈Di

(µ∗
norm(s)−µθ(s))

2∗W (s),

(5)
where

W (s) =
µ∗(s)∑

s′∈DTrain
µ∗(s′)

. (6)

Log transformations Usually in our experiments we ap-
ply a log transformation to the input functions, for com-
putational reasons. The algorithms presented here remain
the same; however the values µ∗, µ∗

min and µ∗
max in this

case refer to the log of the original function values. In cases
when we use the log-space computation, the weight func-
tion W (s) (Eq. 6) is not suitable. We instead use modified
importance weights,

W log(s) =
logµ∗(s)− logµ∗

min∑
s′∈DTrain

(logµ∗(s′)− logµ∗
min)

(7)

Note that the importance weight, W (s) or W log(s), are
computed in the original function space that is not normal-
ized.

MaskedNet For problems with determinism, i.e., a high
proportion of zero probability states, a fully connected feed-
forward NN was unable to correctly predict deterministic
outputs and hence Razeghi et al. [2021] used a MaskedNet.
The input configuration is sent to a fully connected layer
with a RELU activation function to obtain a feature vector.
This feature vector is then sent to two sister layers: the first
layer outputs a binary mask responsible for determining
whether the final output is zero, and the second layer is
responsible for predicting the target value of the Bucket’s
function. The activation functions of the two final layers are
the logistic function and the softplus function, respectively.
The outputs from the two sister networks are multiplied to-
gether to get the final output of the MaskedNet. The loss for
the MaskedNet in NeuroBE is thus a sum of the binary cross-
entropy loss (from the first output layer) and the proposed
I.m.s.e loss (from the second output layer). Thus when a
sample configuration s has µ∗(s) = 0, the loss becomes
the binary cross-entropy error, since W (s) = 0, following
Eq. (5) and (6).

NN-Train Algorithm 3 describes the procedure NN-Train.
Its input parameters are L, b, η where L is the number of
layers, b is a constant to determine the number of hidden
units, b · w (line 1), and η is another constant to determine
the training sample size N (line 2, Eq. (3)). A major step
occurs next where the algorithm generates a dataset D and
splits it into the training set DTrain of size N , validation
set DV al of size N/4 and testing set DTest of fixed size
(50k) (lines 3-4; see also Algorithm 2). Lines 8-12 then
describe the batch training for updating the NN parameters
θ using the I.m.s.e loss function (line 11, Eq. (5)), and the
Adam optimizer [Kingma and Ba, 2014] (line 12) with a
learning rate of 0.001 and a batch-size of 256 across all
benchmarks. At the end of each epoch, the current model
is evaluated on a holdout validation set (line 14). We evalu-
ate the early-stopping criteria (line 15), which is assigned
True when either the maximum limit #epochs is reached



Algorithm 3 NN-train(F ,X ,L,b, η, #epochs)
Input: F , a set of functions over scope S ∪ {X} where X
is to be removed, w scope size.
Parameters: L: # layers in NN, #epochs, η, b: constants
Output: µθ: NN message approximation, ϵ̂: an estimated
bucket error bound

1: #h← b ∗ w
2: N ← # training samples(w, η, L, b) {Eq. 3}
3: D ← generate-samples(X,F,N +N/4 + 50k)
4: DTrain, DV al, DTest← Split(D)
5: Initialize NN parameters θ, p=1, early-stopping← False
6: while p ≤ #epochs and ¬ early-stopping do
7: D1, .., Dk ← divide DTrain to minibatch
8: for i = 1..k do
9: Let Di = {(s, µ∗

norm)}
10: Compute {µθ(s)|s ∈ Di}
11: lossDi

← LDi
(µ∗

norm, µθ) {Eq. 5}
12: θ ← update θ by optimize(Adam, lossDi

, θ)
13: end for
14: lossDval

← LDval
(µ∗

norm, µθ) {For stop condition}
15: early-stopping← evaluate early-stopping(lossDV al

)
16: p← p+ 1
17: end while
18: Unnormalize {µθ(s), µ

∗(s)|s ∈ DTest} {Inverse of Eq.
4}

19: ϵ̂← maxs∈DTest
(logµ∗(s)− logµθ(s))

20: return µθ, ϵ̂

or the validation error increases for two consecutive epochs.
Once training is complete, we compute the maximum log
relative error between the target and NN approximated mes-
sages over a test set (lines 18-19). In the next section, we
use this maximum error to analyse the propagation of er-
ror in NeuroBE. The NN-train procedure then returns the
approximated message µθ, along with its estimated error.

Complexity. The time and space complexity for learning
a single message in NeuroBE is a function of the NN and
sample size. In contrast to DBE, here the NN and sample
sizes vary with the bucket’s width.

4 ERROR ANALYSIS

We now analyse the relationship between the local errors
contributed by each approximated message and the global
partition function error, focusing on a simple case where the
bucket tree is a chain.

Definition 2 (local and global bucket errors). Given a bucket
B, let λ be the (global) exact message generated in B, µ∗

be the (local) exact message in B at the time of message
computation, and µ = NN-train(µ∗) be its NN approxima-
tion. Then, we define the local and global log relative errors

as:
E = logµ∗ − logµ,

and,
G = log λ− logµ.

We use log relative error since it simplifies the analysis. We
now show the following relationship:

Theorem 1. Assume a bucket-chain along an ordering d,
and let Bc be a bucket along the chain at position c having
scope S of its bucket message. Let Ec(s) = logµ∗

c(s) −
logµc(s) and let ϵc = maxs∈D(S) |Ec(s)|. Then,

Gc = log λc − logµc ≤
n−c∑
k=0

ϵc+k

In particular, since λ1 = Z and µ1 = Ẑ,

G1 = logZ − log Ẑ ≤
n−1∑
k=0

ϵ1+k (8)

For the proof see the supplementary material.

5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUP

We conducted experiments comparing NeuroBE against
WMB [Dechter and Rish, 2003, Liu and Ihler, 2012] and
DBE [Razeghi et al., 2021] over several benchmarks. We
also compare the impact of the two loss functions, m.s.e
and I.m.s.e, on the performance of NeuroBE. Finally, we
illustrate how increasing sample and NN complexity impact
performance.

i-bounds. All three algorithms, WMB, DBE and NeuroBE,
use the i-bound parameter (i). As noted, in WMB higher
i-bounds lead to more accurate bounds with more time and
memory, up to their memory limit. Algorithms DBE and
NeuroBE are also observed to improve accuracy and time
with increasing i-bounds because of the reduced number of
trained buckets #NB(i). Hence, for a fair comparison we
use an i-bound of 10 for some (easy) benchmarks, while
primarily using the highest feasible i-bound of 20 dictated
by WMB’s memory bound for other (hard) benchmarks.

Benchmarks Following the example of DBE, we evalu-
ated NeuroBE on instances selected from three well-known
benchmarks from the UAI repository used in Kask et al.
[2020]: grids (vision domain), pedigree (genetic linkage
analysis) and DBNs. We targeted diverse benchmarks (in
structure and level of determinism) and aimed for different
levels of hardness. Thus, in the grids benchmark, we distin-
guish those problems that can be solved exactly, which we



(a) pedigree

(b) Grid-hard

(c) Grid-easy

(d) DBN

Figure 3: Results on performance of NeuroBE against DBE and WMB. k: domain size, #v: variables, w: induced width, #NB: number
of buckets that are trained with NNs, #h: number of hidden units per layer (reported maximum #h for NeuroBE), N : number of training
samples (reported minimum, average and maximum #N for NeuroBE), error: L1 error for referenced and estimated logZ (reported
minimum, average, and standard deviation over 5 runs for DBE and NeuroBE), time: average time taken to get the estimated error, # in
a cell denotes estimated partition function is −∞ . *Note: Here, reference logZ is approximated by Kask et al. [2020]



call “grid-easy”, from those that cannot be solved, called
“grid-hard”. We also distinguish benchmarks that possess de-
terminism, namely have a high proportion of zero probabili-
ties, since it can impact training. We randomly selected 13
instances from Grids, with easy ones (400 variables, width
20-30) and hard ones (1600 variables, width 55 or 114), 6
from pedigrees (≈800 variables, width ≈34), which posses
high level of determinism and 6 from DBNs (≈40 variables,
width ≈22), totalling 25 instances. As described in section
3, we apply log transformations to Grids and DBNs since
they have large message function values.

NN architectures and sample sizes. Through a process
of trial and error on a selected instance from each bench-
mark, we selected the parameters of the architectures and
sample sizes as follows. We selected L = 1, h = 3w,
and Navg ∈ [149k, 350k] for pedigrees; L = 2, h = 3w,
and Navg ∈ [80k, 180k] for DBN; L = 2, h = w, and
Navg ∈ [23k, 68k], for grid-easy; and L = 1, h = w, and
Navg ∈ [75k, 150k] for grid-hard.

Performance measures We evaluate the performance of
NeuroBE using: error = | loge Z − loge Ẑ| where Ẑ esti-
mates Z. When the exact Z is not available (i.e., for hard
Grid benchmark), we use Z∗ as a surrogate to Z, which is
obtained using an advanced sampling scheme for a duration
of 100 ∗ 1hr [Kask et al., 2020].

5.2 RESULTS

Figure 3 compares NeuroBE against WMB and DBE over the
four benchmarks. The first few columns show the problem
statistics for instances in the respective benchmarks (pedi-
gree, grid-hard; grid-easy and DBN). We then show results
on WMB’s error, followed by DBE’s and NeuroBE’s perfor-
mance information. We omit WMB’s time performance in
Figure 3 since its execution takes only a minute. For DBE,
we report the number of buckets trained by NNs, (#NB),
followed by the average error, minimum error, standard de-
viation, and average time (in hours) over five runs, which
is preferable due to stochasticity. For NeuroBE with both
m.s.e and I.m.s.e loss functions, we also report statistics
about NN architecture and sample size that varies within
problem instances: the average and maximum number of
training samples, Navg and Nmax, and maximum number
of hidden units, hmax.

Pedigrees We observe immediately that, overall, NeuroBE
with the I.m.s.e loss function is clearly superior to DBE
and NeuroBE with m.s.e loss. In particular, it is ≥ 5 times
more accurate than DBE for almost all instances and takes
less time, since it uses far less training samples. NeuroBE
with the I.m.s.e loss function also outperforms WMB on
most instances. NeuroBE with the m.s.e loss function is less
accurate than both WMB and DBE for most instances. It
also fails to approximate the partition function for instance

(a) pedigree

(b) Grid-hard

(c) Grid-easy

(d) DBN

Figure 4: Performance of NeuroBE when increasing # sample
&/or NN complexity. Navg: average samples, t(h): average time,
Error: global error (reported average and standard deviation over
5 runs)

5 (errors and standard deviation denoted by # in Figure 3).
Here, DBE has similar or even worse accuracy than WMB.

Grid-hard. The results for the grid-hard benchmark is
shown in Fig. 4b. We used the highest possible i-bound
of 20, and we observe that NeuroBE can achieve a far lower
average error and standard deviation and takes far less time
than WMB and DBE, particularly with the I.m.s.e loss. In
most cases, we see a reduction in time by a factor of two.
DBE outperforms WMB across all problem instances.

Grid-easy. The results for the grid-easy benchmark is shown
in Figure 4c. We used a lower i-bound of 10 to facilitate
the training of a relatively large number of buckets. As
expected, when an instance has a low induced-width and
only a small number of buckets are approximated (e.g.,
ID 2), DBE obtains high accuracy. As the induced-width
increases and more buckets are trained, NeuroBE has far
higher accuracy compared with both WMB and DBE. Both
the loss functions in NeuroBE show similar performance.



DBN We report results for the DBN benhcmark for two
i-bounds. Overall, the results are mixed. For i-bound = 20,
NeuroBE achieves a higher accuracy than DBE for half of
the instances with far less #training samples (but with more
training time). It is superior to WMB on instances 2, 3, and 5.
When comparing the two loss functions in NeuroBE, I.m.s.e
loss has better (or similar) performance for most instances.
However, WMB performs better on instance 1, 4, and 6, as
the induced-width is closer to the i-bound. For i-bound =
10, DBE and NeuroBE show better accuracy than WMB
for those three instances. DBE has better accuracy when
compared with NeuroBE, using more #training samples
(and hence, more time). NeuroBE with I.m.s.e loss is better
performing compared with m.s.e loss on most instances.
Overall, NeuroBE when trained with I.m.s.e loss takes more
time than with m.s.e loss for the same #training samples.

In summary, NeuroBE using I.m.s.e compared against DBE
is about 50% faster while also far more accurate on pedi-
grees, twice as fast and 5 to 10 fold more accurate on hard
grids. It is also faster and more accurate on easy grids and
has a mixed but still comparable performance on DBNs.

The impact of loss functions. We observe that NeuroBE
with the I.m.s.e loss shows better performance (lower av-
erage error and standard deviation) than NeuroBE with the
m.s.e loss for the pedigree instances and the majority of
DBN, grid-easy and grid-hard instances. An F-test with a
significance level of 0.05 on the two groups of partition
function estimates (each consisting of five approximations)
showed that the means are significantly different for pedi-
grees, in Figure 3(a). For the grids and DBN, there was no
statistical difference between the two means. However, by
inspection, we see a reduction in the standard deviation for
almost all instances.

Impact of architecture size. Figure 4 shows the impact of
architecture size on time and accuracy for a few problem
instances. We show results for two different NN architec-
tures and their associated sample sizes. As expected, we see
that increasing the sample and NN sizes increases both time
and accuracy for pedigrees. For grid-hard instances, we just
increased the sample sizes and kept the same architecture
having h = w. We observe that the average error is reduced,
as expected. Instances from grid-easy and DBN (except ID
2) show a similar improvement in performance with a larger
NN and training sample size. This trend illustrates that in-
creasing the size of the NN (matched by a suitable increase
in sample size), improves the accuracy of NeuroBE, at the
cost of more time and memory. A key question for future
work is how to develop a policy that can facilitate gradual
control of architecture and sample size increase to improve
performance in an anytime way.

6 CONCLUSION & FUTURE WORK

In this work, we advance the earlier theme of using Neural
Networks to approximate the class of bucket-elimination
algorithms that is at the heart to probabilistic reasoning.
NeuroBE can be viewed as a realization of Neuro-Dynamic
Programming schemes [Bertsekas and Tsitsiklis, 1996], in
the context of graphical models. That being said, it requires
the training of numerous NNs per problem instance, and
thus, the central aim of NeuroBE’s design (customizing NN
architectures, training samples, and the loss function to the
message) is to enhance efficiency and scalability of such
schemes. We presented NeuroBE and illustrated on chal-
lenging instances over three benchmarks that it can be far
more accurate and requires less time compared with Deep
Bucket Elimination (DBE). It is also superior to weighted
mini-bucket (WMB) even when provided with the highest
memory resources feasible.

Future Work. We will explore further how to improve
NeuroBE’s efficiency by customizing additional features of
a NN and its training per bucket (e.g., varying the number of
layers). We will also explore moving from training buckets
separately per single variable to training clusters of buckets
within a tree-decomposition, thus training a single function
per union of buckets [Dechter, 2013], potentially reducing
the number of trained functions at the cost of more time
for sample generation. Finally, we will explore parameter
sharing by training multiple bucket functions simultaneously
in a single problem instance and across a benchmark of
instances.
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