
Causal Inference from an EM-Learned Causal Model

Anna K. Raichev1, Jin Tian2, Rina Dechter1

1University of California, Irvine
2 Iowa State University

araichev@uci.com, jtian@iastate.edu, dechter@ics.uci.edu

Abstract

The standard approach to answering a causal query (e.g.,
P(Y|do(X)) when given a causal diagram and observational
data is to first generate an estimand, which is an expression
over the observable variables, if the query is identifiable. The
estimand is then evaluated from the observational data. In
this paper, we propose an alternative paradigm for answering
causal queries over discrete observable variables. We suggest
learning the full causal Bayesian network containing latent
variables from the observational data. Once a full model is
available, Probabilistic Graphical Model (PGM) algorithms
developed over the past three decades can be applied to answer
the causal query. We present this idea and provide analysis,
demonstrating that this approach can be far more effective than
the estimand-based approach with plug-in estimation, when
the diagram has a low treewidth. Our analysis and experiments
illustrate the potential of this approach over a collection of
synthetically generated causal models.

Introduction
Structural Causal models (SCMs) are a formal framework
for reasoning about causal knowledge in the presence of
uncertainty [20]. When the full SCM is available, it is possi-
ble to use standard probabilistic inference [6, 8] to directly
answer causal queries that evaluate how forcing some vari-
able’s assignment X = x affects another variable Y , written
as P (Y |do(X = x)). However, in practice, the full causal
model is rarely available and only a causal diagram (a di-
rected graph that captures the causal relationships of the
underlying SCM) is assumed. Causal diagrams may include
both observable variables, which can be measured from data,
and latent variables, which are unobservable and for which
data cannot be collected. Previous work has shown that if,
in addition to the diagram, we have access to data sampled
from the observational distribution, we can still answer many
causal queries or determine whether they cannot be uniquely
answered [23, 24, 21, 10].

The main approach developed in the past two decades for
answering causal queries under such assumptions is a two-
step process which we call estimand-based causal inference.
The first step is to determine if the causal query is identifiable
- ie. uniquely answerable from the model’s observable distri-
bution, and if so, construct an expression, the estimand, that
captures the answer symbolically using quantities defined

over the observed distribution only. The second step is to
estimate the estimand’s value from data sampled from this
distribution. Over the past few years a variety of estimand-
based strategies were developed using primarily statistical
estimation methods [11, 12, 13, 14, 2]. Surprisingly, even
though the graph is so central to causal models, probabilistic
graphical models (PGM) algorithms play no role in most
current causal inference approaches.

In this paper we will explore a new scheme which will open
a window for harnessing all the algorithmic power of PGMs
developed in the last four decades [6, 8, 20, 15] towards
answering causal queries, focusing on discrete Bayesian net-
works only. We will show that under certain conditions this
approach can be far more effective than the estimand-based
methodology. The idea is simple: we can first learn a full
causal Bayesian network over both observed and latent vari-
ables, and then we can apply standard PGM schemes to
answer causal queries.

A highly used learning scheme that can learn a full causal
Bayesian network containing latent variables is Expectation
Maximization (EM) [16] which learns a Bayesian network’s
parameters given the network’s underlying directed graph,
when the data has missing values (e.g., when there are latent
variables). Although not exact, EM converges to a local op-
timum of the likelihood of the data and its performance has
been shown to be good for many applications [16, 15].

The computational benefit of our approach is tied to the
complexity of the given causal graph. If the treewidth of the
causal graph is low, then this approach promises to be highly
effective, significantly more so than the estimand-based
schemes. This is because 1) The learned model promises
to be more accurate when the treewidth is low since it in-
cludes an inference step that can be evaluated exactly, 2)
the learning step can be done once, and its time complexity
amortized against answering any causal query that is identifi-
able, each being answered efficiently, and 3) the approach is
superior to estimand-based method whenever the estimand
includes summations over a large number of variables.

Example. To illustrate when the estimand approach can prove
costly on a low treewidth model, consider the model in Fig-
ure 1a. To calculate the query P (V6 | do(V0)) using the
estimand-based approach, we run the standard ID identifia-
bility algorithm [23, 21] and generate the following estimand

expression:

P (V6 | do(V0)) =
∑

V1,V2,V3,V4,V5

P (V5 | V0, V1, V2, V3, V4)

×P (V3 | V0, V1, V2)P (V1 | V0)
∑
v0

P (V6 | v0, V1, V2, V3, V4, V5)

×P (V4 | v0, V1, V2, V3)P (V2 | v0, V2)P (v0).
(1)

Estimating this expression takes time exponential in the num-
ber of observed variables [6]. On the other hand, if we learn
the full Causal Bayesian network shown in Figure 1b, then
the query P (V6 | do(V0)) becomes a standard probabilistic
query P (V6 | V0) in the truncated Bayesian network shown
in Figure 1c. We can use exact PGM algorithms, such as
bucket elimination or join-tree inference techniques, to an-
swer any such query efficiently, in time exponential in the
treewidth which is 2 in this graph.

One main challenge facing our proposed scheme is that the
domains and distributions of the latent variables are unknown
- and could be continuous or discrete. Fortunately, recent work
[32] shows that any SCM over discrete observable variables is
equivalent for answering causal queries to an SCM where all
latent variables are discrete with finite domains, and an upper
bound on the latent domain sizes is provided. In this paper, we
study models over discrete observable variables and therefore
can assume all the latent variables are discrete. However,
the upper bounds on the latent domain sizes given in [32,
Proposition 2.7] are conservative and often very large. We
instead empirically test with increasing domain sizes. Once
the latent domain sizes are fixed, we use the EM algorithm to
learn the parameters of the full causal Bayesian network for
answering causal queries.

Contributions. In this work, we will present a new general
scheme for answering causal queries over discrete causal
Bayesian networks and provide theoretical and empirical
analysis demonstrating its potential. Specifically, we provide:

1. A general scheme for computing causal queries that in-
vites the power of well-known algorithms for discrete
graphical model’s learning and inference, and focus on
the special case that utilizes EM for learning.

2. An analysis of the scheme’s theoretical properties, com-
paring to baseline standard approaches, highlighting its
challenges and benefits.

3. An empirical evaluation on a set of synthetically generated
benchmarks showing that in many cases, especially on
graphs with low treewidth, the scheme can be superior to
standard and state-of-the-art algorithms.

Related work
Earlier work that addresses the computational aspect of causal
inference falls into two main categories. The first is highly
related to our proposed approach of learning the full causal
model by EM. In recent work by Darwiche et. al [7, 5], they
first convert the causal diagram into a circuit, exploiting the
functional form of SCM mechanisms, to yield compact cir-
cuits whenever possible. Subsequently, they learn the circuit
parameters by EM and then answer the causal queries. Their

V0 V1 V2 V3 V4 V5 V6

(a) Causal diagram of chain model with 7 observable and 3 latent
variables. Dashed bidirected edges represent latent variables.

V0 V1

U0

V2 V3

U1

V4 V5

U2

V6

(b) The causal diagram in (a) with explicit latent variables.

V0 V1

U0

V2 V3

U1

V4 V5

U2

V6

(c) The truncated causal diagram after intervention do(V0).

Figure 1

work is restricted to only bi-valued variables and no empiri-
cal evaluation was provided, as far as we know. Another line
of work explores neural network approaches for counterfac-
tual inferences [27, 28]. Other related work that uses the EM
scheme is [22, 31]. In the later paper (on Causal EM), they as-
sume knowledge of the functional mechanisms in the model,
and only unknown are distributions on the latent variables
(whereas we assume knowledge of the graph only).

The second category is work with estimand-based schemes,
focusing on various estimation techniques of the estimands.
Recent work appears in Jung, Tian, and Bareinboim [11, 12,
13, 14]. Another line of work is a PAC learning analysis of
causal inference [3].

The rest of the paper is organized as follows. Section 2
provides background information and definitions, Section 3
outlines the main idea of our approach, Section 4 provides
empirical evaluation, and Section 5 concludes.

Background
Notation. Capital letters (X) represent variables and small
letters (x) represent their values. Boldfaced capital letters
(X) denote a collection of variables, |X| its cardinality,D(X)
their joint domains, and x a particular realization in that joint
domain. P (X) stands for the joint distribution over X and
P (x) represent probabilities P (X = x) of a configuration x;
similarly, notation P (Y | X) represents a set of conditional
distributions P (Y | X = x), ∀x.

Definition. [Structural Causal Model (SCM)] [20]
A structural causal model (SCM) is a 4-tuple M =
⟨U ,V ,F , P (U)⟩ where: (1) U = {U1, U2, ..., Uk} is a
set of exogenous unmeasurable latent variables; (2) V =
{V1, V2, ..., Vn} is a set of observable variables; (3) F =
{fi : Vi ∈ V } is a set of functional mechanisms fi that
each determine the value vi of their corresponding Vi as a
function of Vi’s causal parents PAi ⊆ U ∪V \Vi so that
fi : D(PAi)→ D(Vi) and vi ← fi(pai) and (4) P (U) is a
probability distribution over the exogenous variables. The ex-
ogenous variables U are assumed to be mutually independent,
i.e.,P (U) =

∏
U∈U P (U).

Causal diagrams. An SCMM can be associated with a
directed graph G = ⟨V ∪U , E⟩ called a causal diagram (also

a causal graph). Each node in the graph uniquely maps to a
variable in the SCM. Simplifying notation, we use the same
capital letters to refer both to the variables in the SCM and its
corresponding graph node in the causal diagram. There is an
arc from node X ∈ (U ∪ V) to node Vi ∈ V iff X ∈ PAi

in the graph. In other words, X is a causal parent of Vi and
thus involved in Vi’s mechanism of assignment, fi.

An SCM whose latent variables directly influence at most
a single observable variable is referred to as Markovian, and
one whose latent variables directly influence at most two
observable variables is called Semi-Markovian. It was shown
that any SCM can be transformed into an equivalent Semi-
Markovian one such that answers to causal queries are pre-
served [23]. In Markovian and semi-Markovian models it is
common to use an Acyclic Directed Mixed Graph (ADMG)
for the causal diagram where all nodes corresponding to la-
tent variables having a single child are omitted, and nodes
representing latent variables having two children are replaced
with a bidirectional dashed arc between the two children
(latent variables not explicitly shown, see Figure 1a).

Causal Bayesian Network (CBN) An SCMM induces
a CBN B = ⟨G,P⟩ specified by the causal diagram G =
⟨V ∪ U , E⟩ along with its associated conditional probabil-
ity distributions P = {P (Vi|PAi), P (U)}. The distribution
P (V ,U) factorizes according to the causal diagram by

P (V ,U) =
∏
Vj

P (Vj |PAj) ·
∏
i

P (Ui). (2)

The observational distribution P (V) is given by

P (V) =
∑
u

∏
Vj

P (Vj |PAj) · P (u) (3)

Causal effect and the truncation formula. We use
P (Y |do(X)) to denote the distributions resulting from an
intervention which fixes the value of X , and is called the
causal effect of do(X) on Y . This is in contrast to P (Y |X)
which means conditioning on an observation. It is obtained
from the original model by removing the mechanism of X
and setting the value X = x. It asserts

P (V \X,U | do(X = x)) =
∏

Vj /∈X

P (Vj |PAj)·P (U)

∣∣∣∣
X=x

(4)

Causal inference task. We study the causal inference task
of answering a causal effect query P (Y | do(X)) given a
causal diagram G = ⟨V ∪ U , E⟩ and data samples from
the observational distribution P (V). Given a causal diagram
G, the causal effect query P (Y | do(X)) is identifiable if
any two SCMs that agree on the observational distribution
P (V) also agree on P (Y | do(X)). Otherwise, the answer to
P (Y | do(X)) is not unique with respect to the observational
distribution P (V) and thus cannot be determined.

The estimand-based approach for causal inference. As
noted, the standard methodology for answering causal queries
developed and explored in the last two decades has two pri-
mary steps. The first is the identifiability step. Namely given a

causal diagram and a query P (Y | do(X)), determine if the
query is identifiable. If it is, generate an estimand which is an
algebraic expression of probabilistic quantities over observed
variables only that expresses the answer to the query. A com-
plete polynomial algorithm called ID has been developed
for this task [23, 21]. The second step is estimation. Namely
using samples from the observational distribution, evaluate
the value of the estimand.
Expectation Maximization (EM) The EM algorithm is a
well-studied learning scheme that learns Bayesian networks
when the structure of the model is known but the data has
missing values [9, 6, 15]. The EM Algorithm is a maximum
likelihood approach that works iteratively through an Expec-
tation Step (E-Step) and Maximization Step (M-Step). For
more details see [16]. The E-step is the most computationally
demanding requiring inference. When the graph has bounded
treewidth, the E-step can be accomplished by exact inference
such as the join tree scheme[16, 8]. Otherwise approximate
algorithms like belief propagation can be used [20, 17, 30].

The treewidth also known as the induced-width, is a graph
parameter that determines how close the graph is to a tree.
While it is hard to compute good bounds can be obtained[8].
Exact inference in discrete PGMs is known to be time and
space exponential in the treewidth.

Learning-Based Causal Inference
We propose to answer a query P (Y | do(X)) by first learning
(the probability parameters P of) the full CBN B = ⟨G,P⟩
given a causal diagram G = ⟨V ∪ U , E⟩ and data samples
from the observational distribution P (V), termed learning-
based approach. One immediate challenge to this approach
is unknown domains and distributions of latent U variables.
As noted earlier, we study models over discrete V variables
and can safely assume that all U variables take discrete finite
domains based on results in [32]. We investigate the impact
of latent domain sizes with the hope to empirically determine
suitable values.

Another challenge to the learning-based approach is that
there could be many parameters P producing the same ob-
servational distribution P (V). Would that be a problem for
this approach? Let B = ⟨G,P⟩ be a CBN inducing an ob-
servational distribution P (V) by Eq. (3). We say B is con-
sistent with P (V). Based on the definition, if the query
P (Y | do(X)) is identifiable from G and P (V), then all
full CBN B consistent with P (V) will give the same unique
answer to the query.

Once a full CBN B = ⟨G,P⟩ is learned, any causal query
P (Y | do(X = x)) can be answered based on Eq. (4).
Let GX denote the graph obtained by deleting all arrows
incoming to X . Let PX=x = {P (Vi|PAi), P (U)}Vi /∈X ∪
{P (X = x) = 1}. We call BX=x = ⟨GX ,PX=x⟩ a trun-
cated CBN. Formally, P (Y | do(X = x)) in B is given by
P (Y | X = x) in BX=x based on Eq. (4). Next we present
our proposed algorithm.

Algorithm EM for Causal Inference (EM4CI) is pre-
sented in Algorithm 1. Given a causal diagram G and a causal
query Q = P (Y | do(X = x)), Step 1 checks if the query is

Algorithm 1: EM4CI(khyp)

input : A causal graph G = ⟨U∪V , E⟩ over latent
U variables and discrete observables V ;
Samples from P (V);
Query Q = P (Y | do(X = x));
Hypothesized latent domain size khyp.

output :Estimated P (Y | do(X = x))

Step 1: If ¬ identifiable(G, Q), terminate.
Step 2: CBN B = ⟨G,P⟩ ← EM(G, |DU | =

khyp, Samples⟩
Step 3: Construct truncated CBN BX=x.
Step 4: return ← PGM inference(BX=x, P (Y |

X = x))

identifiable. This can be done via the well-known ID algo-
rithm [23, 21]. If the query is not identifiable, then it is not
possible to answer from observational data and we terminate.
Otherwise in Step 2, the given set of Samples from the ob-
servational distribution P (V) are used to learn a full CBN
model B. This can be accomplished by any learning scheme
that assumes a known graph and data with latent variables,
such as the EM algorithm [6, 15]. In this basic version of the
algorithm, the latent domain sizes khyp are assumed to be
given. Step 3 generates the truncated CBN BX=x, and Step
4 employs a standard PGM inference algorithm, e.g. join-
tree [6, 8], over the CBN BX=x to compute the conditional
marginal P (Y | X = x), yielding the answer.

Latent domain sizes will affect the EM algorithm’s perfor-
mance and the model learned. Theoretical upper bounds on
the domain sizes are a function of the causal diagram’s struc-
ture and the domain sizes of the observable variables and are
often very high [32]. If we assume large domain sizes, learn-
ing would be harder, thus begging the question: "How large
is large enough?". We will illustrate empirically the impact
of assumed domain sizes on model accuracy and learning
time. Yet a simple work-around we will explore is to run
our scheme iteratively for increasing values of hypothesized
latent domain sizes, and terminate once the log-likelihood of
the learned model stops increasing.

Complexity. The complexity of our approach can be an-
alyzed along its main 3 steps. Step 1 of determining identi-
fiability is polynomial in the graph size [23]. Step 2 of EM
depends on the sample size and number of iterations needed
for convergence which is hard to predict. The most exten-
sive computation in each iteration is the Expectation step
that requires probabilistic inference which can be accom-
plished in time and memory exponential in the treewidth of
the graph. Otherwise approximation algorithms such as belief
propagation are commonly used. Thus, each iteration takes
O(m·nkw), where m is the number of samples, k bounds the
domain size, and w is the treewidth. If we have T iterations
we get that the complexity of EM is O(T ·m · n · kw). Step
4 of probabilistic inference is O(n · kw) if performing exact
inference. In summary, the complexity of algorithm EM4CI
is O(T ·m · n · kw).

Table 1: Estimand Expressions for Models 1-8 in Table 2.

Model Estimate of P (Y | do(X))

1
∑

W P (X,Y |R,W)P (W)∑
W P (X|R,W)P (W)

2
∑

R P (R|X1)
∑

x1,Z
P (Y |R, x1, X2, Z)P (Z|R, x1)P (x1)

3 P (Y)
4

∑
R,S P (S|X1, X2, X3, Z)P (R|X1)

∑
x1,x3,Z

P (Y |R, x1, X2, x3, Z)P (x3|x1, X2, Z)P (x1, Z)

5
∑

Z1,Z2,Z3
P (Z3|Z2)P (Z1|X,Z2)

∑
x P (Y,Z3|x,Z1,Z2)P (x,Z2)∑
x P (Z3|x,Z1,Z2)P (x,Z2)

P (Z2)

6
∑

Z2
P (Y |X1, X2, Z2)P (Z2)

7
∑

Z2,Z3
P (Y |X1, X2, Z2, Z3)P (Z2, Z3)

8
∑

R,W,Z P (Z|R,W,X)P (R|W)
∑

x P (Y |R,W, x, Z)P (x|R,W)P (W)

Estimand-based vs. learning-based. In the estimand-
based scheme, once the estimand is generated1 we can deter-
mine its "complexity to estimate" by inspection using two
parameters. The first is the largest scope size of any function
appearing in the algebraic expression of the estimand, and
the second is the number of summation variables. The first
indicates the number of samples needed to estimate the func-
tion and the second yields computation which is exponential
in the number of summed variables. Consequently, in our
experiments we will compare to the estimand-based methods
by providing an estimate when possible, or by assessing that
the estimand cannot be estimated in a reasonable time based
on the two complexity indicators that can be determined by
inspection of the estimand expression. In the example in Fig-
ure 1, the estimand for P (V6 | do(V0)) obtained by ID shown
in Equation 1 has 5 summation variables and has a function
on all variables in the model. This pattern will persist as n in-
creases. Evaluating this expression in a brute-force way (e.g.,
by the plugin method) is not realistic, requiring many samples
and too much time (exponential in n). In contrast, since these
graphs have treewidth 2, they would be easy to learn and eval-
uate as we will illustrate in our empirical evaluation. Clearly,
the opposite situation can occur when the full CBN has a high
treewidth while the estimand expression is small and simple.
Even in the chain example, if the query is P (V6 | do(V5)) its
estimand is P (V6|do(V5)) =

∑
v4

P (V6|v4, V5)P (v4) (by
the backdoor criterion [20]) and it can be easily estimated
from empirical distributions, without the overhead of learn-
ing the full model. Thus, the idea is to apply the respective
schemes to instances that play to their strength.

Another benefit for our learning-based approach is that the
learning process, done once, can be amortized over multiple
queries. Alternatively, the estimand-based approach requires
generating and estimating a separate estimand for each query.

Empirical Evaluation
Experimental setup
The first goal of our empirical evaluation is a proof of concept
to show that our learning approach is viable for causal infer-
ence from accuracy and computational aspects. Within this
we explore different choices of hypothesized domain sizes
for the latent variables. To the extent possible we compare
against 2 estimand-based approaches: the brute-force plug-in
approach and a current state of the art, called (WERM) [12].

1We assume the standard ID algorithm with estimand simplifi-
cation add-ons [25, 26] is used to generate the estimand. We note
that, in principle, one can generate different estimands using say do-
calculus. However, no systematic algorithm is available to generate
and look for estimands that are ‘better’ for estimation purpose.

All experiments were run on a 2.66 GHz processor with 8
GB of memory.

Note that the use of EM for learning graphical models from
data with latent variables is quite abundant [15, 4, 18]. Yet
our novel contribution is in proposing this as a methodology
for causal inference (which was only sporadically explored)
and in illustrating that it is a viable approach in many cases,
as we show in this section.

Benchmarks.
The input to a causal inference algorithm is 1) a causal dia-
gram (of a full underlying SCM), 2) data from the model’s ob-
servational distribution, and 3) a query Q = P (Y | do(X)).
We generated each such triplet benchmark instance by first
choosing a causal diagram and a query. Then, subject to as-
sumptions on variables’ observed and latent domain sizes,
we generated the conditional probability tables (CPTs), one
per variable and its parents, yielding a full CBN. Given such
full models we generated samples from the observational
distribution by forward sampling [6] and then, from each
generated sample, we remove the latent variable’s values. We
also computed the exact answer to the given query over the
full CBN by an exact algorithm (e.g., the join-tree scheme
[8]), so we can compare against it in our evaluation.

Selected causal graphs. The causal diagrams for our ex-
periments were selected in two ways. First, we used a set of
9 small diagrams from the literature [20, 29, 12], 3 of which
are shown in Figure 2 (See the Supplemental for the rest).
Second, we propose three classes of graphs that can have
any number of variables n, but whose treewidth is bounded.
This is done in order to highlight the strength of our learning-
based scheme when the treewidth is bounded and small. In
particular, we have chain networks (treewidth is 2 as in Fig-
ure 1), diamond networks (treewidth 5 as in Figure 3), and
the cone-cloud networks (treewidth O(

√
n) as in Figure 4).

Domain sizes and CPTs. Since, as mentioned before, do-
main sizes of the latent variables can play an important role
in our approach, we generated a number of different mod-
els for each graph by varying the domain sizes of all the
variables. Each CPTs’ parameters were generated by sam-
pling the values for each row from a Dirichlet distribution [6],
ensuring they sum to 1. The Dirichlet distribution is parame-
terized by a vector of real values α = [α1, . . . , αn]. We chose
αi ∈ [1, 16] uniformly at random. For the small diagrams in
Figure 2 we chose domains of size d = 2 (observed variables)
and k = 10 (latent variables). For the chain, diamond, and
cone-cloud diagrams we created a set of problem instances

W

R

X Y

(a) Model 1

W

ZX Y

(b) Model 3

W

R

YZX

(c) Model 8

Figure 2: A subset of causal diagrams for models used in our
experiments. Blue variables are intervened on and red variables are
the outcome variables corresponding to the query P (Y | do(X)).

V0

V1

V2

V3

V4

V5 V6 V7 V8V9V10V11V12

V13

V14

V15

V16

Figure 3: Diamond Model: n = 17

V0

V1 V2

V3 V4 V5

V6 V7 V8 V9

V10 V11 V12 V13 V14

Figure 4: Cone Cloud Model: n = 15

having (d, k) = (2, 8), (2, 16), (4, 4), (4, 8). ((d, k) = (2, 2)
and (8, 16) are shown in the Supplemental.)

Algorithms and performance measures.
Algorithm EM4CI. We evaluated our EM4CI algorithm
(Algorithm 1) and compared against the estimand-based ap-
proaches. For learning we used the EM algorithm from the
SMILE tool: Structural Modeling, Inference, and Learning
Engine package [1], written in C++. The EM algorithm learns
the network’s parameters given the graph and data on the ob-
served variables only. In SMILE the inference in the E step
[16], which is the costly operation, is done by the join-tree al-
gorithm [19, 8, 16] which is also applied to answer P (Y | X)
over the learned model.

We evaluated the algorithm in 2 modes. The basic mode
where we run it for different assumed latent domain sizes
(khyp), and the iterated mode where we iterated EM4CI for
an increasing list of latent domain sizes, terminating when the
Log-Likelihood (LL) of the model stops increasing compared
with the previous iteration. This mode emerged as we were
experimenting, realizing that it would be hard to predict the
best latent domain sizes to choose and estimating many values
of khyp will lead to longer runs.

Esimand-based algorithms: plug-in and WERM. The
estimand-based method first generates an estimand. In the
brute-force plug-in method, estimates of the estimand are
generated from the observational data directly by comput-
ing the empirical conditional probabilities. More advanced
estimand-based algorithms were explored in recent works
focusing on statistical estimation techniques [12, 11, 13, 14].
We will compare against the state-of-the-art scheme called
WERM [12] on some models.

Performance measures. We ran our algorithm multiple
times on each problem instance and computed the mean abso-
lute deviation (mad) between the true answer (computed from
the full model) and the answer produced by the estimating al-

gorithm. The measure mad for a query P (Y | do(X = x) is
computed by averaging the mad over all single-value queries
P (Y = y | do(X = x)) for y ∈ {0, . . . , d − 1} where d is
the observed domain size. (See mean relative deviation (mrd)
in the Supplemental.) We also show the average log likeli-
hood of the learned model as computed by EM and report
average time per domain size (basic mode) or of the total
time of the iterated version.

Results
Results on small models. Results on Models 1-8 (Figure
2) are presented in Table 2 We ran EM4CI on each instance
query P (Y = y | X = x) 10 times to account for its stochas-
tic behavior and report the mean deviation, mad, and the
average time in seconds. Each problem instance was given
100 and 10,000 samples. The plug-in method was run once
since it does not change when given the same data set. See
Table 1 for the estimands expressions. We see that on 10,000
samples the mean deviation on all models tested was very
small and comparable to the estimand-based plug-in, which
is guaranteed to converge to the exact answer given enough
samples. However, on a reduced sample size of 100 samples,
EM4CI was even superior to the plug-in, maybe because
EM4CI has an advantage against the plug-in in the sizes
of the CPTs to be estimated, which only manifests itself in
small sample size situations. EM4CI was also significantly
faster than the plug-in in most cases, yet note that the plug-in
method is implemented in Python, while EM4CI is imple-
mented in C++, so a real time comparison is hard to make.
Additional domain choices yielded similar behavior on these
small models (see the Supplemental).

Results on large models. In Tables 3 and 4 we present the
results on the large models of chains, diamonds, and cone-
clouds graphs. For each graph we created several full models
by varying the domain sizes of the observed (d) and latent
variables (k). For each model and query we ran the EM4CI
algorithm using different hypothesized sizes of the latent vari-
able khyp. The estimand expressions for these models and
queries were large both in the functions size involved and in
the number of summation variables, so the estimand-based
methods are infeasible and are not reported. We performed
extensive experimentation. We report here only on a repre-
sentative subset of our experiments due to space constraints
(see the Supplemental).

Basic mode results Table 3 reports the algorithm’s per-
formance on selected sets of models from each graph type,

Table 2: Mean deviation results for EM4CI and Plug-in estimates
on P (Y = 0|do(X = 0)) with d = 2, k = 10, khyp = 16

100 Samples 10,000 Samples

EM4CI Plugin EM4CI Plugin
(Model, True Value) (mad, time(s)) (error, time(s)) (mad, time(s)) (error, time(s))

(1, 0.530) (0.0374, 0.006) (0.054, 0.108) (0.0008, 0.62) (0.0009, 1.40)
(2, 0.481) (0.0155, 0.025) (0.0708, 0.029) (0.013, 2.47) (0.0144, 0.75)
(3, 0.519) (0.022, 0.024) (0.0393, 0.016) (0.0087, 2.36) (0.01, 0.55)
(4, 0.479) (0.0186, 0.045) (0.0459, 0.041) (0.0061, 0.04) (0.0012, 1.56)
(5, 0.489) (0.0085, 0.097) (0.0123, 0.024) (0.0137, 9.49) (0.0123, 0.65)
(6, 0.422) (0.1097, 0.007) (0.2915, 0.022) (0.0193, 0.72) (0.1821,0.74)
(7, 0.559) (0.0192, 0.007) (0.0804, 0.021) (0.0007, 0.71) (0.0364, 0.73)
(8, 0.512) (0.105, 0.007) (0.0956, 0.027) (0.0049, 2.66) (0.0019, 0.61)

(a) Chain model with n = 49
(d, k) = (2, 16)

Query: P (V48|do(V0 = 1))

1,000 Samples 10,000 Samples

khyp mad avg LL time(s) mad avg LL time(s)

2 0.01196 -31047.6 0.45 0.004986 -310726 4.41
8 0.01198 -31048.6 0.55 0.004987 -310723 5.45

16 0.01199 -31048.7 0.85 0.004989 -310723 8.4
32 0.01199 -31048.7 2.06 0.004989 -310723 20.5

(b) Diamond model with n = 65
(d, k) = (4, 8)

Query: P (V64|do(V0 = 0))

1,000 Samples 10,000 Samples

khyp mad avg LL time(s) mad avg LL time(s)

2 0.02677 -82867.3 3.92 0.00587 -837197 8.2
8 0.02669 -83114 1.71 0.00586606 -837209 16.7

16 0.02669 -83114.8 15.9 0.0058661 -837210 137.4
32 0.02669 -83115 402.9 0.00586609 -837210 3794.7

(c) Cone-cloud model with n = 45
(d, k) = (2, 8)

Query: P (V0|do(V36 = 1, V44 = 1, V4 = 1))

1,000 Samples 10,000 Samples

khyp mad avg LL time(s) mad avg LL time(s)

2 0.002548 -27356.7 0.47 0.003688 -274029 4.5
8 0.002398 -27356.8 0.81 0.003709 -274027 8.15

16 0.002396 -27356.8 2.94 0.003710 -274027 29.7
32 0.002396 -27356.8 27.8 0.003711 -274027 273.6

Table 3: Each table shows results from all potential domain sizes
for one pair of observed and latent domain sizes (d, k). Here n =
|V |, d = |D(V)|, k = |D(U)| in the true model, and khyp the
hypothesized domain of the learned model. We display the mad,
calculated and averaged over the target variable’s domain. Minimum
errors and maximum log likelihoods are highlighted.

where for each instance we vary the hypothesized domain
sizes and show the accuracy and the log-likelihood results per
khyp. We show the results for two sample sizes of 1,000 and
10,000. The queries for each model type appear in the Figure
heading. Notice that each line corresponds to the average
accuracy over each of the values of the targeted variable, as
explained earlier. We clearly see that the accuracy of the algo-
rithm is very high for both sample sizes of 1,000 and 10,000
as reflected by the accuracy measure mad. As expected we
observe both higher accuracy and more time as the sample
size increases. However, we observe very little impact due to
the hypothesized domain sizes selected. In particular there
is no clear pattern on how the latent variable’s domain sizes
influence the algorithm’s query accuracy and model’s log-
likelihood. On the other hand, the choice of latent domain
sizes definitely impacted the algorithm’s execution time (see
increase in rows in the time column.)

Iterated mode results. Since choosing the appropriate
latent domain sizes is elusive, in Table 4 we now show
the results when running the algorithm in the iterated
mode. The table exposes the algorithm to more mod-
els that vary by the variable domain sizes ((d, k) ⊆
{(2, 8), (2, 16), (4, 4), (4, 8)}). We report accuracy (avg
mad) and avg LL, (which would occur at different khyp val-

(a) Chain Model with n = 49
Query for d = 2: P (V48|do(V0 = 1))
Query for d = 4:P (V48|do(V0 = 0))

1,000 Samples 10,000 Samples

d k mad avg LL time(s) mode(khyp) mad avg LL time(s) mode(khyp)

2 8 0.004622 -30876.9 1.5 2 0.003179 -309852 24.9 8,16
2 16 0.01196 -31047.6 1.5 2 0.004985 -310722 15.7 8
4 4 0.008875 -62454.9 1 2 0.003802 -626488 13.7 2,8
4 8 0.006826 -63055.9 1 2 0.001832 -633980 14.9 2

(b) Diamond Model with n = 65
Query for d = 2, 4: P (V64|do(V0 = 0))

1,000 Samples 10,000 Samples

d k mad avg LL time(s) mode(khyp) mad avg LL time(s) mode(khyp)

2 8 0.00778 -40364.6 5 2 0.00021 -112442 901.7 8
2 16 0.01578 -40935.2 5.6 2 0.00418 -409056 497.5 8
4 4 0.005213 -82377.8 2.7 2 0.00504 -834986 38.6 2
4 8 0.026772 -82867.3 2.7 2 0.00587 -837197 240.5 2

(c) Cone Cloud Model with n = 45
Query for d = 2, 4: P (V0|do(V36 = 1, V44 = 1, V4 = 1))

1,000 Samples 10,000 Samples

d k mad avg LL time(s) mode(khyp) mad avg LL time(s) mode(khyp)

2 8 0.00255 -27355.8 2.8 2,8 0.003657 -274024 24.5 2,8
2 16 0.01558 -26806.4 1.9 2 0.006846 -266517 24.4 2,8
4 4 0.01201 -55192.5 6 2 0.003809 -561970 42.4 8
4 8 0.02230 -55362 6.3 2 0.003376 -563135 37.3 8

Table 4: Results on Chain, Diamond and Cone-cloud Models from
the iterated mode of EM4CI, increasing domain sizes khyp =
{2, 8, 16, 32}. Displayed is the the highest average LL of the output
learned model, its mad, calculated and averaged over the target
variable’s domain, avg time until termination. mode(khyp) is the hy-
pothesized domain size(s) that most frequently produced the highest
log-likelihood model.

ues across the 10 runs and across different values of the target
variable). We also report the average total time at termination
and provide information on the khyp at termination.

Parts (a,b) of Table 4 show results on chains having 49
observed variables. For sample size of 1,000 the algorithm
was fast and the best performance was obtained in the first
iteration. For 10,000 samples the results are more accurate
and naturally required more time. These results are reassur-
ing but not surprising, since we expected good learning and
inference on models with small treewidth. What is notable is
that the plug-in would not produce reasonable results due to
the estimand’s complex structure as shown in Equation (1).
The results on diamonds (Table 4 c,d) had a similar pattern
to chains. We ran on models of size 65 so performance times
were higher, but accuracy was very high and often obtained
for khyp = 2 (for 1,000 samples), and sometimes at higher
latent domains sizes for 10,000 samples. We observe higher
accuracy and more time when we used 10,000 samples. Note
that, here too the estimand-based approaches (the plug-in)
are infeasible due to their highly complex expressions gener-
ated by the ID algorithm. Finally, the results on cone-cloud
(Table 4 e,f) were also highly accurate exhibiting the same
pattern of performance.

WERM comparison The results for Models 1, 8, and 3’,
comparing the WERM [12] scheme to EM4CI are presented
in Table 5. Model 3’ is the same as Model 3 in Figure
2, with edge Y → Z reversed to Z → Y to match the
hard-coded model in WERM. We used domain size d = 2,
khyp = {2, 16}, and 1,000 samples. We see that the khyp

that produced the smallest error varied between models and
number of samples used. The best results with EM4CI (with
the best khyp) provided smaller error than WERM in all cases
except for Model 1 with 10,000 samples. Yet, both schemes
are highly accurate for these small models as expected given
the number of samples for the size of the models. Notice that
EM4CI is far faster, yet WERM is implemented in R, while
EM4CI is implemented in C++. Note that we were unable to
compare with WERM on the large models for lack of general
code - the code provided is hard-coded for the given models.

Summary. Our experiments here (and more in the Sup-
plemental) demonstrated that algorithm EM4CI produced
highly accurate results on all the benchmarks in a timely
manner. The algorithm performed as well or better than
estimand-based schemes plug-in and WERM. On the cur-
rent benchmarks, hypothesized domain size choices did not
have a significant impact on accuracy of the results but im-
pacted the running time since larger domain sizes require
more time for learning the model. Granted, these models
have small treewidth favorable for the learning-based scheme.
Still, they showcase a whole class of benchmarks where stan-
dard estimand-based schemes may fail while this path will
work well.

Summary and Conclusion
The paper introduces a computational method for causal in-
ference, challenging the conventional practice of using the
estimand-based approach. Instead of estimating the estimand
of a given query from observational data, our approach learns
the entire CBN from this data. Utilizing the EM algorithm,
the EM4CI algorithm learns the model and addresses identifi-
able queries through standard PGM techniques. A key advan-
tage lies in its one-time model learning, enabling streamlined
computation of various identifiable queries. Our empirical
analysis underscores its viability; the algorithm yields highly
accurate answers surpassing current methods. In particular,
its efficiency parallels PGM’s performance when the model’s
structure has bounded treewidth. Future work includes fur-
ther exploring model selection for latent domain sizes and
exploring additional benchmarks to advance our grasp of this
approach’s scope and limitations. Our approach complements,
rather than replaces, estimand-based methods, offering an
alternative solution tailored to specific effectiveness scenar-
ios. In particular when the graph’s treewidth is too high, we
can still employ PGM’s approximation algorithms within the
learning-based approach. This introduces a nuanced trade-
off between model learning and estimand-based estimation,
offering intriguing possibilities for exploration.

Comparison between WERM and EM4CI with d = 2
Model |S| True Value WERM error time(s) EM4CI khyp = 2 error time(s) EM4CI khyp = 16 error time(s)

1 103 0.0911 0.0071 18.7 0.002 0.043 0.0091 0.068
8 103 0.6972 0.1082 25.8 0.0769 0.069 0.1747 0.56
3’ 103 0.496 0.027 27.2 0.0305 0.054 0.0114 0.427
1 104 0.0919 0.0031 32.6 0.0046 0.428 0.0034 0.655
8 104 0.699 0.11 47.7 0.0132 0.7 0.1315 5.636
3’ 104 0.491 0.001 44.1 0.0006 0.549 0.0005 4.252

Table 5: Results of absolute error on Query P (Y = 1|do(X = 1))
on Models 1, 8, & 3’ by WERM and EM4CI with khyp = {2, 16}.
Model 3’ has one edge reversed from Model 3. Number of samples
is |S|. The minimum error is highlighted.

References
[1] 2022. QGeNIe Modeler USER MANUAL.
[2] Bhattacharya, R.; Nabi, R.; and Shpitser, I. 2022. Semi-

parametric Inference For Causal Effects In Graphical
Models With Hidden Variables. Journal of Machine
Learning Research, 23: 1–76.

[3] Bhattacharyya, A.; Gayen, S.; Kandasamy, S.; Raval,
V.; and Variyam, V. N. 2022. Efficient interventional
distribution learning in the PAC framework. In Proceed-
ings of The 25th International Conference on Artificial
Intelligence and Statistics, 7531–7549.

[4] Bishop, C. M. 2007. Pattern Recognition and Machine
Learning.

[5] Chen, Y.; and Darwiche, A. 2022. On the definition and
computation of causal treewidth. In Cussens, J.; and
Zhang, K., eds., Uncertainty in Artificial Intelligence,
UAI, 2022.

[6] Darwiche, A. 2009. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

[7] Darwiche, A. 2022. Causal Inference Using Tractable
Circuits. CoRR.

[8] Dechter, R. 2013. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms. Syn-
thesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers.

[9] Dempster, L. N. R. D., A.P. 1977. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal
of the Royal Statistical Society, Series B., 39: 1–38.

[10] Huang, Y.; and Valtorta, M. 2008. On the completeness
of an identifiability algorithm for semi-markovian mod-
els. Annals of Mathematics and Artificial Intelligence,
54(4): 363–408.

[11] Jung, Y.; Tian, J.; and Bareinboim, E. 2020. Estimating
Causal Effects Using Weighting-Based Estimators. In
The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, 10186–10193.

[12] Jung, Y.; Tian, J.; and Bareinboim, E. 2020. Learn-
ing Causal Effects via Weighted Empirical Risk Min-
imization. In Larochelle, H.; Ranzato, M.; Hadsell,
R.; Balcan, M.; and Lin, H., eds., Advances in Neural
Information Processing Systems 33.

[13] Jung, Y.; Tian, J.; and Bareinboim, E. 2021. Estimat-
ing Identifiable Causal Effects on Markov Equivalence
Class through Double Machine Learning. In Meila,
M.; and Zhang, T., eds., Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021.

[14] Jung, Y.; Tian, J.; and Bareinboim, E. 2021. Estimating
Identifiable Causal Effects through Double Machine
Learning. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, 12113–12122.

[15] Koller, N., Daphne; Friedman. 2009. Probabilistic
Graphical Models. The MIT Press.

[16] Lauritzen, S. L. 1995. The EM algorithm for graphical
association models with missing data . Computational
Statistics Data Analysis, 191–201.

[17] Mateescu, R.; Kask, K.; Gogate, V.; and Dechter, R.
2010. Join-Graph Propagation Algorithms. J. Artif.
Intell. Res., 37: 279–328.

[18] McDonald, R. P.; and Algina, J. 2005. Maximum Like-
lihood Estimation in Latent Variable Models with an
EM Algorithm. Psychometrika, 70(2): 1–19.

[19] Pearl, J. 1989. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann series in representation and reasoning. Mor-
gan Kaufmann.

[20] Pearl, J. 2009. Causality: Models, Reasoning, and In-
ference. Cambridge University Press, 2nd edition.

[21] Shpitser, I.; and Pearl, J. 2006. Identification of joint in-
terventional distributions in recursive semi-Markovian
causal models. In Proceedings of the 21st AAAI Con-
ference on Artificial Intelligence, 1219.

[22] Shpitser, I.; Richardson, T. S.; and Robins, J. M. 2012.
An Efficient Algorithm for Computing Interventional
Distributions in Latent Variable Causal Models. CoRR,
abs/1202.3763.

[23] Tian, J. 2002. Studies in Causal reasoning and Learn-
ing. Ph.D. thesis, University of California, Los Angeles.

[24] Tian, J.; and Pearl, J. 2002. A General Identification
Condition for Causal Effects. In Dechter, R.; Kearns,
M. J.; and Sutton, R. S., eds., Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence
(AAAI), 567–573.

[25] Tikka, S.; and Karvanen, J. 2018. Enhancing identifica-
tion of causal effects by pruning. Journal of Machine
Learning Research, 18: 1–23.

[26] Tikka, S.; and Karvanen, J. 2018. Simplifying Proba-
bilistic Expressions in Causal Inference. J. Mach. Learn.
Res., 18: 36:1–36:30.

[27] Xia, K.; Lee, K.; Bengio, Y.; and Bareinboim, E. 2021.
The Causal-Neural Connection: Expressiveness, Learn-
ability, and Inference. In Ranzato, M.; Beygelzimer,
A.; Dauphin, Y. N.; Liang, P.; and Vaughan, J. W., eds.,
NeurIPS 34, 10823–10836.

[28] Xia, K.; Pan, Y.; and Bareinboim, E. 2022. Neural
Causal Models for Counterfactual Identification and
Estimation. CoRR, abs/2210.00035.

[29] Y. Jung, J. T.; and Bareinboim, E. 2021. Double Ma-
chine Learning Density Estimation for Local Treatment
Effects with Instruments. NeurIPS 2021.

[30] Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2000. Gen-
eralized Belief Propagation. In Leen, T. K.; Dietterich,
T. G.; and Tresp, V., eds., NIPS.

[31] Zaffalon, M.; Antonucci, A.; and Cabañas, R. 2021. EM
Based Bounding of Unidentifiable Queries in Structural
Causal Models. Why-21 workshop at NeurIPS.

[32] Zhang, J.; Tian, J.; and Bareinboim, E. 2022. Partial
Counterfactual Identification from Observational and
Experimental Data. In Chaudhuri, K.; Jegelka, S.; Song,
L.; Szepesvári, C.; Niu, G.; and Sabato, S., eds., Inter-
national Conference on Machine Learning, ICML 2022,
volume 162 of Proceedings of Machine Learning Re-
search, 26548–26558. PMLR.

