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Game theoretic modeling paradigms such as Evolutionary Games and Mean Field Games

(MFG) are used to model a variety of multi-agent systems in which the agents interact in a

game theoretic fashion. These models seek to answer two questions: how to predict the forward

dynamics of a population and how to control them. However, both modeling paradigms have

unique issues that can make them difficult to analyze in closed form when applied to spatial

domains. On one hand, spatial EGT models are difficult to evaluate mathematically and both

simulations and approximations run into accuracy and tractability issues. On the other hand,

MFG models are not typically formulated to handle domains where agents have strategies and

physical locations. Furthermore, any MFG approach for controlling strategy evolution on spatial

domains need also address the same accuracy and efficiency challenges in the evaluation of its

forward dynamics as those faced by evolutionary game approaches.

This dissertation presents a new modeling paradigm and approximation technique termed



Bayesian-MFG for large-scale multi-agent games on spatial domains. The new framework lies

at an intersection of techniques drawn from spatial evolutionary games, mean field games, and

probabilistic reasoning. First, we describe our Bayesian network approximation technique for

spatial evolutionary games to address the accuracy issues faced by lower order approximation

methods. We introduce additional algorithms used to improve the computational efficiency of

Bayesian network approximations. Alongside this, we describe our Pair-MFG model, a method

for defining pair level approximate MFG for problems with distinct strategy and spatial comp-

onents.

We combine the pair-MFG model and Bayesian network approximations into a unified

Bayesian-MFG framework. Using this framework, we present a method for incorporating Bayes-

ian network approximations into a control problem framework allowing for the derivation of more

accurate control policies when compared to existing MFG approaches. We demonstrate the ef-

fectiveness of our framework through its application to a variety of domains such as evolutionary

game theory, reaction-diffusion equations, and network security.
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Chapter 1: Introduction

In this thesis, techniques from evolutionary game theory, mean field game theory, and

probabilistic reasoning are employed to model spatial multi-agent systems. The work in this

thesis will be mainly focus on large multi-agent systems where we are not directly concerned

the individual strategy of each agent. That is to say the granularity of the model is limited to

aggregate quantities of interest. In Evolutionary Game Theory (EGT), an example of such a

quantity would be the percentage of the population that follows a given behavior or norm over

time. These population level quantities are also referred to as a mean field measure with respect to

the entire system. Mean Field Games (MFG) describe the behavior of representative agents that

interact with respect to these mean field measures. Incorporating these mean field measures is a

core concept in the development of efficient approximations for the analysis of large multi-agent

system dynamics.

This thesis advances the state of the art in evolutionary game theory by introducing a novel

probabilistic method for modeling and approximating evolutionary games. Furthermore, we de-

velop novel algorithms for increasing the effectiveness of our probabilistic method allowing for

more accurate and efficient approximations. We also introduce a novel mean field model for

spatial strategic games, first starting by modeling spatial evolutionary games. This model can

be relaxed into a control problem framework that opens up additional avenues of research into

1



controlling the outcomes of such games as well as having applications to other domains such as

reaction-diffusion equations and network security.

1.1 Motivation

Game theoretic modeling paradigms such as Evolutionary Games and Mean Field Games

are used to model a variety of multi-agent systems in which agents interact in a game theoretic

fashion. In these systems, there are typically two questions we’d like to ask:

• Prediction: Given an initial condition over a multi-agent system and known system dyna-

mics, can we predict how the population will change over time?

• Control: Given an initial condition over a multi-agent system and known system dynamics,

can we control the strategies of (some or all) of the agents in the population (directly or

indirectly) to reach some target distribution?

In terms of the prediction task, evolutionary game models have been widely used to model both

biological and cultural evolution, e.g., [1, 2, 3, 4, 5] and a variety of multi-agent systems topics

[6, 7, 8, 9, 10]. For the control task, mean field games have found widespread use in the modeling

of various optimization problems such as wireless network control [11], crowd evacuation [12],

vaccine distribution [13], and swarm robotics [14].

While both modeling paradigms have been applied to a variety of existing applications,

they both have unique issues that can make it difficult to apply them to domains where agents

have strategies and physical locations. Such domains can be described as the following two

components:

2



• strategy component: a set of options that an agent that can select that determine the actions

that the agent will take at a given time point/iteration;

• spatial component: a geometric or network location defined for each agent that determines

the strength of interactions between different agents.

There are many systems where such a separation can naturally occur. Two classic examples of

where this separation can be found is the Ising model from statistical physics and related voter

models in which agents choose one of two strategies that are distinct from their particular location

on a lattice network. Other examples of these interactions also include computer networks, social

networks, and other behavioral models.

For these domains, Mean Field Game models are useful in that they are an efficient re-

presentation of large multi-agent systems and can be solved for optimal agent behavior at equil-

ibrium. However, in general, MFG models are not formulated to deal with distinct strategy and

spatial components. For example, in some MFGs, the strategy and spatial components are equiv-

alent. The strategy in these MFGs simply describe the set of an agent’s possible movements in

the spatial domain. This disallows models of categorical behaviors in spatial games in domains

such as viral spread, computational oncology, or social networks. Other MFGs assume the pop-

ulation is well-mixed, i.e. that each player effectively interacts with the average distribution of

the population. In these well-mixed models, the spatial component is entirely missing which can

make the solutions to these games inapplicable to systems defined on networks.

In contrast to mean field games, an evolutionary game can be easily extended to be a spa-

tial evolutionary game in order to model domains with distinct strategy and spatial components.

However, these spatial evolutionary games cannot be easily evaluated. Most work on evalu-
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ating spatial evolutionary games is performed with computationally expensive simulations, an

approach that does not scale well when the spatial component of the game is defined over a large

graph. Stochastic simulations also run into issues with validation [15] and variability [16] which

make it difficult to apply them towards the analysis of many evolutionary games. For example, in

spatial evolutionary games with multiple equilibria and/or cyclic equilibria, averaging multiple

simulations may not produce meaningful representations of population behavior.

An ongoing area of research in spatial evolutionary games is then to devise a computation-

ally efficient method for approximating the behavior of these games. A well known approach is

to model the forward evolution of quantities in spatial games using a system of differential equa-

tions known as game dynamics. One such approach is pair approximation and its generalizations

(to be discussed in Chapter 2). While widely used, these models suffer from two major issues:

• In lower order models such as pair approximation, a significant amount of information can

be lost by performing moment closure at the pair level. While these models will better

approximate population behavior on networks compared to mean field approximations,

there can still be significant differences compared to ground truth simulation results. Since

the information about higher order clusters is lost, pair approximation cannot model any

impacts of longer range agent dependencies.

• Generalizations of pair approximation [Appendix C in [17]] have been developed to reduce

the approximation error in pair approximation. However, these models quickly become

computationally intractable for many applications as they scale at a complexity of O(|S|n)

where n is the configuration size and |S| is the number strategies in the model.

Better algorithms and/or models are necessary for an effective application to complex domains
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such as social modeling.

To summarize, current modeling paradigms either i) don’t directly handle domains that

have distinct strategy/spatial components directly, limiting their application to complex domains

or ii) are too expensive to evaluate directly. This thesis presents a novel efficient framework that

can handle both prediction and control tasks for these distinct strategy/spatial games.

1.2 Approach

In this thesis, we develop a unified framework for the approximation and control of large-

scale spatial games. The framework consists of two parts:

• In section 3.2, we describe Truncated Dynamic Bayesian Network Approximations (TDBNA),

a method for approximating the forward dynamics of spatial markov processes. In general,

any forward equation arising from a Markov process defined on spatial models with dis-

tinct strategy spaces (beyond just spatial evolutionary games) can be approximated using

Bayesian networks to desired accuracy by adjusting the size of the resulting TDBNA.

• In section 6.2, we describe a model that we have developed called Pair-MFG to address the

lack of spatial models with distinct strategy and spatial components in Mean Field Games.

• In chapter 7, we combine both parts into a model we call Bayesian-MFG.

By themselves, TDBNAs and Pair-MFGs still lack a few features necessary to completely

solve the problems discussed in the previous section. In particular, the larger Bayesian Networks

in a TDBNA can end up being intractable to compute if the number of strategies in the evolu-

tionary game increases. To address this, we devise a new method for computing more accurate
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approximations by using surrogate Bayesian Networks. Instead of computing inference on the

larger network directly, we perform inference on a much smaller surrogate network extended

with parameters that exploits the symmetry inherent to the domain. To learn the parameters on

the surrogate network, we treat the problem as a KL-divergence minimization problem between

the original and surrogate network. We also describe a novel algorithm for accelerating inference

on graphical models with causal independence through the use of the FFT. This algorithm can in

turn be applied to speeding up inference for TDBNAs for spatial evolutionary games, since there

is causal independence within those networks.

The Pair-MFG model still retains some of the same inaccuracy and computational effi-

ciency issues that are inherent to pair approximation/generalized n-point approximation models.

To address this, we expand upon the Pair-MFG model and introduce a Bayesian-MFG framework

to define control problems over dynamics specified by an arbitrary Truncated Dynamic Bayes-

ian Network Approximation (TDBNA). This will allow for the exploration of control policies

that better match behavior on spatial populations compared to Pair-MFG. With the additional

accuracy afforded by higher order TDBNAs, we can model a larger variety of interesting control

problems.

1.3 Thesis Outline

Chapter 2 provides background on relevant prior work on approximation spatial evolution-

ary games as well as an overview of Bayesian Networks and several probabilistic inference algor-

ithms. Chapter 3 describes our Truncated Dynamic Bayesian Network Approximation (TDBNA)

method for approximating the dynamics of spatial games. Chapter 4 describes an approximate
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inference algorithm using surrogate Bayesian networks for complex TDBNAs. Chapter 5 de-

scribes an algorithm we developed using the FFT for accelerating probabilistic inference on

graphical models with causal independence. Chapter 6 describes existing work on mean field

games and then our Pair-MFG model. We use spatial evolutionary games as a running exam-

ple for the model. Chapter 7 details the combined Bayesian-MFG framework, its relaxation to

a Bayesian-MFTC. Furthermore, Pair-MFTC and its extension Bayesian-MFTC are applied to

domains of interest such as reaction-diffusion equations and network security.
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Chapter 2: Background on Evolutionary Games and Bayesian Networks

In many situations, we want to predict the dynamics of a population. In these situations,

we assume that each member of the population possess some state. In a field like epidemiology,

this state could represent whether an individual is susceptible to infection, already infected, or

was recently vaccinated and so on. The goal of research in these fields is to predict how the

proportions of the populations with different states changes over time. Being able to predict

these dynamics also unlocks the ability to control them, which we will discuss in later chapters.

In game theoretic models, the state of an individual (or agent) corresponds to the strategy

that they are playing. Evolutionary games attempt to model the behavior of these agents subject

to some predetermined update rule. In cultural modeling, for example, an agent might have two

choices: cooperate or defect. In these models, the goal is to examine how the proportions of

cooperators and/or defectors changes over time. Much research has been devoted in developing

models that analyze how different factors promote or impede the evolution of cooperation in

populations.

One common factor that is studied is the effect of spatial structure. To examine the effect

of spatial structure, it is necessary to extend the basic evolutionary game model into a spatial

evolutionary game. Spatial models have traditionally been very difficult to analyze. In fact,

it has been shown in prior research that computing the exact answer to these questions about
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population dynamics on spatial evolutionary games is NP-hard [18] and is intractable for all but

the smallest population sizes. A central question is then what approach should be used to evaluate

the population dynamics of spatial evolutionary games over time. In practice, research involving

spatial evolutionary games for applications such as social and cultural modeling typically run

stochastic simulations of the spatial game in order to analyze them. However, there are still many

issues with this approach and it can be difficult to extract causal information which is typically

desired from these models.

An alternative to using simulations is to instead model the evolution of the population

directly using systems of differential equations commonly denoted as game dynamics. Examples

of different game dynamics include the Smith dynamics, Best Response dynamics, and Replicator

dynamics [19]. Each of these dynamics is a system of differential equations where the variables

are the proportion of the population playing a given strategy. These dynamics also assume that

the population is well-mixed, that is, the population does not have a spatial structure. Due to this,

these dynamics have a fundamental limitation when applied to spatial games. If applied directly,

these dynamics will produce erroneous results due not taking into account the influence of spatial

structure. This can be seen in many models in social modeling where the replicator equation

will predict that the population will tend towards a population full of defectors, while in practice

due to the phenomena of clustering it is possible under many circumstances for the population to

instead tend towards cooperation [20].

The error present in these dynamical models for spatial populations has led to research

towards developing more accurate dynamics. A key technique that has emerged in this research

is the technique of pair approximation. Pair approximation represents the time evolution of the

population using a system of differential equations with variables that proportion of pairs of
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agents playing a given strategy in addition to the terms present in regular dynamical equations.

The addition of these higher order terms allows for the modeling of spatial behaviors such as

clustering that is not captured by the aforementioned dynamics. Compared to game dynamics

such as replicator dynamics, which are theoretically an exact model of a well-mixed population

as the number of agents in the population tends to infinity, pair approximation is only exact

at infinity for a Bethe lattice and thus still has substantial error when modeling behavior on

structures such as networks or grids.

The focus of this chapter will be an exposition of the existing methods for approximating

spatial evolutionary games and a an overview on Bayesian Networks and methods for proba-

bilistic inference. These methods will serve as building blocks and points of comparison for the

algorithms we develop in Chapter 3 and Chapter 4.

2.1 Evolutionary Games

Evolutionary Game Theory (EGT) provides a framework for modeling the time evolution

of a population of agents that interact through strategic games whose outcome determines each

individual’s evolutionary fitness. These models disregard any game-theoretic assumptions of

rationality and instead let individuals reproduce or change strategies based on a population update

rule. More concretely, consider a population N = {1, ..., n} of agents that play an iterated stage

game over a finite time horizon t ∈ [0, ..., T ]. An evolutionary game is (S, U, F ):

• S = {s1, ..., sM}: the set of strategies where si is the i-th strategy in the in set of possible

strategies S and s(t = 0) = (s01, ..., s
0
n) denotes the initial strategy profile which is an a

strategy assignment to each agent in the population where sji denotes the strategy that the
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i-th agent in the population is playing at iteration j.

• U : SN → RN : the payoff (or utility) function that maps the strategy profile to correspond-

ing payoff values for each agent

• Pr(st+1 = s′|st = s) = F (s′, s, U(s)): an update rule that specifies the transition probabil-

ities given the current strategy assignment and payoff values.

In more complex evolutionary games, it is possible to have an action space that is separate from

the strategy space. In those games, the strategy of an agent will determine the agent’s action for

a given iteration as a function of its past actions and/or actions of other agent’s in the population.

In this section, we will only consider evolutionary games where the strategy space consists of

only strategies from the stage game. This means strategies are memoryless and it is similar to

making a Markovian assumption on the strategies of the players. Given this convention, many

evolutionary games formulate their payoffs using a two-player normal-form stage game which

can be specified as a payoff matrix P:

Table 2.1: Two-player normal-form stage game

P S1 ... Sm
S1 u11, v11 ... u1m, v1m

...
... . . . ...

Sm um1, vm1 ... umm, vmm

In a well-mixed population, each agent is equally likely to interact with any other agent in
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the population. Some common payoff functions in the well-mixed regime can be expressed as:

Stochastic Payoff : Ui(s) = P[si, sj], j ∼ uniform{1, n}

Average Payoff : Ui(s) =
1

n

n∑
j

P[si, sj] (2.1)

where the subscript of Ui(s) denotes the i-th entry of the n dimensional payoff vector U(s). The

evolutionary game then consists of two phases:

• Interaction phase: Each agent i chooses some strategy Si ∈ S and receives a payoff πi =

Ui(s).

• Update phase: A percentage of agents γ in the population use an update rule to decide

whether to change strategies or how to reproduce. There are a number of different update

rules used in EGT models. Some commonly studied update rules include the following:

– Death-Birth rule: Each agent has a non-zero chance of dying after the interaction

phase. After an agent has died, agents that have not died have a probability to re-

produce that depends on their fitness. [for a more detailed account, see the methods

section of [21]]

– Fermi rule: Each agent i compares its payoff πi from the interaction phase with the

payoff πj of a randomly chosen teacher agent and switches to the teacher’s strategy

with probability pf (πi, πj), where

pf (πi, πj) =
1

(1 + e−s(πj−πi))
(2.2)
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where s > 0 is a constant called the selection strength.

– Best response: Different from the two aforementioned rules, the agent does not use

the payoff at the current time to inform its strategy updating. Instead an agent will

evaluate:

argmax
si

π(si, (s)(t)) (2.3)

where π(si) is the payoff obtained playing strategy si versus the strategy profile of

the current population s(t).

In the evolutionary game model, the interaction and update phases are repeated iteratively until a

steady state or some predetermined time horizon is reached.

2.1.1 Microscopic vs Macroscopic

In the evolutionary game literature, there are two approaches to a model’s representation

and subsequently its evaluation:

• The Microscopic view: The model is represented using individual agents {1, ..., n} and a

strategy profile (s1, ..., sn) as described in the previous section. The model is then evaluated

using stochastic agent-based simulations.

• The Macroscopic view (also known as population model): The model is represented using

a population profile:

p = (p1, p2, p3, ..., pm) with 0 ≤ pi ≤ 1 and
m∑
i

pi = 1 (2.4)
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where pi represents the proportion of the population playing a given strategy Si ∈ S. The

evaluation is carried using the forward integration of a system of differential equations that

can be derived from a given payoff function and update rule. In the macroscopic view,

these differential equations are commonly known as game dynamics.

In some literature [22], these two approaches are also known as a node-state approach and a

global-state approach. While the macroscopic view has its own limitations that we will discuss

later, the macroscopic view has many advantages over the microscopic view in that it is much

simpler to analyze and avoids many of the problems encountered when running stochastic agent-

based simulations. A frequently used game dynamic in the macroscopic regime is the replicator

equation:

ṗi = pi[fi(p)− ϕ(x)], ϕ(x) =
n∑
j

pjfj(x) (2.5)

where fi(x) is the fitness of the strategy Si in the population and denotes the average payoff an

agent playing Si in the population would receive.

Given the assumption that agents are indistinguishable (the strategy profile s is permuta-

tion invariant), it is possible to transform a microscopic model into an asymptotically equivalent

macroscopic model through the use of the Master equation [23] (for example, the replicator

equation can be derived from a microscopic model defined using the Moran process). By asymp-

totically equivalent, we mean that as the number of agents in the model n → ∞, the behavior

of the microscopic model approaches the dynamics of the macroscopic model. In this sense, the

macroscopic model is said to be a mean-field approximation of the microscopic model, where

the mean-field is the population profile vector p.
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2.2 Spatial Evolutionary Games

An extension of evolutionary games to model a situation where the agents interact in a

structured population is a spatial evolutionary game. Agents may interact more frequently with

agents in a neighborhood around them or the utility received from their interactions may be

weighted accordingly to some network structure. This in contrast to the well-mixed regime where

agents interact with all other agents equally. These models can be useful in examining how net-

work structure influences the evolution of agent behavior. More concretely, a spatial evolutionary

game is (S, U, F,G) where

• (S, U, F ) are analogous components as those found in the well-mixed evolution game, but

the components can now also depend on a spatial structure G

• G ∈ {0, 1}N×N is a spatial or network structure that specifies the strength of interactions

between agents. For example, consider the payoff functions for the well-mixed regime in

Eq. 2.1. In the spatial evolutionary game, an example payoff function is:

Ui(s) =
n∑
j

GijP[si, sj] (2.6)

Spatial evolutionary game models have been widely used to model both biological and cultural

evolution, e.g., [1, 2, 3, 4, 5] and a variety of multi-agent systems topics [6, 7, 8, 9, 10]. Most work

on evaluating spatial evolutionary games is performed with computationally expensive simula-

tions on a microscopic model, an approach that often does not scale well for spatial structures

[24]. Other limitations on validation [15] and variability [16] make it difficult to apply simula-
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tions towards the analysis of many evolutionary games.

Due to the limitations inherent in evaluating simulations on a microscopic model, it might

seem desirable to approximate the microscopic model using a mean-field approximation like in

the well-mixed regime. Indeed such an approach has been tried in works such as [25] to compute

fixation time in a spatial populations. However, this approach can give very inaccurate results

because of two issues:

1. Using well-mixed dynamics such as the replicator dynamics or other mean-field approxim-

ations to approximate model behavior can be widely inaccurate. Spatial phenomena such

as clustering is not captured by replicator equations or other dynamics that are only defined

on the population profile p = (p1, ..., pm). Consequently, the final equilibrium proportions

reached by these well-mixed dynamics can be significantly different from the true behavior

of agents in the structured population.

2. Alternatively, it is possible to apply the Master equation directly to the microscopic model

for spatial evolutionary games. However, doing so does not produce a closed system of

equations. When applying the master equation to a spatial evolutionary game to find the

time evolution of the proportion of a strategy in the population, we arrive at equations that

depend on higher order quantities. The equations that specify the time evolution of the

proportion of agents playing each strategy pi in the population depend on the proportion of

pairs of agents pij playing different strategy pairs in the population. In turn, the equations

that specify the time of evolution of pairs pij will depend on the proportion of triples pijk.

This leads to a hierarchy of equations defined up to proportions of groups of agents the size
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of the entire population:

ṗi = F (pi, pij)

ṗij = G(pi, pij, pijk)

ṗijl = H(pi, pij, pijk, pijkl)

... (2.7)

These systems of equations are intractable to solve given a large enough population size.

Consequently, there is much work in past literature [2, 17, 26, 27, 28, 29, 30] in which higher

order proportions are approximated using lower order proportions to reduce the intractable system

of equations into something that can be computed. In general, there are two major ideas present

in approximations of spatial evolutionary games:

• Neighborhood Configurations: A key idea is to choose a selection of agents (or a selec-

tion of sites as in [17]), with these agent(s) being denoted as focal agent(s). The transition

probabilities for the focal agent or the collection of focal agents are computed by marginal-

izing over all possible assignments of neighboring agents in a given time step. An example

of how this approach works is described in a Neighborhood Configuration model [31] for

the purpose of modeling evolutionary dynamics on heterogeneous networks. In general, the

number agents selected for this focal group vary based on the approximation method being

derived. Depending on the network structure (e.g. whether it is a grid), it is also common

to see various approximations that use different local shapes of focal agent groups.

• Moment Closure: Moment closures are an approximation technique that is frequently
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used in modeling systems of interacting particles/agents. Essentially, the idea boils down

to closing intractable systems of equations by approximating higher order moments with

a function of lower order moments. In the domain of spatial evolutionary games, a prob-

ability distribution over k agents can be considered a k-th order moment. In mean field

approximations for spatial evolutionary games, the system is closed with first order mo-

ments and in pair approximation, which we will discuss in the following section, is closed

with second order moments. Higher order moment closures such as triplet approximations

or n-point approximations have also been considered [17]. It is mentioned in [32] that it

is non-trivial to choose what moments to keep. Existing mean-field/pair/n-point approxim-

ation techniques choose a static set of moments to compute over time and they are typically

defined over the entire set of k-th order moments for the order k the system is closed at.

2.2.1 Pair Approximation

Pair approximation is a well known approximation technique in the literature on spatial

evolutionary games. A type of moment closure approximation, pair approximation was first

described by Matsuda et al. for a spatial Lotka-Volterra model in [33], and subsequently has

been widely used [34] [29] [31] [2] [35] to study the structural effects of spatial networks on the

evolution of population behavior.

In pair approximation, the time evolution of the population is modeled using a set of dif-
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ferential equations that use global (pi) and local (pij) density terms:

ṗi = F1(pi, pij)

ṗij = F2(pi, pij) (2.8)

The functions are best expressed as summations over configurations cf of neighborhood strategy

assignments (neighborhood configurations). More concretely, for an arbitrary agent x and its

neighborhood {1, . . . , N}, a configuration cf = {s1, . . . , sN} denotes the assignment of strategies

to all neighbors of the agent x. Using the master equation, we have:

ṗi =
∑

cf

[∑
j∈S

Pcf(j)P (j→ i, cf)− Pcf(i)P (i→ j | cf)

]

P (i→ j | cf) = P
(
x(t+ 1)=xj | x(t)=xi, cf

)
(2.9)

where an update rule (see section 2.1) is used to calculate the probability of an arbitrary agent

changing its strategy conditioned on its local neighborhood. The key idea in pair approximation

is the method for evaluating Pcf in Eq. 2.9. The true value of Pcf is a joint distribution over N vari-

ables comprising the neighborhood of an arbitrary agent x. For a configuration cf = {s1, . . . , sN},

this is the probability P (s1, . . . , sN). In pair approximation, we approximate this probability us-

ing first and second order terms. For example, one possible second order approximation is:

P (cf) = P (s1, . . . , sN) = ps2|s1ps3|s1 . . . , psN |s1ps1 (2.10)

Outside of evolutionary dynamics, pair approximation can also be found in various app-
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lications such as voter models [36] and SIR/S dynamics [37] [38] [39]. As mentioned in the

introduction, the naive application of pair approximation can encounter noticeable accuracy is-

sues on several network structures. More concretely, pair approximation is formulated to be exact

on Bethe lattices where the distribution of the neighboring nodes of a focal node can be assumed

to be independent of each other. Approximation error is introduced when pair approximation

is applied on graphs that possess cycles and the strategy distributions of neighboring nodes are

no longer independent. The presence of cycles magnify the effect of longer range correlations

which are not modeled in pair approximation. Extensions such as generalized n-point approx-

imation (which is essentially a higher order moment closure) discussed in [17] have been created

to address these issues but this extended approximation method can become quickly intractable

as the number of strategies increases. It is important to note that all of these pair approximation

methods are solely designed to approximate the forward time evolution of quantities of interest

and there is lack of research on the control of these types of models. This will serve as a basic

motivation for our work on Pair-MFG in later chapters.

2.3 Bayesian Networks

A Bayesian Network is a graphical model (X,D, F ), consisting of a discrete variable set

X = {X1, X2, . . . , XN}, a set of corresponding domains: D = {DX1 , DX2 , . . . , DXN
} with

xi ∈ DXi
,∀i, and a set of parent functions F = {F1, F2, . . . , FN}. Each Xi is associated with a

parent function Fi = P (Xi | pai) where pai is the set of parent variables of Xi. The conditional

probability functions Fi’s are typically specified in a tabular format (CPTs).

Bayesian Networks are useful for modeling probabilistic distributions through an efficient
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Figure 2.1: Example Bayesian Network with 4 variables (left) and example CPT for variable C
(right)

representation of conditional independence. There are many existing algorithms for inference

such as determining P (A|B) in Fig. 2.1. Exact inference on Bayesian Network is typically done

using bucket elimination (aka variable elimination) [40, 41]. However, there are also many other

alternative approaches such as clique/junction tree, model counting/search, and hybrid condition-

ing approaches [41, 42, 43, 44, 45] that can be used to perform exact inference .

Many approximate inference techniques also exist, of which some are deterministic such

as Weighted Mini-Bucket Elimination (WMBE) [46] and some which are stochastic such as Ab-

straction Sampling [47, 48]. These networks and automatic inference algorithms form the basis

for our approach for approximating the time evolution of spatial evolutionary games which we

will discuss in Section 3.2.

2.3.1 Dynamic Bayesian Network

A Dynamic Bayesian Network (DBN) [42] is a time-dependent Bayesian network over

variables with a Markov assumption. Because of the Markov assumption, variables in the DBN

at time t+ 1 from the same or previous time step. Thus, the network can be represented as a two

time-slice network as seen in Fig. 2.2 with an initial distribution. DBNs are commonly used to
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Figure 2.2: Example Dynamic Bayesian Network with 3 variables

model dynamical systems and we will apply this property later in our approximation approach.

2.3.2 Probabilistic Inference Algorithms

We will give a brief overview of different probabilistic inference algorithms that will be

mentioned or compared against later. In the subsequent sections, one of the tasks that we are

interested in is computing the marginal probability of some variable or the conditional probability

distribution of a variable given an assignment to another variable. Given a Bayesian network with

variables {X1, ..., XN}, the task is to compute P (Xi = s),∀s in its domain for some variables

Xi.

One common method for computing this marginal distributions involves computing a norm-

alization constant known as the partition function:

Z =
∑
x

∏
i

Fi(x) (2.11)

where the
∑

x refers to a summation over all possible configurations of the variables in the model.
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We can also define the partition function conditioned on certain variable assignments:

Z(X1 = s) =
∑

x|Xi=s

∏
i

Fi(x) (2.12)

where the summation is over all configurations where Xi = s. In inference benchmarks, cond-

itioned variables are termed evidence. To compute the marginal probability of a variable we can

simply compute Z(Xi = s)/Z. One of the benefits of working with Bayesian networks is that

we know that the partition function Z = 1 and so we can just compute P (Xi = s) = Z(Xi = s).

Notice that to compute the partition function using the above equations, it would be necess-

ary to enumerate through all possible variable configurations. This is clearly exponential in the

number of variables in our network. For the purpose of this discussion, we will treat inference

methods as algorithms for computing the partition function.

2.3.2.1 Bucket Elimination

Bucket Elimination (BE) [49], also known as variable elimination, is an exact algorithm for

probabilistic inference. The key idea behind bucket elimination is to compute quantities such as

the partition function by eliminating one variable at a time. To perform BE, it is first necessary

to define an ordering o over the variables in the graphical model. Each variable is then associated

with a set of functions or a bucket Bi. We place Fj into the bucket Bi corresponding to the

variable Xi in the scope of Fj , Sj with the highest ordering.

After we have filled the buckets with the functions of the graphical model, we process each

bucket one by one along the variable ordering o we chose earlier from last to first. To process a

bucket, we compute a new function with a scope that is the union of the scopes of all functions
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in the bucket SBi
=

⋃
Fj∈Bi

Sj is:

λBi
: SBi

\ {Xi} → R, λBi
=

∑
Xi

∏
Fj∈Bi

Fj (2.13)

This new function is also commonly called a message. It is usually necessary to enumerate all

configurations of the variables in SBi
to compute the values of this new function.

After the computation, we then place the function λBi
into the bucket corresponding to the

variable in the scope SBi
\ {Xi} with the highest ordering. Placing the function λBi

into the

later bucket is also called a message passing operation. If the function’s scope is empty, the λBi

function is actually a constant value and we place the value into the last bucket. If the variable

Xi for Bi is actually an evidence variable with an assignment s, we can skip computing λBi
and

instead just reduce each function: Fj : Sj → R becomes F ′
j : Sj Xi → R with F ′

j = Fj(Xi = s).

We then pass these reduced functions into later buckets following the same conventions as before.

The final computation performed in the last bucket will return a constant value and this

will be the value of the partition function of the graphical model. Notice that the time and space

complexity of this algorithm is dependent on the size of the largest scope SBi
we need to compute

a new function over. This size corresponds to the induced-width of the graphical model with the

ordering o we chose.

2.3.2.2 Mini-Bucket Elimination

Instead of an exact answer, we might be wiling to settle for an upper or lower bound on

the result of our Bucket Elimination algorithm. In Mini-Bucket Elimination (MBE) [50], we can

do this by separating a bucket Bi into individual mini-buckets. Given a predetermined integer
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parameter ibound, we separate the functions Fj ∈ Bi in to smaller mini-buckets such that the

scope of each mini-bucket does not have more variables than the ibound. We perform the same

message passing operation for each mini-bucket as in Bucket Elimination for all buckets except

for one arbitrarily chosen bucket. In this arbitrarily chosen mini-bucket we instead compute:

λMBi
: SMBi

\ {Xi} → R, λMBi
= max

Xi

∏
Fj∈MBi

Fj (2.14)

instead of the summation operation from earlier. This will ensure that we get an upper bound as

the final result from the algorithm. If we want a lower bound, we can simply take the min instead

of the max. Compared to Bucket Elimination, the computations performed in computing the

message functions are limited in complexity by the ibound. MBE is the exponential in the size of

the ibound and we can manually adjust the parameter to control a tradeoff between accuracy and

time/space complexity.

2.3.2.3 Weighted Mini-Bucket Elimination

In Weighted Mini-Bucket Elimination (WMBE) [46], we replace the summation and max

computations in MBE with a power sum. Given a bucket Bi separated into M mini-buckets

MBj , we compute the message for each mini-bucket as:

λMBi
=

∑
Xi

∏
Fj∈MBi

F
1
pj

j

pj

(2.15)

where pj are real weights such that pj > 0 and
∑

j pj = 1. This computation uses Holder’s

inequality to ensure that the computation results in an upper bound. It is possible to improve the
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bounds using a technique called cost shifting and running weight optimization on the pj’s (see

[46]). For the purpose of this work, all WMBE computations will just use equal weights, so pj is

1/(number of mini-buckets).

2.3.2.4 Monte Carlo Methods

Monte Carlo (MC) methods form another paradigm for probabilistic inference. In general,

MC methods are used to estimate the expected value of a function u(x) over a distribution p(x):

Ep[u(x)] ≈
1

L

L∑
i=1

u(xi), xi ∼ p(x) (2.16)

where {xi}Li are L independent samples drawn from the target distribution p(x). Depending on

the u(x) and p(x) chosen, MC methods can be used to perform various probabilistic inference

tasks such as estimating the partition function [51].

For example, we can estimate marginal (and joint) probabilities such as P (Xi = s) on a

Bayesian network using MC directly through forward sampling [42]. On a Bayesian network, full

samples of the network (a configuration of all the variables) can be generated through an iterative

process by individually sampling variable assignments xi ∼ P (Xi|pai) along the network from

parents to children variables. To compute P (Xi = s) = Ep[u(x)], we can use the following

indicator function:

u(xi) =


1, xi consistent with (Xi = s)

0, else

(2.17)
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2.3.2.5 Importance Sampling

In many cases, it may be difficult to generate samples directly from the target distribut-

ion p(x) or the samples generated may have high variance. For example, there can be config-

urations in p(x) with a high value of u(x) but a very low probability, which is often true in

multi-dimensional distributions. One way to reduce variance in MC samples is to use Impor-

tance Sampling (IS) [42]. Instead of sampling directly from p(x), we sample from a proposal

distribution q(x) and compute:

Ep[u(x)] ≈
1

L

L∑
i=1

u(xi)w(xi), w(xi) =
p(xi)

q(xi)
, xi ∼ q(x) (2.18)

where w(xi) is called the importance weight. Depending on the proposal distribution q(x) cho-

sen, it can be possible to greatly reduce the variance of final estimate. There is a great deal of

research that investigate extensions to IS for the task of estimating the partition function. We will

focus mainly on Abstraction Sampling, an extension of IS that has been shown to be competitive

with many state of the art methods for probabilistic inference on various inference benchmarks.

2.3.2.6 Abstraction Sampling

Abstraction Sampling (AS) is an approximate method for probabilistic inference that gen-

erates samples or probes which can be used to compute estimates of the partition function of

a graphical model. The method can be seen as an extension of importance sampling inspired

by the concept of abstractions in automated planning and is also similar to stratified importance

sampling, a variance reduction technique in which the sample space is split into distinct groups.
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In order to perform Abstraction Sampling, it is first necessary to define an AND/OR search space

that corresponds the graphical model we want to perform inference on.

A graphical model can be transformed into alternative representations known as OR and

AND/OR search spaces [45]. For the purpose of this discussion, we will focus on simple OR-

trees. Given a variable ordering o = (X1, X2, ..., XN), let the root of the search tree be a dummy

node. Each level i in the search tree corresponds to variable Xi ∈ o. Each node nXi
in level

i corresponds to a configuration to all variables up to Xi, X→i. The edges of the search tree

are weighted such that each edge into nXi
has a weight c(nXi

) =
∏

Fi∈F |XFi
⊆X→i

F (nxi
). We

define the value of a node nXi
, Z(nXi

) to be the partition function of the rooted search tree where

ch(nXi
) is the set of children of the node nXi

in the rooted search tree. It is easy to see that Z

obeys that following recursive relation:

Z(nXi
) =

∑
nXj

∈ch(nXi
)

c(nXi
)Z(nXj

) (2.19)

It is known that different nodes in the search tree may root the same subtree and thus have

the same value. Identifying all such nodes is hard but the configuration of a node’s context,

a subset of the preceding variables in the ordering, can help identify such equivalent subtrees.

Given an ordering o, the context of variable Xi, C(Xi) are the variables in o that precede it and

whose assignments cause the conditional independence where {Xi, Xi+1, ..., XN} is independent

from the set o \C(Xi) conditioned on C(Xi). It can be shown that the configuration over C(Xi)

uniquely determines the value of the subtree rooted at nXi
[45]. The partition function of the

graphical model M can be computed as Z = Z(root) of the corresponding OR-tree search space

[45].
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2.3.2.7 Abstraction Sampling Algorithm

Let So = (X,E) be the full search tree generated from variable ordering o on a graphical

model M . A probe S
′
o is a subtree of So such that it includes the root of So. Let d be a constant

denoting the number of abstract states, A = {1, 2, . . . , d}. Let ch(S ′i
o ) be the not yet expanded to

children of each node nXi
∈ S

′i
o . We define an abstraction function a : (M,S

′i
o )→ A|ch(S′i

o )| as a

mapping of each child node n ∈ ch(S
′i
o ) to their respective abstract state.

RandCB is an abstraction function introduced by Broka et al. [47]. With a random integer

kXi
∈ {1, ..., K} associated with each Xi (K is a provided parameter), we map each node n ∈

ch(S
′i
o ) to the state a(n) = [

∑
Xj∈C(X(i+1))

kXj
xj] mod d where xj is the value for Xj in the

configuration corresponding to node n.

In Abstraction Sampling, to generate a probe S ′
o, we perform the following steps iteratively

starting from S
′0
o which only includes a dummy root node.

1. Partition ch(S
′i
o ) into abstract states using an abstraction function a.

2. Sample a representative node from each non-empty abstract state Ai ∈ A with probability:

p(n) =
w(n)g(n)h(n)∑

m∈Ai w(m)g(m)h(m)
(2.20)

for each node n ∈ Ai, where g(n) is the product of all c(n) in the path from n to the

root, h(n) is a heuristic estimate of Z(n) normally computed using weighted mini-bucket

elimination [46], and w(n) is the importance weight associated with node n (see [48] for

more details).
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Figure 2.3: Example single step in the abstraction sampling process from a partial probe S
′2
o at

t = 2 to a partial probe S
′3
o at t = 3. The next set of frontier nodes ch(S

′2
o ) is partitioned into

three abstract states (represented with different colors) using F , then a single representative is
sampled from each state and used to extend the probe to the next level.

3. Extend S
′i
o to S

′(i+1)
o by adding the selected representative nodes.

It is possible to terminate this process early if we know heuristic h(nXi
) is exact and set the value

Z(nXi
) = h(nXi

). An example of this step by step process is shown in Fig. 2.3.

Given the fully expanded S
′N
o , we prune the probe recursively such that all leaves not

located at the lowest level N are removed, creating the final pruned probe S
′
o. The Z-estimate of

S
′
o denoted Z ′(S

′
o) is defined by:

Z ′(S
′

o) = Z ′(nX0), Z ′(nXi
) =

∑
nAi

∈ch′(nVi
)

c(nAi
) · Z ′(nAi

)
wnAi

wnXi

, Z ′(nXN
) = 1 (2.21)

where ch′(nXi
) denotes the children of nXi

in the pruned tree S
′
o. The output of Abstraction

Sampling is the Monte Carlo estimate obtained from the average of the individual Z-estimates

from sampled probes generated by the above process.
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Chapter 3: Approximation Methods for Spatial Evolutionary Games

In this chapter, we will describe our novel method for approximating spatial games using

Dynamic Bayesian Network Approximations. As mentioned in Chapter 2, existing approxim-

ation techniques such as pair approximation can lack accuracy when applied to games on net-

works. This leads us to the new method that we have developed for approximating the dynamics

of spatial evolutionary games. By employing dynamic Bayesian networks as a building block, we

design an iterative method for approximating spatial games that generalizes pair approximation

and can be easily adjusted to produce more accurate approximations of spatial games.

We will start off with a description of our exact our Dynamic Bayesian Network (DBN)

model that captures a given spatial evolutionary game, followed by our Truncated Dynamic

Bayesian Network Approximation (TDBNA) algorithm for query processing. In Section 3.2.5,

we will show how a special case of our approximation algorithm coincides with the pair app-

roximation technique from evolutionary game theory [2] and in Section 3.3. we will show some

empirical results demonstrating the effectiveness of our method in approximating the behavior of

spatial evolutionary games.
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3.1 Dynamic Bayesian Networks for Spatial Evolutionary Games

In this section, we define a Dynamic Bayesian Network model that fully captures a spatial

evolutionary game. For our example, we will model the stochastic spatial evolutionary game

using the parameters listed in Table 3.1. The chosen game is a two strategy game with a payoff

matrix that is based on the prisoner’s dilemma using the synchronous (γ = 1.0) Fermi-rule.

Given an evolutionary game, we define a Dynamic Bayesian Network M = (X(t), D(t),

F (t)), where the variable set X is split into two sets of variables X = A ∪ Pay at each iteration.

• Ai,j(t) ∈ A: Each of these variables represents the strategy of the agent placed at location

(i, j) on the grid at the start of each iteration t and its values are the strategy set S.

• Payi,j(t) ∈ Pay: Each of these variables represent the payoff received by the agent at

(i, j) during the interaction phase. The domain of these variables consists of all possible

payoff values.

Each Xi is also associated with a parent function F (t)i = Pr(Xi | Pai) where Pai is the set of

parent variables of xi. Next we will define these functions F (t)i as Conditional Probability Tables

Table 3.1: Spatial Evolutionary Game Parameters

Parameter Value

Graph Type Grid
Graph Degree d = 4 (von Neumann neighborhood)
Update Rule Fermi Rule
Update Percentage γ = 1.0
Selection Strength s = 5/3
Mutation Rate µ = 0.05
Strategies S = {C,D}

Payoff Matrix Pay =

(
2 −1
3 0

)
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(CPTs) for the payoff nodes and the strategy nodes at time t+ 1. In the following discussion we

will interchange the terms ”nodes” and ”variables”.

The network can be seen in Figure 3.1, which displays a subset of the full network that

contains all of the immediate parents of A1,1(t + 1). Several of the parent nodes Ak,l(t) of the

payoff nodes have been omitted in this cross-sectional view.

3.1.1 CPT for Payoff Nodes

Each node Payi,j(t) has d+1 parents: Ai,j(t) and its d neighbors. The conditional probab-

ility function P (Payi,j(t) | parents) is constructed as a logical function using the payoff matrix

P. We define N(Ai,j(t)) to be the neighborhood of Ai,j(t) in the spatial evolutionary game. Then

we have:

Pr(Payi,j(t) | Ai,j(t), N(Ai,j(t))) =


1 if Payi,j(t) =

∑
Ak,l(t)∈N(Ai,j(t))

U[Ai,j(t), Ak,l(t)]

0 otherwise

(3.1)

where U is the utility/payoff function from the evolutionary game.

3.1.2 CPT for t+1 Strategy Variables

As can be seen in Fig. 3.1, each Ai,j(t+1) has 2(d+1) parents: Ai,j(t), Payi,j(t) and the A(t) and

Pay(t) nodes for each of the d neighbors of Ai,j(t). We will now define Pr(Ai,j(t+1) | parents).

Recall that during the update phase of the evolutionary game, a percentage γ of agents are chosen

for updating. Each such agent chooses a random neighbor from its d neighbors to compare its
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Figure 3.1: Slice of Dynamic Bayesian Network for the Fermi update rule centered at the agent
located at position (1,1)
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Figure 3.2: Upper part of the decision tree for t+1 variables

Figure 3.3: Cross section of (mut = no) branch
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payoffs with. Given a random neighbor Ak,l(t), Ai,j(t) has a pf (Payi,j(t), Payk,l(t)) (from Eq.

2.2) chance of copying the strategy of A(t)k,l. Additionally, independently from the Fermi rule,

each agent has µ probability of mutating to a random strategy. Conditioning on the value of each

of these independent events, we can describe our transition probability on a case by case basis

using a decision tree, as described in [52]. We define the following three additional variables to

represent events in the decision tree:

• update: is the node within the fraction γ of the population chosen for updating?

• mut: did a mutation event happen?

• rand: which neighbor did the node choose to compare its payoff with?

The decision tree can be seen in Fig. 3.2 and Fig. 3.3 where circular nodes denote variables and

square nodes denote the value of the variable. The decision tree specifies the context independent

paths that make up the CPT for Ai,j(t+ 1).

In the case where a node is chosen for updating and mutation does not happen, the final

probability must be conditioned on the path chosen. In Fig. 3.3 we have branches of the variable

rand where Ai,j chooses different neighbors Anei to compare its payoff to. For each neighbor

Anei , the probability of the bottom edges of Fig. 3.3 is:

P (Aij(t+ 1) = Anei(t)) = pf (Payi,j(t), Paynei(t))

P (Aij(t+ 1) = Ai,j(t)) = 1− pf (Payi,j(t), Paynei(t))

P (Aij(t+ 1) = other) = 0 (3.2)

An explicit representation for P (Ai,j(t + 1) = st+1 | Ai,j(t) = st, other parents) can also
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be obtained1. For notation purposes, we use indicator functions to define the following quantities:

pδ = 1Ai,j(t+1)=Ak,l(t)

p∅ = 1Ai,j(t+1)=Ai,j(t)

Following a case by case breakdown, we can then write:

Pr(Ai,j(t+ 1) = st+1 | Ai,j(t) = st, other parents)

= (1− γ)p∅ + γ
[ µ

|S|
+ (1− µ)

∑
Ak,l(t)∈N(Ai,j(t))

1

d
pf (k, l)pδ(1− p∅) + p∅

]
(3.3)

where pf (k, l) = pf (Pay(t)i,j, Pay(t)k,l) and µ, γ are parameters taken from the evolutionary

game.

Algorithm 1: Dynamic Bayesian Network for Spatial Evolutionary Game
Input: Spatial evolutionary game (S, U, F,G), agents [X1, ..., XN ], inital distribution
psi(0)
Output: Dynamic Bayesian Network M = (X,D, F ′)

1 A← {X1, ..., XN} ;
2 Pay ← {Pay1, ..., PayN} ;
3 X ← A ∪ Pay ;
4 DA ← S ; // Domain for agent variables
5 DP ← all possible payoff values in U ; // Domain for payoff variables
6 D ← DA ∪DP ;
7 F ′ ←

P (Ai(0) = si) = psi(0)

P (Payi(t)|Ai(t), N(Ai(t))) = (see Eq. 3.1) ; // N(Ai)(t) defined using G

P (Ai(t+ 1)|Ai(t), other parents) = (see Eq. 3.3)
8 Return (X,D, F ′);

1This CPT can be very high dimension O(|S|(d+1)|U |(d+1)) if the number of strategies are large where |S| is the
number of strategies and |U | is the number of unique payoff values (approximately O(|S|d)). For this chapter, we
will explicitly compute its entries since we will only work with evolutionary games with 2 strategies. However, a
sparse representation will be used in Chapter 4 for games with 4 or more strategies.
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A summary of the construction process for the DBN can be seen in Algorithm 1. The result-

ing DBN formulation fully encodes the stochastic process of the spatial evolutionary game. For

a given stochastic spatial evolutionary game, an agent-based simulation is equivalent to running

a Monte-Carlo simulation on the corresponding DBN.

3.2 Truncated Dynamic Bayesian Network Approximations

In the following sections, we describe our novel iterative method, Truncated Dynamic

Bayesian Network Approximations (TDBNA) [53], for approximating the time evolution of a

multi-agent populations with a spatial structure. The primary advantage of a TDBNA is that it al-

lows for the exploration of higher order approximations beyond pair approximation which allow

for better accuracy with respect to the underlying stochastic model. Given a dynamic Bayesian

network (see definition in chapter 2) that exactly models the stochastic processes present in the

multi-agent structued population, we construct a sequence of smaller approximate Bayesian net-

works each evaluating the time evolution of our population for a single timestep (from t to t+1).

The method consists of three components: 1. an input neighborhood and a target neighborhood,

2. output query, and 3. input definition which involves constructing a lower-order approximation

of the input neighborhood using distributions obtain from the output query.

3.2.1 Dynamic Bayesian Network for Spatial Markov Processes

Consider a spatial multivariable Markov process defined over a set of agent variables

[X1, ..., XN ] that take a strategy (or state) in the set S with some defined transition probabil-

ity P (Xi(t+1) = s|X(t)) for each Xi. By spatial Markov process, we assume that the transition
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probability of any arbitrary agent Xi depends locally on a neighborhood N(Xi) specified by a

graph G for each iteration. Therefore, the transition probability of the Markov process obeys the

following relation:

P (Xi(t+ 1) = s|X(t)) = P (Xi(t+ 1) = s|Xi(t), Xj(t), j ∈ N(Xi)) (3.4)

We can construct a Dynamic Bayesian Network (DBN) that fully captures the above Markov

process, where each variable in the DBN corresponds to an agent in the spatial process and its

values are the strategies S = {s1, ...sm}. Formally the DBN is M = (X(t), D(t), F (t)) where

• X(t): Each variable Xi(t) ∈ X(t) corresponds to an agent in the original spatial process.

• D(t): The domain of each variable is S

• F (t): The CPT for Xi(t+ 1) has a dimension of |N(Xi)|+ 1 and has entries defined from

the Markov process defined above (Eq. 3.4).

We will primarily consider DBNs that model spatial evolutionary games for this chapter

as described in Section 3.1, but this model (and its approximation in 3.2.2) can also be applied

to other domains such as the reaction-diffusion and network security applications in Chapter 7.

When defining a DBN for a spatial Markov process, we assume that the initial distribution of

any two agent variables at time t = 0 is identical: P (Xi(t) = s) = P (Xj(t) = s) for any two

agents Xi and Xj . Because of this assumption and because the DBN is highly symmetric, the

marginal distributions P (Xi(t) = s) = P (Xj(t) = s) are identical at any time t. This property

also applies to any pairs of adjacent agents: P (Nb(Xi)(t), Xi(t)) = P (Nb(Xj(t), Xj(t)) where

Nb(Xi), Nb(Xj) are neighboring adjacent agents of Xi and Xj respectively.
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We denote by psi the proportion of the population in state i and denote p = {psi , ..., psm}

to be the population profile. Furthermore, denote psisj to be the proportion of adjacent agents in

the population playing the strategy pair (si, sj). Higher order terms are defined analogously with

psisjsk.... To evaluate the time evolution of our evolutionary game, we can simply query:

psi(t) = P (X(t) = si)

psisj(t) = Pt(X(t) = si, Nb(X)(t) = sj) (3.5)

for any arbitrary variable/node X and an adjacent neighboring node Nb(X). However, comput-

ing a query like that over the DBN using an inference algorithm such as bucket elimination is

intractable once the number of agents in the population becomes large. Additionally, as seen in

Section 3.1, when using a DBN to model spatial evolutionary games with complex update rules

such as the Fermi rule, it is necessary to add additional nodes to the DBN such as payoff nodes

which drastically increases the complexity of network. Therefore, in Section 3.2.2 we will ad-

dress how to approximate this query computation over our DBN that models a spatial Markov

process.

3.2.2 Truncated Dynamic Bayesian Network Approximation for Spatial Markov

Processes

Given a DBN that models a spatial Markov process, at time t = 0, we assume that the

prior and initial distribution for all agents P (X(t = 0) = sj) are identical for all agents. In the

evolutionary game notation, this is denoted as psi(0). We assume the same for the second order
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terms psisj(0). A Truncated Dynamic Bayesian Network Approximation is the iterative method

shown in Algorithm 2 for approximating the time evolution of psi and psisj .

Algorithm 2: Truncated Dynamic Bayesian Network Approximation for Spatial
Markov Processes
Input: Dynamic Bayesian Network M = (X,D, F ) for a spatial Markov process, In-
put neighborhood set I ⊂ X , Output neighborhood set O ⊂ I , chosen focal node
XF ∈ I ∩O, Input definition function Ψ : S|I| → [0, 1]
Parameters: number of time steps T ,
Output: psi(T ), psisj(T )
1 psi(0)← PM(XF (0) = si), ∀si ∈ S ;
2 psisj(0)← PM(XF (0) = si, Nb(XF )(0)), ∀si, sj ∈ S;
3 for t = 0→ T − 1 do
4 Define a truncated two time step Bayesian network B(t) = (Xtr(t), D, Ftr(t)):

• Xtr ← I(t) ∪O(t+ 1)

• Ftr ← P (I(t)) = Ψ(I(t); psisj(t), psi(t)), (see Section 3.2.3)
P (O(t+ 1)|I(t)) = PM(O(t+ 1)|I(t))

5 psi(t+ 1)← PB(XF (t+ 1) = si), ∀si ∈ S ;
6 psisj(t+ 1)← PB(XF (t+ 1) = si, Nb(XF )(t+ 1)), ∀si, sj ∈ S

where PB is computed using a probabilistic inference algorithm on B(t) ;
7 end
8 Return psi(T ), psisj(T );

Before starting the algorithm, we must first choose a representative subset of agents to be

the input neighborhood I ⊂ [X1, ..., XN ] and a subset O ⊂ I to be the output neighborhood. It

is necessary for every node in O to have a fully defined transition probability conditioned on the

nodes in I as in Eq. 3.4. For example, in the simplified diagram of Fig. 3.4, I(T − 1) consists

of the three nodes at T − 1 within the highlighted area and O(T ) consists of the the single node

at time T within the highlighted area. Denote a single node that is in both the input and output

neighborhoods to be the focal node XF .

To begin, on line 1 and 2 of Algorithm 2, we set the quantities psi(0), psisj(0) to be the

marginal and pairwise probabilities of nodes of our input DBN. From time t = 0 to T − 1, at
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each iteration we construct a truncated two step Bayesian network B(t) = (Xtr(t), D, Ftr(t))

and perform a query computation as such:

• The new two step BN has variables Xtr(t) = I(t) ∪O(t+ 1) (line 4, first bullet)

• We define the distribution of I(t) using a probability function Ψ : S|I| → [0, 1] parame-

terized with psi(t) and psisj(t) (line 4, second bullet, first part) (see Section 3.2.3 for more

details).

• We define the transition probabilities that transform the strategies of agents in I(t) to the

agents at O(t + 1). Namely, for each variable in o ∈ O(t + 1), define the CPT P (o|Pao)

where Pao are the variables in I(t) that are the parents of o. Note that these are the

same CPTs that are found in our input network M , so we can write (abusing notation)

that P (O(t+ 1)|I(T )) = PM(O(t+ 1)|I(T )) (line 4, second bullet, second part).

• Use a probabilistic inference algorithm [40, 41] such as Bucket Elimination [49] to evaluate

psi(t+1), psisj(t+1). These distributions are defined over the agents in the output O(t+1)

(lines 5 and 6).

To summarize, a 2 timestep Bayesian network is constructed for each iteration that takes

the strategies of each agent from t to t+1. Using a probabilistic inference algorithm, we evaluate

the probabilities P (X(t+ 1)) and P (X(t+ 1), NX(t+ 1)) and we repeat the process at the next

timestep by defining the distribution of the next input set I(t+1) using the quantities we queried.

For more complex spatial systems such as spatial evolutionary games using the Fermi rule,

it is more efficient to have additional Pay nodes like in Fig 3.1 that represent payoff nodes instead

of compiling the probabilities of the spatial evolutionary game into a Markov process in the form
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of Eq. 3.4. In these cases, when defining the transition probabilities from I(t) to O(t + 1) in

Algorithm 2 (third bullet above), we retain all the necessary intermediate nodes (such as the Pay

nodes) and CPTs from the DBN M when constructing B(t).

Depending on the size of the output neighborhood, it may be necessary to modify line

6 in Algorithm 2. If the input neighborhood is very small (i.e. only 8 nodes), such as in the

TDBNA for pair approximation (discussed in 3.2.5), the output neighborhood can only be a

single node. As a result in line 6 of Algorithm 2 instead of using psisj(t + 1) ← PB(XF (t +

1) = si, Nb(XF )(t + 1)), we approximate this quantity using psisj(t + 1) ← PB(XF (t + 1) =

si, Nb(XF )(t)) with another node from the input neighborhood (at time t) instead of the output

neighborhood (at time t+ 1).

3.2.3 Defining I(t) using Tree Approximations

The TDBNA is a truncation approximation of the exact Dynamic Bayesian Network (DBN)

for Eq. 3.4. Intuitively, in Algorithm 2, we truncate the DBN temporally and spatially (visually

this would be blue and red respectively in Fig. 3.4). As a result, the number of input nodes

and output nodes in a given two timestep BN are not the same. When we construct the next

two step BN, we need to approximate the distribution of the new input nodes using lower order

distributions queried from the output nodes in the previous network.

To better understand this, consider the TDBNA example in Fig. 3.5. In this example, each

B(t) has 4 input nodes and 2 output nodes. Therefore, when we move from B(t) to B(t + 1),

we cannot fully define the 4th order distribution of the input nodes of B(t + 1). This is because

when we finish the computation on B(t), the highest order distribution we can evaluate is only a
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Figure 3.4: Spatial (red) and Temporal (blue) Truncation for DBN approximation
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Figure 3.5: Two timestep BNs for TDBNA. Green nodes correspond to input neighborhoods, red
nodes correspond to output neighborhoods.

2nd order pairwise distribution over the two output nodes.

This is why in Algorithm 2, it is necessary to have a function Ψ that defines the distribution

of the input neighborhood. This function Ψ uses the first and second order distributions psi(t+1)

and psisj(t + 1) from the previous network (from t to t + 1), to approximate the distribution of

I(t+ 1) for the next network (from t+ 1 to t+ 2).

The function Ψ can be thought of as a type of moment closure approximation [32]. In this

work, in the language of the moment closure literature, we close our distributions at the pair level.

For our particular Ψ function, we use a tree approximation as in Fig. 3.6 to model the distribution

of input nodes.

For example, if the input set consists of 8 adjacent nodes labeled I = (A1, ..., A8), we can
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Figure 3.6: Tree approximation for input neighborhood definition

specify a tree approximation as in Fig. 3.6 where:

P (A1(t) = si) = psi(t)

P (A2(t) = si, A1(t) = sj) = psisj(t) (3.6)

and so forth for each node in the tree. To select the tree for our tree approximation, we will use

Breadth-First Search (BFS). We use BFS to search the input neighborhood nodes along the graph

G from the original spatial Markov process starting from the focal node in the input neighborhood

I . This will result in a tree as in Fig. 3.6. In this example, the function Ψ would be defined as:

Ψ(I(t); psisj(t), psi(t)) = P (A1(t))
8∏

i=2

P (Ai(t)|Anc(Ai)(t))

= P (A1(t))P (A2(t)|A1(t))...P (A6(t)|A2(t))...P (A8(t)|A2(t)) (3.7)

where Anc(Ai) is the parent of Ai in the BFS tree. The conditional probabilities in the equation

are defined according to Eq. 3.6 with P (Ai(t) = si|Aj(t) = sj) =
P (Ai(t)=si,Aj(t)=sj)

P (Aj(t)=sj)
=

psisj (t)

psj (t)
.
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3.2.4 Fermi Rule and Rotational Symmetry

In Section 3.1, when modeling the spatial evolutionary game with the Fermi rule, we as-

sume that an agent looks at a randomly chosen neighboring agent to compare its payoff.

During the computation of the Fermi update rule in the spatial evolutionary game, an agent

randomly selects a neighbor to update their strategy. If we assume that the spatial evolutionary

game takes place on a regular structure such as a grid, the population also possesses rotational

symmetry beyond spatial symmmetry. Therefore, beyond the temporal and spatial truncations

shown in Fig. 3.4, we can also truncate rotationally.

When choosing O ⊂ I , instead of requiring a fully defined Fermi transition probability

for each node in O, we can relax this requirement and only require a sided Fermi transition

probability for a node in O. Recall that in Eq. 3.3, we sum over the neighborhood N(Ai,j) to

compute the probability of Pr(Ai,j(t + 1)|Ai,j(t), other parents). This corresponds to a fully

defined Fermi transition probability. Instead of the summation in Eq. 3.3, in the sided Fermi rule,

we can instead compute:

Pr(Ai,j(t+ 1) = st+1 | Ai,j(t) = st, other parents)

= (1− γ)p∅ + γ
[ µ

|S|
+ (1− µ)(pf (k, l)pδ(1− p∅) + p∅)

]
(3.8)

where Ak,l is just one predetermined neighbor of Ai,j .

This will let us define TDBNA’s with much smaller input and output neighborhoods such

as BN-MF, BN-PA, and BN-Medium in Section 3.3.1 which have input neighborhoods too small

to include multiple nodes with the full Fermi transition probability.
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3.2.5 Pair Approximation as a Special Case

In this section, we demonstrate that there exists a set of parameters to construct a TDBNA

that coincides with in pair approximation. We will show this with an example by modeling the

general spatial evolutionary game in the appendix of [2]. The strategy space consists of two

strategies S = {C,D} and the evolutionary game uses asynchronous updating with the Fermi

rule. We set our TDBNA parameters to be:

• Input Neighborhood:

{A2,2, A2,1, A3,2, A2,3, A1,2, A1,1, A3,1, A2,0}

• Output Neighborhood:

{A2,2, A2,1, A3,2, A2,3, A1,2}

• Tree Approximation of P (A2,2, A2,1, A3,2, A2,3, A1,2, A1,1, A3,1, A2,0) uses the tree:

Root: A2,2

Edges: (A2,2, A2,1), (A2,2, A3,2), (A2,2, A2,3), (A2,2, A1,2)

(A2,1, A1,1), (A2,1, A3,1), (A2,1, A2,0)

The structure of the input neighborhood can be seen in Fig. 3.7. We choose A2,2 (the red high-

lighted node in the figure) to be the focal node XF of our TDBNA. To compute psi at the next

timestep, we query P (A2,2(t+1) = si). For the Fermi rule on this small input neighborhood, we

use the sided Fermi rule and assume that the focal node A2,2 always learns from its left neighbor

A2,1. The resulting Bayesian network can be seen in Fig. 3.8.
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Figure 3.7: Input neighborhood for Pair Approximation

Figure 3.8: Truncated Dynamic Bayesian Network Approximation for Pair Approximation
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There are additional nodes such as randN , edgeUpdate for implementation convenience.

In this network, randN is a random selection over the strategies of the neighbors of A2,2. For

example, if we have the partial configuration (A2,1(t) = C,A3,2(t) = C,A2,3(t) = D,A1,2(t) =

D), then P (randN = C) = 0.5 and so forth. The edgeUpdate node is a dummy node that repre-

sents the joint probability of A2,2 and randN . To compute psisj , we can query P (edgeUpdate =

si, sj) or query P (A2,2(t + 1) = si, randN = sj), depending on which is easier to implement

with the chosen inference algorithm.

To show that the computation in the TDBNA and pair approximation is the same, we will

show that the computation of P (A2,2(t+1) = C) over the TDBNA results in a pair approximation

equation. We start by considering the probability that A2,2(t + 1) takes the value of C. We

condition this on the value of A2,2(t):

P (A2,2(t+ 1) = C) =
∑
s∈S

P (A2,2(t+ 1) = C | A2,2(t) = s)P (A2,2(t) = s) (3.9)

Recall that A2,2(t) is distributed according to the current marginal distribution pi:

P (A2,2(t+ 1) = C) =
∑
s∈S

ps · P (A2,2(t+ 1) = C | A2,2(t) = s) (3.10)

Consider the probability that the focal player playing the strategy D switches to the strategy

C. Let kC be the number of neighbors of the focal node playing C. Since all nodes are inde-

pendently defined, the nodes are C with probability pC|D. The probability that kC of the nodes
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A2,1, A3,2, A2,3, A1,2 are C is:

pkC =
d!

kC !(d− kC)!
pkCC|Dp

d−kC
D|D (3.11)

Without loss of generality, we assign the neighboring C-player to be A2,1. We can denote k′
C as

the number of nodes among the neighbors of A2,1 that are playing C and calculate the probability

of a given configuration of k′
C .

pk′C =
d− 1!

k′
C !(d− k′

C − 1)!
p
k′C
C|Dp

d−k′C−1

D|D (3.12)

We can now condition on the nodes A2,1, A3,2, A2,3, A1,2 and the nodes A1,1, A3,1, A2,0 using kC

and k′
C :

d∑
kC

d−1∑
k′C

k

kC
pkCpk′CP (A2,2(t+ 1) = C | A2,2(t) = D, kC , k

′
C) (3.13)

The value of both payoff nodes can be uniquely obtained from the amount of cooperators kC , k′
C

among the corresponding neighbors. Given that we condition on pay2,1, pay2,2, A2,2, and A2,1,

the distribution of A2,2(t + 1) can be obtained from the CPT of A2,2(t + 1). In this case for the

asynchronous Fermi rule, we have that:

P (A2,2(t+ 1) = C | A2,2(t) = s, kC , k
′
C)

=


1
M
f(PayC(k

′
C)− PayD(kC)) if A2,2(t) = D

M−1
M

+ 1
M
(1− f(PayD(k

′
C)− PayC(kC))) if A2,2(t) = C

(3.14)

51



Then the final probability has the form:

P (A2,2(t+ 1) = C) =
d∑
kC

d−1∑
k′C

k

kC
pkCpk′C

[pD
M

f(PayC(k
′
C)− PayD(kC))+

pC(
M − 1

M
+

1

M
(1− f(PayD(k

′
C)− PayC(kC))))

]
(3.15)

We can move the probability pC out from this expression and write an equation of the form

pC(t+ 1) = pC(t) + ∆pC :

pC(t+ 1) =pC(t) +
d∑
kC

d−1∑
k′C

k

kC
pkCpk′C

[pD
M

f(PayC(k
′
C)− PayD(kC))+

− pC
M

f(PayD(k
′
C)− PayC(kC))))

]
(3.16)

Taking

ṗC = lim
M→∞

∆pC
1/M

(3.17)

recovers exactly the differential equation for the time evolution of proportion of C agents in

the population as in [2]. We can follow this step by step expansion of the probabilities in the

Bayesian Network for the pair level probabilities and arrive at the corresponding equations for

the time evolution of the pair level quantity pCC .

3.2.6 Features

Here we summarize the main features of the TDBNA. The two main features roughly cor-

respond to the two major ideas present in higher order approximations of spatial evolutionary

52



games:

• Neighborhood Configurations: TDBNAs generalizes the idea of neighborhood config-

urations [31]. The input definition step allows for the choice of arbitrary configurations to

compute transition probabilities. For any choice of sites or focal agents in existing app-

roximations, there exists an equivalent input neighborhood that captures the same set of

configurations. We showed this earlier using pair approximation, but it is also possible to

find input neighborhoods that correspond to more complex approximations such as triplet

or n-point approximations [17].

• Moment Closure: In a TDBNA, moment closure is handled through the query step (which

quantities to evaluate psi , psisj , etc.) and input definition step Ψ. The query step defines

which sets of moments we will extract at each time step. The input definition step defines

how we want to use these moments. In contrast to existing methods, TDBNAs allow for

the query of arbitrary subsets of k-th order moments.

For example, in pair approximation on a two strategy game, all four of the 2nd order mo-

ments: (ps1s1 , ps1,s2 , ps2s1 , ps2s2) are needed when computing the pair approximation equa-

tions. In contrast, in a TDBNA, when choosing a Ψ, we are not required to query all psisj

from the previous network. Instead we could just query two moments (ps1s1 , ps2s2) and ap-

proximate ps1s2 = ps1ps2 , ps2s1 = ps1ps2 in the function Ψ. In a game with a large amount

of strategies, we could intelligently choose select a subset of all of the 2nd order moments

instead of all of the moments. Additionally, we could even query higher order moments

(e.g. ps1s1s1) if our output neighborhood is large enough without evaluating all of the higher

order moments of a given level. This is contrast to pair/triplet/n-point approximations in
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literature where it is always necessary to keep track of all moments on a given order.

This can be advantageous from a efficiency/accuracy perspective as some moments will

impact the behavior of the system more than others. Furthermore, since TDBNAs are an

iterative algorithm, it is possible to dynamically choose which moments to query over time.

There are many possibilities in how to handle this generalization of moment closure, but

we will leave this research for future work.

One notable advantage we get from generalizing the idea of neighborhood configurations is that

the level of accuracy can be adjusted by adjusting the size of the input neighborhood. If we

consider the TDBNA a truncation of the full DBN, a larger neighborhood size will reduce the

difference between our approximation and the full model. To show this effect in practice, we run

a several empirical tests on different evolutionary games.

3.3 Empirical Evaluation

We compare the results of the Truncated DBN Approximation on selection of commonly

encountered games in evolutionary game theory literature (see Table 3.3). Formally, we define

our empirical task to be: given a spatial evolutionary game (S, U, F ) with initial condition psi(0),

we want to compute an approximation of psi(t). For our spatial evolutionary game, we will

choose our spatial structure G to be a grid domain (where d = 4). We will use the Fermi rule

as the update rule for our game. The payoff matrices we will use in our experiments are the

Prisoner’s Dilemma, a symmetric version of the Battle of Sexes, and the Snowdrift game (see

Table 3.3 for the corresponding payoff matrices).

We computed the ground truth values by stochastic simulations of the spatial evolutionary
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Table 3.2: Approximation Framework Parameters

Name Input Neighborhood Query/Input Definition

BN-MF psi , i.i.d

BN-PA psi , psi|sj , BFS

BN-Medium psi , psi|sj , BFS

BN-Large psi , psi|sj , BFS
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Table 3.3: Two Strategy Evolutionary Game Payoff Matrices

Game Name Payoff Matrix

Prisoner’s Dilemma (pd)
(
2 −1
3 0

)

Snowdrift (sd)
(
2 1
3 0

)
Battle of the Sexes (bos),
symmetric version [54]

(
0 1
2 0

)

games on a 50 x 50 grid. The ground truth values for psi(t) are obtained by averaging the results

of 20 separate simulations on the 50 x 50 grid.

3.3.1 Methods

We consider four different TDBNAs each with different parameter settings. We want to

show that as expected, larger input neighborhoods improve the resulting approximation. The

various scenarios for each of the approximations tested are shown in Table 3.2. Each of the

models smaller than BN-Large need to be augmented with additional assumptions resulting in

adjustments to Algorithm 2 because several components of the TDBNA algorithm are not well-

defined if the output neighborhood is smaller than 5 nodes. A full description of each setting is

as follows:

• BN-MF: This version of Algorithm 2 uses an input neighborhood I with 8 nodes and an

output neighborhood O of a single node XF . We will only query psi(t) at each iteration

(lines 2 and 8 in Algorithm 2 are removed). To model the transition probability for XF (t+

1), we use a sided Fermi rule (see Eq. 3.8) such that the focal node always learns from the
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agent to the right of itself on the evolutionary game grid.

For Ψ, instead of a tree approximation, we use a simple product approximation:

Ψ(I(t)) =
∏

Ai∈I(t)

P (Ai) (3.18)

This version of the algorithm corresponds to a mean field approximation in evolutionary

game theory literature.

• BN-PA: This version of Algorithm 2 is described in Section 3.2.5. This scenario uses an

input neighborhood I with 8 nodes and an output neighborhood O of a single node XF .

Like in BN-MF, a sided Fermi rule is used for the transition probabilities of XF (t + 1).

On line 6, instead of computing psisj(t + 1) ← PB(XF (t + 1) = si, Nb(XF )(t + 1)),

we compute psisj(t + 1) ← PB(XF (t + 1) = si, Nb(XF )(t)). For Ψ, we use a tree

approximation constructed using BFS on the input neighborhood graph shown in Table 3.2

starting from the node labeled with an ”F”. This version of the TDBNA corresponds to pair

approximation in evolutionary game theory literature.

• BN-Medium: BN-Medium uses an input neighborhood I with 13 nodes and an output

neighborhood O of two nodes {XF , Nb(XF )} (the node labeled ”F” and the node directly

to the right of it in Table 3.2). A sided Fermi rule is used for XF , but a non-sided (regular)

Fermi rule is used for Nb(XF ). Ψ is a tree approximation like in BN-PA. On line 6 of
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Algorithm 2, we compute the weighted average:

psisj(t+ 1)← 1

d
PB(XF (t+ 1) = si, Nb(XF )(t))

+
d− 1

d
PB(XF (t) = si)PB(XF (t) = sj) (3.19)

The above weighted average is a explicit representation of the probability of XF (t + 1)

conditioned on a randomly selected neighbor (its neighbor Nb(XF )(t + 1) in O or one of

the three neighbors at t that are not in the output neighborhood).

• BN-Large: BN-Large uses an input neighborhood I of 25 nodes and an output neighbor-

hood O of 5 nodes (the node labeled F and its four neighbors). The Fermi rule can be

directly modeled on a neighborhood of this size. The function Ψ is a tree approximation

like in BN-PA. No additional changes are made to the computation in Algorithm 2.

At the largest size, BN-Large captures all the nodes that can impact a focal node directly and all

their direct neighbors for the course of 1 iterations, so it is actually an exact model for 1 iteration

of the game. All methods use use Bucket Elimination as described in 2.3.2.1 for the probabilistic

inference routine in Algorithm 2.

3.3.2 Results

Fig. 3.9 shows the time evolution of the first strategy ps2 in a selection of three games. In

the Prisoner’s Dilemma, we plot ps2 = pD, the proportion of defectors (agents playing strategy D)

over time. The ground truth trajectory is displayed as a blue line labeled ”Simulation”. Estimated

trajectories for ps2 are plotted for our various TDBNA scenarios.
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Prisoner’s Dilemma

Battle of the Sexes (symmetric)

Snowdrift

Figure 3.9: Proportion of agents playing the second strategy in a Prisoner’s Dilemma game (top)
and a symmetric Battle of the Sexes game (middle), and a Snowdrift game (bottom) for different
approximations
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Our results show that in games (Prisoner’s Dilemma, symmetric Battle of the Sexes) where

pair approximation (BN-PA) already obtains a good agreement with the simulation results (Fig.

3.9), the larger approximation neighborhoods reduce the quantitative error in the time evolution

graphs. In these cases, all approximation methods converge to the same equilibrium as the sim-

ulation. However, larger neighborhoods yield more accurate values for the rate of change of each

strategy over time before equilibrium.

Previous research in pair approximation on 2x2 games (see [55, Section 3.8]) has indicated

that pair approximation does not have good quantitative agreement with simulation results in Stag

Hunt and Snowdrift games. Fig. 3.9 demonstrates this phenomena for a Snowdrift game, one

of the pathological cases where pair approximation does not converge to the same equilibrium

as the simulation. In this case we see clearly that choosing a larger neighborhood decreases

the error between the approximation and the simulation. This suggests that games where the

difference between pair approximation and larger neighborhood approximation is large are also

games where the difference between pair approximation and the simulation is large. Using this

difference as a guideline, we can determine what games it is sufficient to use pair approximation

and what games where it is necessary to rely on a larger neighborhood approximation.

Interestingly, on the tested games we observe that by increasing the neighborhood size we

can obtain results approaching the simulation results even without using higher order probabilistic

factors. This suggests that it is not necessary to use higher order moments to improve accuracy

as discussed in Section 3.2.6. To improve our approximations, we can simply increase the input

(and output) neighborhoods to a desired size.

The empirical results in this chapter are limited to a selection of two-player evolutionary

games. As will be discussed in Chapter 4, this is due to limitations on computational complexity.
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For games with 3 or more strategies, it becomes difficult to query a the BN-Large TDBNA using

Bucket Elimination. To solve this, we will propose new approximate methods for accelerating

this computation.

3.4 Summary

This chapter presents a dynamic Bayesian network formulation of spatial evolutionary

games, thus making Bayesian network techniques applicable to such games. Since exact in-

ference on large Bayesian networks is intractable, we accompany our formulation with a new

flexible approximation scheme that is tailored to the inherent symmetry in spatial games by using

a truncated neighborhood of agents that lead to truncated DBNs, which are then solved by exact

inference algorithms. The truncated neighborhood can be arbitrarily defined up to the size of

the population in the original stochastic simulations. By controlling the neighborhood size we

can control the strength of the approximation and its complexity. We further show that certain

approximated DBNs can be used to recover discrete analogs of existing pair approximations in

literature. Our empirical results illustrate the potential of this approach.
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Chapter 4: Surrogate Bayesian Networks for Approximating Spatial Games

In this chapter, we develop a novel method for accelerating inference on Bayesian Networks

for evolutionary games. One important technique we analyzed in section 3.3 was increasing the

size of the input neighborhood, the number of agents represented by the Bayesian Network at

an initial time step t. Increasing the number of agents in the input improves the accuracy of the

distributions that we query at the next iteration. However, increasing the size of the network is

not without demerits. To query the distributions at the next iteration, it is necessary to perform

probabilistic inference on the Bayesian Network that we generate. As mentioned in Chapter 2,

one way to do this is using bucket elimination.

Recall that the time complexity of variable elimination algorithms and exact probabilistic

inference algorithms in general is dependent on a graph property called the induced width. For

example, in bucket elimination, the number of operations that need to be performed in a single

bucket is O(|D||B|), where |D| is the size of variable domains (assuming each variable has the

same domain size) and where |B| is the maximum number of variables in a bucket. Observe in

table 4.1 how the induced width of the networks grows as we increase the input neighborhood

size. In this comparison we are only increasing |B|, the number of variables in each bucket.

This behavior is even more extreme when we increase the number of strategies and thus increase

|D|. Even though the largest approximation we formulated in Chapter 3 (BN-Large) is within
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Table 4.1: Induced widths of different evolutionary game Bayesian Networks

Network Name Input Neighborhood Size Number of Variables Induced Width

BN-MF 8 11 6
BN-PA 8 13 7
BN-Medium 13 24 11
BN-Large 25 60 20

reasonable computation bounds for 2 strategy evolutionary games, this becomes intractable for 3

strategy evolutionary games and above.

The goal of this chapter is to develop an approximate inference algorithm for cases such as

the BN-Large network. Our goals are twofold:

1. The first goal is that of accuracy. Namely, to produce results that are close to the ground

truth simulation results. Specifically, the pairwise distribution ps1,s2 is the quantity of inter-

est when we use the Kullback-Leibler divergence DKL(P ||Q) as the measure of statistical

distance between distributions. As a general baseline, we expect the new algorithm to be

able to be more accurate than sampling methods such as forward Monte Carlo sampling on

BN-Large, Pair Approximation, and state of the art sampling approaches such as Abstrac-

tion Sampling [47] when given the same amount of computational resources [48].

2. The second goal is to significantly decrease the amount of time needed for inference. In

particular, we will derive a new algorithm capable of performing inference on high strategy

evolutionary games, where existing inference approaches are intractable.

This brings us to the focus of this chapter: surrogate Bayesian Networks, a novel method for

computing approximate inference on large evolutionary game Bayesian Networks. For example,

on BN-Large, this new method would involve performing probabilistic inference on a parameter
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extended BN-PA (the surrogate network), greatly accelerating inference time. We start with a few

motivating observations on the behavior of approximate inference algorithms such as Abstraction

Sampling on TDBNAs in Section 4.1. This will be followed by a description of our basic sur-

rogate network maximum likelihood estimation (MLE) algorithm in Section 4.3. We develop

an improved algorithm termed KL-search for inference by devising a sample/search method for

generating informative samples for our MLE algorithm in Section 4.4. We will empirically show

in Section 4.5 that our methods produce superior results to existing approximate inference algor-

ithms such as abstraction sampling when applied to a TDBNA.

4.1 Problem Statement

In Chapter 3, we presented TDBNAs, which were used to approximate the forward dyna-

mics of spatial evolutionary game models. It was shown that larger input neighborhoods produce

more accurate approximations of the underlying dynamics. However, it is computationally ex-

pensive to evaluate a TDBNA for larger neighborhoods. Running exact inference on a 25 node

TDBNA1 for a simple three strategy evolutionary game requires performing inference on a net-

work with an induced width greater than 30. This becomes even more impractical for more

complex evolutionary games with larger numbers of strategies.

Notation: In this chapter, we will use node/variable interchangeably. We will denote by

Nb(X) an arbitrary neighbor of a focal node denoted by X . A bold X refers to all variables in

a network. Superscripts such as x(j) will be used to index samples (full configurations) over a

network.
1In this context, 25 node refers to the size of the input neighborhood
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4.2 Behavior of Abstraction Sampling on TDBNA

When a TDBNA is too large, we can apply approximate inference techniques. One such

approximate inference technique is Abstraction Sampling (AS) [47, 48]. While effective on mul-

tiple benchmarks in the previous literature in reducing the error when estimating the partition

function of graphical models, it less effective when applied to our particular application setting.

For our motivating example, we will study the 2 strategy Deadlock game (see Table 4.6 for the

payoff matrix).

For this case study, we will use Abstraction Sampling with a WMBE heuristic (ibound of

10) as the inference routine for line 6 of Algorithm 2. For each time iteration of the TDBNA BN-

Large, we generate 100 probes (roughly 75 seconds for 100 probes) on the corresponding search

tree. Each probe is conditioned on a specific configuration of the two nodes X and Nb(X) in

the output neighborhood: (X = s1, Nb(X) = s1), (X = s1, Nb(X) = s2), (X = s2, Nb(X) =

s1), (X = s2, Nb(X) = s2). Probes conditioned on partial configurations will only expand

branches of the search tree that are consistent with those partial configurations. The partition

function estimates from these conditioned probes are used to compute P (X = s1, Nb(X) = s2).

We split the probes such that each partial configuration receives an equal number of probes, so

that we have L
(|S|)2 probes per strategy pair, where L = 100 is the number of samples.

4.2.1 Results on Deadlock

We evaluate time evolution of psi in the game Deadlock starting from an initial condition

of ps1(t = 0) = 0.5 that is randomly mixed (psisj(t = 0) = psi(t = 0)psj(t = 0) and so

forth for higher order distributions). We show the performance of AS in Fig. 4.1. The figure
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(a)

(b)

(c)

Figure 4.1: Simulation (3000×3000 grid) ground truth (a), compared with exact 8 node TDBNA
result (b), and approximate Abstraction Sampling result on 25 node TDBNA (c)
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depicts the time evolution of psi for both strategies over time using three different methods of

computation: agent based evolutionary game simulation, BN-PA TDBNA with exact inference,

and BN-Large with AS. As can be seen in the time evolution curves of Fig. 4.1, when using

Abstraction Sampling, there can be significant error when we apply this sampling method to

TDBNAs. More specifically, in a method by method breakdown:

• Simulation: In the simulation on a 3000 by 3000 grid (top graph of Fig. 4.1), Deadlock

shows a reversal pattern at t = 1. There is another discontinuous derivative at t = 2.

After which, the graph is smooth and ps1(t = 10) ≈ 0.66 (the probability of agents in the

simulation playing the first strategy at time = 10). We will treat the simulation trajectory as

the ground truth trajectory.

• BN-PA: In the result of BN-PA with bucket elimination (middle graph of Fig. 4.1), we

have the same reversal pattern at t = 1, however the slope of ps1 curves down much faster

than in the simulation. This results in ps1(t = 10) ≈ 0.6.

• BN-Large with Abstraction Sampling: In the result for Abstraction Sampling in the

bottom graph of Fig. 4.1), we can qualitatively see a reversal at t = 1 and a second small

discontinuous derivative at t = 2. However, afterwards, it seems the trajectory is unstable

due to noise and we get ps1(t = 10) ≈ 0.57.

Since we start from a randomly mixed initial condition, BN-PA provides an exact solution2 for

ps1 at t = 1. Specifically, the ground truth value at t = 1 is ps1(t = 1) = 0.4297, which

is obtained by both BN-PA and the simulation. However, there is a noticeable discrepancy in

2Since the initial distribution is randomly mixed, the tree approximation of the input distribution in BN-PA is
exact at t = 0.
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ps1(t = 1) for BN-Large with AS for which ps1(t = 1) ≈ 0.435. This discrepancy can largely

explain the error in the BN-Large results. In general, errors at early time-steps will gradually

carry over and produce larger errors later on. We can also quantify this error by looking at the

difference between second order distributions at time t = 1. In particular, if we calculate the KL

divergences:

DKL(Psim(X(1), Nb(X)(1))||Pabs(X(1), Nb(X)(1))

DKL(Psim(X(1), Nb(X)(1))||Ppa(X(1), Nb(X)(1)) (4.1)

where Psim(X(1), Nb(X)(1)) is the distribution of an agent X at time t = 1 and an arbitrary

neighbor Nb(X) at time t = 1 as computed by the simulation, we get:

DKL(Psim(X(1), Nb(X)(1))||Pabs(X(1), Nb(X)(1)) = 0.011395

DKL(Psim(X(1), Nb(X)(1))||Ppa(X(1), Nb(X)(1)) = 0.008374 (4.2)

The divergence for BN-PA (denoted by pa) is less than the divergence for BN-Large using ab-

straction sampling (denoted by abs). Higher divergence values are directly correlated with a

larger difference in the trajectory curves. If we run Abstraction sampling with more samples,

the KL-divergence will gradually approach zero3. Our goal will be to design a new method that

reduces the error more effectively than just improving AS by running it with more samples.

3With a randomly mixed initial distribution, the input neighborhood tree approximation for BN-Large is exact.
Thus, exact inference for any joint probability up to the size of the number of fully defined nodes (without the
sided Fermi rule in Section 3.2.4) in the output neighborhood at t = 1 is exact. We assume that AS will eventually
approach exact inference given enough samples so the KL-divergence will also approach zero.
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4.2.2 Approach

Our goal for this chapter will be to design an approximate inference algorithm to replace

exact inference on line 6 of Algorithm 2. As seen in the results on Deadlock, simply replacing

exact inference with Abstraction Sampling runs into limitations. Specifically:

• Accuracy: It can take many samples for Abstraction Sampling on BN-Large to produce

better results compared to just running exact inference on BN-PA.

• Time: Running exact inference on BN-PA is much faster than AS on BN-Large. In particu-

lar, to compute the trajectories seen in Fig. 4.1, it takes around 778s using AS on BN-Large

while only 1.4s using BE on BN-PA (see Table 4.5).

• Noise: Without sufficient sample convergence in AS, it is difficult to determine certain

quantities such as the location of inflection points, which can also impact qualitative results.

For example, in the Fig. 4.1, the trajectory computed using AS has multiple inflection

points, when there is only 1 (at around t = 3) for the simulation and BN-PA.

To address these issues, we propose a method that combines the estimate from the smaller net-

work with estimates from the larger network. The idea is to leverage the advantages inherent to

smaller TDBNAs. Specifically, we can compute a reasonably close trajectory to the ground truth

(simulation results) very fast using exact inference on BN-PA. However, we cannot improve the

results from BN-PA by giving the algorithm more time since the inference is already exact (in

contrast to running AS on BN-Large where the results will get better with more time).

The main idea will be to replace line 6 of Algorithm 2 with exact inference on a surrogate

network. The surrogate network is a smaller TDBNA that has been extended with additional
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Table 4.2: Summary of algorithm traits

Algorithm Speed Init Acc. Improve w/ time? Noise

BE on BN-Large Intractable High N N
AS on BN-Large Slow Poor Y Y
BE on BN-PA Fast Medium N N
BE on Surrogate Network Medium Medium Y (See Section 4.4.4)

learnable parameters. We will use samples from the larger TDBNA to learn the parameters on

the smaller TDBNA. Running this new algorithm for more samples will let us learn a surrogate

network that is closer to the larger TDBNA. The advantages of this approach are summarized by

Table 4.2.

4.3 Surrogate Maximum Likelihood Models

Consider an 8 node TDBNA (BN-PA) and a 25 node TDBNA (BN-Large) for approxim-

ating a spatial evolutionary game located on a grid structure (each agent has four neighbors). We

will illustrate the approach on 8 and 25 node TDBNAs (the number of nodes referring to the

size of the input set including the focal node as in Fig. 4.2), but in principle this work can also

be extended to other pairs of TDBNAs with the smaller network serving as the surrogate of the

larger network.

A key observation is that the smaller 8 node network is a subset of the larger 25 node net-

work. Our idea is to extend the 8 node TDBNA with additional parameterized nodes/connections

so it can approximate the 25 node network while still being small enough to facilitate tractable

exact inference.
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4.3.1 Parameterizing the New Edges

In order to increase accuracy of our 8 node network B, we propose to add a new set of

4 dummy neighbor nodes Nb(X)(t + 1) that capture the output neighborhood (see footnote for

why these 4 nodes4). We add new edges from the input neighborhood to the output neighborhood

as shown in Figure 4.3. This will yield a new surrogate Bayesian network for which some new

CPTs must be defined. For our example, we specify new conditional probability tables (CPT)

conditioned on two nodes in the input neighborhood (a new neighbor node Nb(X)(t + 1) will

depend on Nb(X)(t) and X(t)). These new CPTs are parameterized by θx,y,z = px|yz. Since we

inherit the assumption that all neighboring nodes are indistinguishable from 25 node network,

all CPTs are identical and we can share parameters those across the various CPTs. We denote a

specific surrogate network parameterized by θ as Bθ. The CPTs will be learned using Maximum

Likelihood Estimation (MLE) as explained next.

Given a 25 node TDBNA model and an 8 node extended model, the basic Maximum Like-
4This is because when we compute psisj in the 8 node network, we approximate it as P (X(t + 1) =

si, Nb(X)(t) = sj). By adding four additional neighbor nodes in the output neighborhood, we can use exact
inference to compute the original probability P (X(t+ 1) = si, Nb(X)(t+ 1) = sj).

Figure 4.2: The input and target neighborhoods for a 25 node TDBNA (left) and 8 node TDBNA
(right) for a spatial evolutionary game
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Figure 4.3: New parameters to add to 8 node network for MLE estimation. Two new edges
connect each neighbor node in the input set to the corresponding new dummy neighbor node in
the output set.

lihood Estimation (MLE) algorithm for learning the extended 8-node network is as follows:

1. Perform forward sampling on the 25 node TDBNA model for L samples. Each sample is

a full configuration of all variables in the 25 node network. Denote each full configuration

as an individual data point x(j).

2. The extended 8-node network is fully observed for each data since its variables are sub-

sumed in the large network. Consequently, we can derive the following likelihood express-

ion for our surrogate network Bθ, L(Bθ):

L(Bθ) =
L∏

j=1

PBθ
(x(j))

=
L∏

j=1

PBθ
(Nb(x)(j)(t+ 1)|x(j)(t), Nb(x)(j)(t)) · C

=
L∏

j=1

C
4∏

k=1

θ(Nbk(x)
(j)(t+ 1), x(j)(t), Nbk(x)

(j)(t)) (4.3)

where x(j)(t) denotes the assignment to X for the j-th data point and at time t (and

Nbk(x)
(j) denotes the assignment to the k-th neighbor node). Because the likelihood of
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a Bayesian network is just a product of probabilities from each CPT, we can simplify PBθ

for the 8-node extended network to just a product of the parameterized CPTs multiplied

with a a constant term C that doesn’t depend on θ. The constant term C can then be

ignored when maximizing the corresponding sum of log likelihoods.

3. Recall from the construction of TDBNAs, the marginal distribution of an agent node is

equivalent to the marginal distribution of any other agent node. This means P (Nbk(X)) =

P (X) for any neighbor node Nbk(X). However, if we directly maximize Eq. 4.3, there

is a chance that we end up with a model where P (Nbk(X))(t + 1) ̸= P (X)(t + 1). To

address this, we can define a set of symmetry constraints:

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S (4.4)

to ensure P (Nbk(X))(t + 1) = P (X)(t + 1) in Bθ. We pre-compute psi(t + 1) on a

non-parameter extended 8 node network and use this to constrain our log likelihood max-

imization derived from Eq. 4.3. Thus, we maximize the log likelihood logL(Bθ) subject

to:

θ∗ = argmax
θ

L∑
j=1

4∑
k=1

log θ(Nbk(x)
(j)(t+ 1), x(j)(t), Nbk(x)

(j)(t))

subject to

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S (4.5)

This can be solved with existing constrained maximization solvers such as sequential least
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squares [56] or trust-region algorithms which can be found in the SciPy python package

[57].

Once θ∗ is learned, we can evaluate the forward dynamics (compute psisj(t+1)) on the extended

network Bθ∗ . The algorithm is summarized in Algorithm 3.

Algorithm 3: Maximum Likelihood Estimation for Surrogate Network Learning
Input: BN-Large network A, BN-PA network B, surrogate network Bθ, initial distri-
bution psisj(t), and pre-computed output distribution psi(t+ 1)
Parameters: Number of samples L
Output: θ∗, parameters for surrogate network CPTs
1 for j = 1→ L do
2 Forward sample x(j), a full configuration of A using Monte Carlo forward sampling;
3 end
4 Solve θ∗ = argmaxθ

∑L
j=1

∑4
k=1 θ(Nbk(x)

(j)(t+ 1), x(j)(t), Nbk(x)
(j)(t)), subject to

5 psi(t+ 1) =
∑

sj ,sk∈S θsi,sj ,sk · psjsk(t), ∀si ∈ S;
6 Return θ∗;

4.4 KL-based Search Tree Exploration

In the basic MLE algorithm, we used Monte Carlo forward sampling to generate the sam-

ples, however, we can devise a more intelligent way to generate samples. Our goal is to find

samples that reduce the difference5 between our surrogate model (the 8 node model) and the

model we are approximating (the 25 node model). It is possible for the samples that we draw

to not really inform us well on how to reduce this difference. This is because high probability

areas in the 25 node model do not directly correspond to areas where the 8 and 25 node mod-

els differ greatly. Key idea: instead of drawing random samples, we will combine sampling

with search aiming for diverse samples that are likely to reduce the KL-divergence between
5It is well known (see 6.4.1 in [58]) that maximizing likelihood is equivalent to minimizing KL-divergence. For

the rest of this discussion, we talk in terms of minimizing the distance (KL-divergence) between the two models.

74



our surrogate model (the 8 node model) and the model we are approximating (the 25 node

model).

From this point onward, we’ll refer to the the 25 node model as model A and the 8 node

model as model B for simplicity. Furthermore, we will assume bi-valued variables (correspond-

ing to evolutionary games with two strategies) and use PA, and PB to denote distributions on

model A and model B, respectively. We will use PBθ
to denote the distribution of the extended

model B parameterized by θ that we aim to learn.

4.4.1 Informative Sample Generation

In order to guarantee that all the samples are different6 and aim towards meaningful samples

we generate a fixed number L of partial configurations from the large network A using best-

first search along some variable ordering guided by a heuristic function. For example, the first

two nodes that are generated are associated with the root variable X1 and represent the partial

configurations (X1 = 0) and (X1 = 1). In the best-first search, we want a heuristic that will

explore branches of high difference between the models. To do this, we define a new KL heuristic

for the partial configuration (X1 = 0) as:

hkl(X1=0) = [log(PA(X1=0))− log(PB(X1=0))] · PB(X1=0) (4.6)

This heuristic has an interesting property where if we expand all of the nodes at a given level

and sum all of the KL heuristic values on that level, we obtain the KL divergence between the

distributions represented by A and B on the subset of variables that have been expanded at that

6Having all samples be different means that all samples will provide information. We can compute the exact
probability PA(x) for any sample x, so duplicate samples do not give any meaningful information.
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level. For example at the very first level expanded we have that:

DKL(PA(X1)||PB(X1)) =
∑
x

[log(PA(X1=x))− log(PB(X1=x))] · PB(X1=x)

=
∑
x

hkl(X1 = x) (4.7)

where
∑

x sums through all possible values for X1 where each value corresponds to a node on

the first level of the search tree. Intuitively, branches with a high heuristic value correspond to

branches that contribute the most to the distance between the two networks.

Since it is difficult to directly compute PA(X1 = 0) and PB(X1 = 0) in the kl heuristic, we

approximate these terms using the weighted mini-bucket (WMB) heuristic [46] with an i-bound

of 10. Namely, WMBE is used to compute an estimate of the partition function conditioned on

the node’s partial configuration.

Once we have L leaf nodes (each representing a partial configuration) we extend each to

a full configuration by forward sampling the rest of the variables using the 25 node network

yielding a data point x(j) conditioned on the node’s partial configuration.

Using these L full samples, we solve for θ∗ that minimizes the following loss function:

θ∗ = argmax
θ

L∑
j=1

logPBθ
(x(j)) · PA(x

(j))

subject to

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S (4.8)

with an additional term PA(x
k) where each θ expression is also multiplied with the probability
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of the sample P (xk). We can justify loss function because in the limit of when L→∞, this loss

function is equivalent to minimizing the KL divergence. This is formally stated in the following

Theorem. The full KL-Search algorithm is shown in Algorithm 4.

Algorithm 4: KL-Search Minimization
Input: Two Bayesian networks: a large network A, a smaller network B, and a param-
eterized extended network Bθ such that all nodes in Bθ are in A, a variable ordering
o over A, initial pair-wise distribution psisj(t), and pre-computed output distribution
psi(t+ 1) for a single variable
Parameters: Number of samples L
Output: θ, estimated parameters that minimize the distance in Eq. 4.8 between A and
Bθ

1 T ← data structure for the OR-search tree over A using ordering o;
2 OPEN← {⟨root(T ), 0⟩};
// frontier nodes are ordered by the 2nd value

3 for i = 1→ L do
4 v ← OPEN.dequeue() ; // remove the node of highest priority

5 for u ∈ children(v) do
6 hkl(u)← [log(PA(u))− log(PB(u))] · PB(u) ; // (PA(u) w/ WMBE)

7 Add < u, hkl(u) > to OPEN;
8 end
9 end

10 Let X be an empty list;
11 for v ∈ OPEN do // there will be L leaf nodes in OPEN

12 Forward sample x, a full configuration of A conditioned on the partial configuration
represented by v;

13 Append x to X;
14 end
15 Solve θ∗ = argmaxθ

∑L
j=1 logPBθ

(X(j)) · PA(X
(j)), subject to

16 psi(t+ 1) =
∑

sj ,sk∈S θsi,sj ,sk · psjsk(t), ∀si ∈ S;
17 Return θ∗;

Theorem 4.4.1.1 (Asymptotic Convergence of KL-Search Minimization). Let θL be the result

of KL-Search Minimization [Algorithm 4] given L samples. Then given a family of extended
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networks Bθ parameterized by θ:

lim
L→∞

θL = argmin
θ

DKL(PA||PBθ
) (4.9)

Proof: Since samples are generated from leaf nodes who are guaranteed to be different,

it implies that no samples are identical. If the search tree is fully expanded, our optimization

problem becomes:

θ∗ = argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)

= argmax
θ

EX∼PA
[logPBθ

(X)] (4.10)

which is just maximizing the log likelihood. With some additional derivation:

θ∗ = argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)

= argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)− logPA(X) · PA(X)

= argmax
θ

∑
X∈A

log
PBθ

(X)

PA(X)
· PA(X)

= argmin
θ

∑
X∈A

− log
PBθ

(X)

PA(X)
· PA(X)

= argmin
θ

∑
X∈A

log
PA(X)

PBθ
(X)
· PA(X)

= argmin
θ

DKL(PA(X)||PBθ
(X)) (4.11)

it can be shown that maximizing the expectation EX∼PA
[logPBθ

(X)] is equivalent to minimizing
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the KL-divergence DKL[PA(X)||PB(X)], so our search procedure is guaranteed to eventually

find the 8 node parameterized model having minimum KL-divergence as the search tree app-

roaches full expansion.

4.4.2 Additional Computational Details

In practice it is difficult for black-box solvers to satisfy the marginal probability constraint.

This is even more of an issue in games with a larger number of strategies. To address this, we

turn the hard constraint into a soft constraint:

θ∗ = argmax
θ

L∑
k

logPBθ
(xk) · PA(x

k)+

C ·
∑
x

[
px(t+ 1)− (

∑
y,z∈S

θx,y,z · pyz(t).

]2

(4.12)

For our empirical tests, we solve this optimization problem with Sequential Least Squares Pro-

gramming (SLSQP), a method for solving nonlinear optimization through a sequence of quadratic

problems, through the minimize routine in the SciPy python library [56, 57].

4.4.3 Scaling up to More Strategies

To scale up the method to handle evolutionary games with more strategies, the major comp-

utational bottleneck is Equation 4.6 using our WMB approximation:

hkl(X1=0) = [log(PA(X1=0))− log(PB(X1=0))] · PB(X1=0)
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While this equation can be evaluated in 25 node networks having 3 or less strategies, WMB

heuristics become difficult to evaluate directly in 25 node networks with 4 or more strategies

due to the size of the CPTs in the network. Therefore, instead of computing PA(X1 = 0) ≈

WMB(X1 = 0), we propose an easier to compute heuristic such as:

PA(X1 = 0) ≈ ẐA(X1 = 0) =
1

N

N∑
i=1

ẐA(x
(i)), x(i) ∼ PA(x|X1 = 0) (4.13)

where ẐA is a stochastic estimate of the partition function of A conditioned on (X1 = 0) for N

samples. We propose a quick estimate for the partition function to be evaluated from just a single

sampled configuration (N = 1 in Eq. 4.13)7. We’ll call our algorithm using this heuristic Fast

KL-search.

4.4.4 Learning and Inference

KL-Search (Algorithm 4) and Fast KL-search (step 6 in Algorithm 4 with our simplified

heuristic) both work over one timestep of the evolutionary game. The θ∗ obtained as the re-

turn value from these algorithms only minimizes the kl divergence between models for a single

timestep. The optimal θ value for Bθ can change at each timestep and is dependent on the current

values of psi(t) and psisj(t). Thus the full algorithm for our approach has two parts: learning

(KL-Search) followed by inference (TDBNA in Algorithm 2) and there can be multiple ways to

incorporate the two together. Some methods for doing this include:

• Static: Run KL-Search for only the first timestep (or first few timesteps) of the TDBNA

algorithm.

7This Z-estimate would just the product of all the weights down a single path in an OR-search tree.
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• Dynamic: Run KL-Search for every timestep of the TDBNA algorithm.

• Threshold: Run KL-Search if the values for psi and psisj change beyond a certain threshold

from the last timestep it was applied.

Determining what regime to run KL-Search with a TDBNA requires analyzing the trade-off be-

tween noise, speed and accuracy. For example, if KL-search is run using the static regime, we

are guaranteed that the trajectory will not have noise later (since the remaining timesteps will

be computed with only exact inference on a surrogate model). Running it in every iteration may

produce more accurate results, but will naturally take longer to compute and expose the trajectory

to noise (possibly obscuring qualitative results).

Finding the most effective method for interleaving learning with inference will be left to

future work. Our goal in the empirical results section will be to determine what methods reduce

the single iteration difference the most out of all learning methods.

4.5 Empirical Results

We will first summarize the algorithms we will compare in this section. The methods used

in our comparisons will include:

• 8 node (exact): the estimate obtained from exact inference on the 8 node network

• AS: Abstraction Sampling on a 25 node TDBNA

• MC: Forward sampling on a 25 node TDBNA

• MLE: The surrogate network approach from Section 4.3 without doing KL-search to gen-

erate the data points.
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• KL: The estimate obtained using θ∗ from Algorithm 4

• FKL: The estimate obtained using θ∗ from Algorithm 4 with step 6 using a simplified

heuristic

In practical application, we are interested in querying P (X(t+ 1), Nb(X)(t+ 1)) to com-

pute psisj for the next time step. Therefore, we are interested in reducing the distance between

Psim(X(t + 1), Nb(X)(t + 1)) and Pmethod(X(t + 1), Nb(X)(t + 1)) where Psim denotes the

distribution calculated using a simulation on a 3000× 3000 grid. We will use the measure:

DKL(Psim(X(1), Nb(X)(1))||Pmethod(X(1), Nb(X)(1))) (4.14)

to evaluate how effective different approximate inference algorithms are as we show in Figure

4.4, 4.5, and 4.6. Specifically, we will evaluate the distribution distance at t = 1 in our spatial

evolutionary game to compute the single iteration KL-divergence for each method.

4.5.1 Comparison of Methods

For an initial comparison, we use the Deadlock (DLK) game (see Table 4.6) from Fig.

4.1 that we employed as a motivating example. Figure 4.4 depicts KL-divergence between the

method and simulation at (t = 1) as a function of the chosen inference scheme. We see that

on the DLK game, the KL-search approach outperforms all of the other methods in terms of

KL-divergence, and notably outperforms AS (400 samples), MC (400 samples), and MLE (400

samples) with just 100 samples.

We next compare KL-search (Algorithm 4), Fast KL-search (Algorithm 4 with Eq. 4.13),
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Figure 4.4: Sample efficiency comparison (measured using average KL divergence) on the Dead-
lock evolutionary game at (t = 1). Results are averaged across 10 separate runs for each method

Pair Approximation (BN-PA), and Abstraction Sampling using the average KL divergence metric

as in Fig. 4.4. For these set of tests, we average the the results of 30 separate runs and allow each

method to generate 100 samples for each run. For inference on the surrogate network for KL-

search/Fast KL-search we employ standard Bucket Elimination as described in Section 2.3.2.1.

The results are displayed in Fig. 4.5, which compares the three methods across 5 different

evolutionary games (see Table 4.6). Both the Fast KL-search (denoted fkl in the figure) and the

regular KL-search with WMB heuristic significantly outperforms Abstraction Sampling in all

games.

4.5.2 Larger Games

The only method that can run on games with more than 3 strategies is Fast KL-Search. As

mentioned earlier, with 4 or more strategies WMBE heuristic is hard to compute because of its

inherent table representation of the CPTs which become too large. We next show a comparison
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Figure 4.5: Average KL divergence at (t = 1) between simulation and each of [abstraction
sampling (abs), KL-search using WMB (kl), pair approximation (pair), and KL-search using a
single configuration sample (fkl)].
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Figure 4.6: Average KL divergence at (t = 1) between simulation and each of [pair approxim-
ation (pair), and KL-search using a single configuration sample (Fast KL-search) at 100 and 200
samples] on games with a high number of strategies.

with the method known as pair approximation [2] in Fig. 4.6 on these large games (a 4 strategy

and 6 strategy game from Table 4.6. We observed that in these larger games, we need at least 100

samples in order to outperform pair approximation.

4.5.3 Time Comparison

A comparison of time per probe/sample is shown in Table 4.3. The table is generated by

aggregating average time statistics from the experiments in Fig. 4.5 and 4.6 and dividing by the

number of samples given (L = 100). We observe that Fast KL-Search actually takes more time on

average than normal KL-Search per sample. This is because the time for the latter is frontloaded

in computing the initial WMBE tree (which is not included in these time comparison results as it

is pre-computed). For individual samples, computing a WMBE heuristic (e.g. WMB(X1 = 0))

in KL-Search takes less time than evaluating the value of a single sample in Eq. 4.13 for Fast

85



Table 4.3: Comparison: Average time per sample (s)

Number of Strategies Abstraction Sampling KL-Search Fast KL-Search

2 0.5464 0.01419 0.02019
3 0.7092 0.02829 0.03549
4 - - 0.1697
6 - - 0.7299

KL-Search. As expected, both methods take much less time than Abstraction Sampling. The

time for computing a full trajectory is shown in Table 4.5. These time results include the time

taken for computing the WMBE tree at each timestep in AS and KL-Search. With the WMBE

tree computation step taken into account, we can observe that Fast KL-Search is indeed faster

than normal KL-Search for generating a full trajectory.

One sample in AS is a full probe that expands O(d · h) nodes in a search tree where d is

the number of abstract states and h is the tree’s depth. This takes O(d · h ·L) time where L is the

number of samples. For KL-Search and Fast KL-Search, only L nodes in the search tree need to

expanded to get L samples, so the final time is just O(L). This is summarized in the table 4.4.

Table 4.4: Algorithm complexity for AS, KL-Search and Fast KL-Search per sample

AS KL-Search Fast KL-Search

O(d · h · L) ·O(1) O(L) ·O(1) O(h) ·O(L)

Table 4.5: Comparison: Time (s) per full trajectory (with time horizon T = 10). The methods AS,
KL, FKL all use (L = 100) samples and the simulation is performed on a 3000× 3000 grid.

# Strat Sim Matrix8 BN-PA w/ BE BN-Large w/ AS Alg. 2 w/ KL Alg. 2 w/ FKL

2 849.091 60.996 1.429 777.921 64.872 29.703
3 = = 2.203 1450.367 98.869 54.842

8On populations located on grids, it is possible to accelerate computation on an agent based simulation for simple
games using matrix operations with the Python library numpy instead of normal loops. These operations will not
work if the spatial evolutionary game is defined over non-grid spatial systems.

86



Figure 4.7: KL divergence for KL-search using a single configuration (Fast KL-search) on RPS
(left) and Deadlock (right)

4.5.4 Individual Runs

In Fig. 4.7, we show two of the divergence curves of individual runs for the Fast KL-Search

method (these runs are one of the 30 runs for Fast KL-Search that were evaluated on RPS and

Deadlock for plotting Fig. 4.5). The behavior of our method is somewhat different from standard

sampling algorithms as the final step of the method is an optimization problem. As a result, there

are certain points in the graph where the optimization problem switches between different local

maxima. This becomes less frequent as more samples are obtained.

4.5.5 Extended Comparison

For a longer comparison, we test Abstraction Sampling vs KL-search on Rock-Paper-

Scissors for approximately 2.5 and 5 minutes in Fig. 4.8. This is quite long since this time limit is

per timestep of the evolutionary game. Each test is performed over an average of 30 independent

runs. We also provide a comparison to the 100 sample results from the earlier figure. The time

taken for KL-search is not exactly 2.5 or 5 minutes due to the stopping criteria used. Since we
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Figure 4.8: KL divergence at (t = 1) for KL-search (Alg. 4) (left 3 bars) vs Abstraction Sampling
(right 3 bars) for longer sample time over the rps game

need to solve an optimization problem and an inference problem for P (X(t+ 1)|Nb(X)(t+ 1))

after sampling, we add an early stopping criteria of 10s before 2.5 or 5 minutes for post-sampling

computation. The KL-divergence continues to converge towards 0 for both methods even beyond

the initial 100-200 samples.

4.5.6 Discussion

In general, both KL-Search and Fast KL-Search outperform Abstraction Sampling in both

sample and time efficiency. When performing approximate inference on a TDBNA it is prefer-

able to use our new proposed methods. However, there are few considerations that need to be

examined before determining how to apply KL-Search:
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• Noise: In section Fig. 4.7, we show the KL-divergence of particular runs. Most notable

are the spikes in the divergence graph. Due to these spikes, there can be considerable

noise when running KL-Search for a small amount of samples. It is then recommended to

run KL-Search for a sufficiently large amount of samples such that drastic changes in the

optimization problem are less frequent. In the examples graphs shown, this would suggest

at running for at least 150 samples.

• Scaling: When the dimensionality of the distribution increases (e.g. for games with more

than 3 strategies), the efficiency of Fast KL-search decreases with respect to pair approx-

imation. This can be observed in Fig. 4.5 and 4.6, the results of Fast KL-search at 100

samples is increasingly worse compared to pair approximation as the number of strategies

increases. As a result, to retain an advantage over pair approximation, it is necessary to

increase the number of samples used as a function of the number of strategies

As shown in the time comparison section, even with the approximate inference methods TDBNAs

are not significantly faster compared to running an agent based simulation. In particular, due to

the sampling effects mentioned above, the KL-Search method may need more than 100 samples

to be effective even when compared to pair approximation. In many cases, this will take longer

than a direct simulation (using matrix accelerated operations) on a 3000 × 3000 grid. However,

there are a few situations where it may be beneficial to use a large TDBNA with KL-search:

• Static regime: As mentioned in Section 4.4.4, if we run Algorithm 2 with KL-Search only

applied to the first few timesteps, the total time cost will be low. With a thresholding

regime, it may be possible to improve the time efficiency of KL-Search based TDBNA in

many situations, although this is left for future work.
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• Rare events: If there are strategies with low proportion in the population but an outsized

impact on population dynamics, it can be difficult to capture accurate dynamics with a

simulation. It can be necessary to run a large simulation many times to get low variance

results. In these case, it can be viable to analyze these low proportions with a TDBNA

instead.

• Spatial structure and complex games: For complex games (games with more complex util-

ity functions or update rules) or games defined on other spatial structures, it will no longer

be possible to use accelerated matrix operations for computing agent based simulations. In

these casse, the simulation on a large grid can take significantly longer (see Table 4.5 where

it takes 850 seconds to generate a trajectory for a game with 2 strategies). Furthermore, on

certain types of graphs (e.g. random regular graphs), TDBNAs (and other moment closure

techniques in general) will perform better due to less short range loops compared to a grid

spatial structure.

• Game-based scaling compared to population-based scaling: It is also clear that the agent

based simulation scales as a function of population size, while the TDBNA scales as a

function of game size.

4.6 Summary

We have introduced a novel approach for performing approximate inference on evolution-

ary game Bayesian networks. Our method, based on optimizing parameterized surrogate Bayes-

ian Networks, leverages the symmetry present in TDBNAs to combine the efficient computation

90



Table 4.6: Evolutionary Game Payoff Matrices

Game Name Payoff Matrix

Prisoner’s Dilemma (pd)
(
2 −1
3 0

)

Snowdrift (sd)
(
2 1
3 0

)
Battle of the Sexes (bos),
symmetric version [54]

(
0 1
2 0

)

Deadlock (dlk)
(
5 −4
3 −5

)

Rock Paper Scissors (rps)

 0 −1 1
1 0 −1
−1 1 0


Random 4 strategy game (4s)


1 3 1 3
−2 4 4 4
1 4 2 5
−2 3 4 2



Random 6 strategy game (6s)


1 3 1 3 3 1
−2 4 4 4 1 1
1 4 2 5 2 3
−2 3 4 2 −1 2
−4 1 3 3 0 3
−2 1 −1 1 1 3
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of smaller TDBNAs with the more accurate results of larger TDBNAs. We formulate the pa-

rameter learning problem as a maximum likelihood estimation problem. We introduce a novel

sample-search approach to generate high value samples for this optimization problem, and empir-

ically demonstrate its effectiveness when compared to existing approximate inference techniques

such as Abstraction Sampling.
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Chapter 5: Fast Fourier Transform Reductions for Bayesian Network Inference

Bayesian Networks are useful for analyzing the properties of such distributed systems for

tasks such as load balancing [59], reliability analysis [60], or fault diagnosis [61]. These networks

typically have large functions (CPTs), making even the specification of the BN itself intractable.

Recall from Chapter 2 that Bayesian Network inference is exponential in the network’s induced

width (or tree-width), making exact inference intractable especially over large CPT’s, as they lead

to very high induced widths [41]. However, a subset of these distributed service models such as

k-out-of-n reliability models include large summations of a distributed resource (e.g. number of

computational hosts, unit of power available per generator in a smart grid) which have stochastic

availability. The unique additive symmetry present in these models make them amenable to

efficient inference and CPT reduction algorithms through the usage of the Fast Fourier Transform

(FFT) [62].

More specifically, many distributed resource problems can be modeled using k-out-of-n

Bayesian Networks [63]. The general idea is to model n different resource providers {S1, . . . , Sn}

which each provide some varying amount of distributed resource (server nodes, power genera-

tion, etc.) with stochastic availability and/or quantity. For example, in a distributed computation

application, each server location can be modeled as a separate node Si which provides some ki

amount of computing resource (e.g. S1 is some server cluster with 300 total available comput-
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Figure 5.1: Bayesian Network for summation of random variables, K =
∑

i Si

ing nodes). As mentioned in [63], the naive k-out-of-n model is one converging node K with n

parents {S1, . . . , Sn} with the structure in Fig. 5.1. The value of the K node is the sum of the

variables {Si, . . . , Sn}. The CPT for node K is very sparse as a table and can be represented

symbolically as the function:

P (K = k|S1 = k1, . . . , SN = kn) = 1k=
∑

i ki
(5.1)

Similar and more complex models can be constructed for the evaluation of other distributed

resource problems where there are multiple providers and the goal is to check whether the sum

of resources sourced from individual providers satisfies a given constraint.

This type of convergent structure can also be found in Bayesian Networks used to represent

Fault Trees [63]. Fault Trees are frequently used to analyze system reliability and a key comp-

onent in many of them are k-out-of-n voting gates [64], which only activate if more than k out of

n parents encounter a fault event. In the distributed resource model, each Si’s domain is simply

{0, 1} and we query the probability that the summation node K has a value greater or equal to k.

Recall the structure of the dynamic Bayesian network used to model a spatial evolutionary

game. In an evolutionary game, the fitness of an agent is evaluated as the sum of payoff values
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obtained by playing normal form games with neighboring agents N(i):

Pay(si) =
∑

j∈N(i) U [si, sj] (5.2)

These Bayesian networks can have large sets of nodes that are topologically identical with respect

to their position in the network. The number of nodes in these sets is dependent on a model

parameter d denoting the number of neighboring agents. Inference on the network can become

cumbersome for large d since the size of the conditional probability table of a payoff valued node

is exponential in d. Like in the aforementioned distributed resource models, these payoff valued

nodes can be thought of as summation nodes.

In this chapter, we will describe a novel algorithm for accelerating probabilistic inference in

networks with additive symmetry. To start off, in Section 5.1, we provide background on causal

independence (CI) in Bayesian networks, and on computing sum of random variables using Fast

Fourier Transform (FFT). We then show how FFT can be used for efficient reduction of a BN with

large CI functions (Section 5.2.1) and subsequently (Section 5.2.2) show how FFT can speed up

general probabilistic inference (e.g., Bucket elimination) when the network has summation-based

CI fragments. Section 5.3 provides empirical evaluation of the above algorithms.

5.1 Background

Casual independence is a probabilistic relationship between a set of causes {c1, . . . , cn} and

an effect e where the effect can be seen as a deterministic function of hidden variables {h1, ..., hn}

such that e = h1∗h2...∗hn where each hi is a probabilistic function of its corresponding ci and ∗ is

a commutative and associative binary operator [65, 66]. This paper is directed towards networks
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possessing causal independence where the ∗ operator is the addition operator + and the effect e

can then be expressed as: e =
∑

i hi.

Causal independence in Bayesian Networks such as Fig. 5.1 enables efficient network

transformations (e.g., temporal transformation [63, 67]) to significantly reduce the size of parent

sets in the network.

Network Transformations. Given a CI Bayesian Network fragment {X,D, F} with a set

of causes {c1, . . . , cn}, an effect e: X = {c1, ..., cn, e} and a set of hidden variables {h1, . . . , hn},

consider a computation ordering over the equation e = h1 ∗ h2... ∗ hn. An example ordering for

a temporal transformation is:

e = (. . . (((h1 ∗ h2) ∗ h3) ∗ h4) ∗ . . .) ∗ hn (5.3)

Given an ordering, denote the quantities enclosed in each parenthesis set as intermediate variables

yi: {y1 = h1 ∗ h2, y2 = y1 ∗ h3, y3 = y2 ∗ h4 . . .}.

A network transformation {X ′, D′, F ′} is a network such that X ′ = {c1, . . . , cn, h1, . . . , hn,

y1, . . . , ym, e} is expanded to include hidden variables hi and intermediate variables yi defined

over a valid computation ordering. The resulting network is also called a decomposition network.

The goal is to transform large parent sets to small ones (e.g. 2 variables per set).

Further work on the topic [65, 66] exploit the decomposition graphs resulting from network

transformations to accelerate bucket elimination (ci-elim-bel in Algorithm 5). It was found that

using ci-elim-bel to exploit casual independence can significantly improve the performance of

exact inference on polytrees (from O(Ndm) to O(Nmd3) where N is the number of nodes, d is

the domain size and m is the size of the largest parent set) as well as in two layer k-n-networks
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(see Fig. 5.6) (from O((k + n)dk) to O((k + n)dmin{k,2n})).

Algorithm 5: ci-elim-bel [65]
Input: A Bayesian network B = (X,D, F ) where F are CI, evidence e
Output: P (x1|e)
1 Generate a decomposition network B′ from B with pair-wise hidden variables
{u1, . . . , um}

2 Generate ordering o = {Z1, . . . , Zn} using B′ s.t. Z1 = {x1} and Zi = {xj} | {uj;uk}
[for details, see [65]]

3 for i = n→ 1 do // create buckets
4 ∀x ∈ Zi, put all network functions with x as highest ordered variable in bucketi
5 end
6 for i = n→ 1 do // process buckets

// h1, . . . , hm are functions in bucketi
7 if (x = ej) ∈ bucketi for ej ∈ e then
8 replace x by ej in each hi and put the result in appropriate lower bucket.
9 else

10 if Zi = {x} then // input variable
11 hZi =

∑
x

∏
j hj

12 else // Zi = {ul;uk}, u = ul ∗ uk

13 hZi =
∑

ul,uk|u=ul∗uk

∏
j hj

14 Put hZi in the highest bucket that mentions hZi ’s variable.
15 end
16 Return αhx1 , (α is a normalizing constant).

We next provide background into the theory of probability generating functions and the use

of Fourier transforms for computing random variable sums that is the main tool we will use to

speedup some computations applied to Bayesian Network inference and reductions.

5.1.1 Random Variable Sums

Suppose we have a set of independent identically distributed (i.i.d) random variables X =

{X1, X2, . . . , XN} with domain D and a random variable Z s.t:

Z =
∑

i Xi (5.4)
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Naively, we can find P (Z = k) by enumerating all Xi values that sum to k, taking O(|D|N) time.

However, we can calculate P (Z = k) more efficiently through probability generating functions

as described next.

Definition 5.1.1 (Probability Generating Functions). A probability generation function (or poly-

nomial) PX for a discrete random variable X , with DX ⊂ N, having a distribution PX is defined

as:

PX(x) =
∑∞

k=0 x
kPX(k) (5.5)

The k-th coefficient of PX , PX(k), can be found by taking derivatives of the generating

polynomial:

PX(k) = P(k)
X (0)/i! (5.6)

where P(k)
X is the k-th derivative of PX .

Theorem 5.1.1.1 (Generating Function Multiplication, (8.37 in [68])). For a set of random vari-

ables X = {X1, . . . , XN} with distributions {PX1 , . . . , PXN
} and their corresponding generat-

ing functions {PX1 , . . . ,PXN
}, the distribution of Z =

∑
i Xi obeys:

P (Z = k) = P(k)
Z (0)/k!, where PZ =

∏N
j PXj

(5.7)

Proposition 1. Computing (PZ)k,∀k using generating polynomial multiplication takes O(|D|2 ·

N2) time.
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Proof. For two generating polynomials PX1 ,PX2 , the product is computed as:

(PX1 × PX2)k =
∑k

j=0(PX1)k(PX2)k−j (5.8)

where subscripts denote the coefficient of the corresponding polynomial. This computation is

quadratic in the size of the polynomials (number of coefficients). In the process of computing PZ ,

the size of intermediate polynomials is bounded by N |D|. Therefore the total time for computing

PZ is:

∑N
i=1 i|D| · |D| = O(|D|2 ·N2) (5.9)

Definition 5.1.2 (Convolution). Let FX(k) = P (X = k) and FY (k) = P (Y = k) be two

probability density functions for random variables X, Y . The convolution of functions FX and

FY is defined as:

(FX ∗ FY )(k) =
∑

j FX(k)FY (k − j) (5.10)

Clearly (PX1 × PX2)k = (PX1 ∗ PX2)(k). Consequently, we can use tools for performing

convolutions to compute the distribution of a sum.

The Convolution Theorem. The convolution theorem provides an alternative method for the

calculation of Eq. 5.10 using the Fourier Transform.

Definition 5.1.3 (Discrete Fourier Transform). The discrete Fourier transform F of a discrete
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probability distribution FX defined over integers [0,M − 1] is:

F̂X(x) = F{FX}(x) =
∑M−1

k=0 FX(k) · e−i2πxk/M (5.11)

F̂X(x) is also defined over M values and is called the Fourier transform of FX and its domain is

called the frequency domain. The inverse Fourier transform is defined as:

FX(k) = F−1{F̂X}(k) = 1
M

∑M−1
x=0 F̂X(x) · ei2πxk/M (5.12)

The original domain is referred to as the time domain.

Theorem 5.1.1.2 (The convolution theorem, (4.3.49 in [69])). For two discrete probability dis-

tributions FX(t) and FY (t), it can be shown that:

(FX ∗ FY )(k) = F−1(F{FX} · F{FY })(k) (5.13)

where F{FX} · F{FY } denotes the pointwise multiplication of the two frequency distributions.

Corollary 5.1.1.2.1 (Symmetry). For i.i.d random variables X = {X1, X2, . . . , XN} and their

sum Z =
∑

Xi, it is easy to show that:

P (Z = k) = F−1(F{FX}N)(k)

where FX(k) = P (Xi = k) (5.14)

Theorem 5.1.1.3 (Time Complexity). For i.i.d random variables X = {X1, X2, . . . , XN} where

each variable has a domain size |D| and Z =
∑

Xi, computing P (Z = k) using Eq. 5.14 will
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take time O(N2|D|2). For non-i.i.d variables, the time complexity is O(N3|D|2).

Proof. When computing the discrete Fourier transform, the size of the distributions before and

after the transforms are applied must be the same. It is necessary to pad the starting distributions

FX with zeros up to the size of the target sum Z which is O(N |D|). The direct computation of

the Fourier Transforms is quadratic in N |D|. Sequentially, the computation consists of:

• Fourier transform F : O(
(
N |D|

)2
)

• Exponentiation F{FX}N : O(N |D|)

• Inverse transform F−1: O(
(
N |D|

)2
)

which in total is O(N2|D|2). In the case of non-i.i.d variables, we perform a Fourier Transform

for each distribution PXi
, O(N

(
N |D|

)2
) and perform point-wise multiplications O(N2|D|) in

the frequency domain bringing the total time to O(N3|D|2).

This computation can be accelerated using the Fast Fourier Transform (FFT). The FFT

is a collection of divide and conquer algorithms (e.g., the Cooley-Tukey algorithm [62]) that

reduces the time required for computing the Fourier transform from O(|D|2) to O(|D| log |D|)

where |D| is the domain size of the discrete distribution being transformed.

Theorem 5.1.1.4 (FFT Time Complexity). For i.i.d random variables X = {X1, X2, . . . , XN}

where each variable has a domain size |D| and their sum Z =
∑

Xi, computing P (Z = k)

using the FFT will take time O(N |D| log(N |D|)). For non-i.i.d variables, the time complexity is

O(N2|D| log(N |D|)).

Proof. The proof is the same as the previous theorem with the Fourier transform computed in-

stead using the FFT in O(N |D| logN |D|) time. Consequently the time required to calculate the
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distribution over the sum of N i.i.d variables defined over consecutive integers is reduced to:

Time(i.i.d) = O(N |D| log(N |D|)). (5.15)

and for non-i.i.d variables:

Time(non-i.i.d) = O(N2|D| log(N |D|)). (5.16)

In practice, even if Xi is not defined over consecutive integers, it is still possible to calculate

the sum distribution of Z using the FFT, however the time complexity is better expressed using

the range of Z:

R = max(Z)−min(Z)

Time = O(R logR) (5.17)

5.2 Application to Bayesian Networks

5.2.1 FFT Reduction

Up to this point, we have been working with sums of random variables. Now, we will apply

the FFT theory towards the reduction of variables in a Bayesian Network.

Consider the Bayesian Network in fig. 5.2 which has 3 types of nodes.

• Source node S take a value in some domain DS
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Figure 5.2: Symmetric Bayesian Network with i.i.d paths between source node S and sink node
E

• A set of N i.i.d nodes Yi that take values in some domain DY

• Sink node E takes a value in a subset of the natural numbers DE ⊂ N

Let U : DY → N be some cost function. We assume:

P (E= e | {Yi = yi,∀i})) =


1 if e =

∑N
i U [yi]

0 otherwise

(5.18)

The size of this function expressed as conditional probability table is exponential in N . However,

using FFT theory, we can reduce the size of this CPT from O(|DE||DY |N) to O(|DS||DE|) by

eliminating Yi, . . . , YN .

Theorem 5.2.1.1 (FFT Reduction). Let B = {X,D, F} with X = {S, Y1, . . . , YN , E} be a

source-sink network with N i.i.d paths as in Fig. 5.2. The network can be transformed into

{X ′, D′, F ′} such that X ′ = {S,E} reducing the CPT for E from size O(|DE||DY |N) to size

O(|DS||DE|) in O(|DS|R logR) time where R is the numerical range of random variable E.
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Proof. Our goal is to define a new CPT for E of size O(|DS||DE|) where each entry is:

P (E= e | S= s), ∀s ∈ DS, e ∈ DE (5.19)

We use the FFT reduction to eliminate all i.i.d nodes Yi in between the S and E nodes. For each

value of (s, e), we proceed as follows:

1. To calculate P (U[Yi] = j|S = s), we transform the distribution on Y ′s from the domain

DY to a distribution on the natural numbers domain N. This takes O(|DY |) time as we

simply iterate through U[y],∀y ∈ DY .

2. Let:

Z =
∑

iU[Yi] (5.20)

Let Fu be the discrete probability distribution of U [Yi]:

Fu(j) = P (U [Yi] = j | S= s) (5.21)

Using the convolution theorem:

P (E= e | S= s) = P (Z = e | S= s) (5.22)

= F−1{F{Fu}N}(e)
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FFT reduction−−−−−−−−→
O(|DS |R logR)

O(|DE||DY |N) O(|DE||DS|)

Figure 5.3: FFT Reduction

which takes O(R logR) where R is Z’s range:

R = N(maxU−minU) (5.23)

We perform the above steps for each value of s ∈ DS giving a final time complexity of:

O(|DS|R logR)

R = N(maxU−minU) (5.24)

to reduce the CPT to O(|DE| |DS|).

Corollary 5.2.1.1.1 (Reduction on general CI Networks). For any set of random variables X =

{X1, . . . , XN} (not necessarily identically distributed) and corresponding sum Z =
∑

i Xi, we

can calculate all probabilities P (Z = k) in O(N2|D| log(N |D|)) time.

Proof. Simply apply the process for FFT reduction without conditioning on values of a source

node S:

1. FFT for each Xi: O(N ·N |D| log(N |D|))
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2. N point-wise multiplications in Fourier Domain O(N2|D|)

3. Inverse FFT for Z: O(N |D| log(N |D|))

Adding these up results in O(N2|D| log(N |D|)) complexity.

5.2.2 Algorithm CI-Elim-Bel with FFT

(a) (b)

Figure 5.4: Five node source-sink Bayesian Network (a) and its decomposition graph (b)

In this section we will show how the use of FFT for processing summation can be incorp-

orated into the bucket-elimination algorithm ci-elim-bel. We will illustrate this with an example.

Consider the five node Bayesian Network in Fig. 5.4 where all Yi’s are i.i.d and are defined by

P (Yi|X) = P (Yk|X), ∀k. and assume Z =
∑

i Yi.

Like in [65], we can perform ci-elim-bel on this network using the decomposition graph in
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Fig. 5.4. The full equation is:

P (Z|X) =
∑
Y1

∑
Y2

∑
Y3

P (Y1|X)P (Y2|X)P (Y3|X)P (Z|Y1, Y2, Y3)

=
∑

Y1,Y2,Y3

P (Y1|X)P (Y2|X)P (Y3|X)
∑

{uz
1,u

z
2,u

z
3,z=uz

1+uz
2+uz

3}

P (uz
1|Y1)P (uz

1|Y2)P (uz
1|Y3)

=
∑

{uz
1,z1|z=uz

1+z1}

∑
Y1

P (Y1|X)P (uz
1|Y1)

∑
{uz

2,u
z
3|z1=uz

2+uz
3}

∑
Y2

P (Y2|X)P (uz
2|Y2)

∑
Y3

P (Y3|X)P (uz
3|Y3)

(5.25)

The elimination steps are as follows for ordering o = {{u1, z1}, Y1, {u2, u3}, Y2, Y3}:

1. bucket Y3 : h
Y3(X, u3) =

∑
Y3
P (Y3|X)P (u3|Y3)

2. bucket Y2 : h
Y2(X, u2) =

∑
Y2
P (Y2|X)P (u2|Y2)

3. bucket {u2, u3} : h{u2,u3}(X, z1) =∑
{u2,u3|z1=u2+u3} h

Y2(X, u2)h
Y3(X, u3)

4. bucket Y1 : h
Y1(X, u1) =

∑
Y1
P (Y1|X)P (u1|Y3)

5. bucket {u1, z1} : P (Z|X) =∑
{u1,z1|z=u1+z1} h

y1(X, u1)h
{u1,u2}(X, z1)

where hYi denotes intermediate functions. The largest operation occurs in bucket {u1, z1} which

has a complexity of |DX ||DZ ||DY |.

Observe that the calculations performed in the buckets {u2, u3} and {u1, z1} are equiva-

lent to multiplying the coefficients of the corresponding generating polynomials. For example,
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consider the following three polynomials:

PhY2 =
∑

i h
Y2(X, u2 = i)xi

PhY3 =
∑

i h
Y3(X, u3 = i)xi

Ph{u2,u3} =
∑

i h
{u2,u3}(X, z1 = i)xi (5.26)

We have that:

h{u2,u3}(X, z1) =
∑

{u2,u3|z1=u2+u3}

hY2(X, u2)h
Y3(X, u3)

is exactly the equation for the calculation of the coefficients in the polynomial product:

Ph{u2,u3} = PhY2 × PhY3 (5.27)

It follows then that for a given number N of Yi nodes, variable elimination using a decompos-

ition graph takes the same amount of time as the generating function polynomial multiplication.

However, as we have shown earlier using the FFT reduction is computationally faster compared

to the generating function approach yielding potentially a speedup compared to CI-based bucket

elimination.

In general, suppose in the variable elimination calculation we have the following sequence

of buckets in the ci-elim-bel algorithm for a temporal decomposition of N , Yi nodes:

• bucket {u1, u2} : h{u1,u2}(X, z1) =∑
{u1,u2|z1=u1+u2} h

Y1(X, u1)h
Y2(X, u2)

108



• bucket {u3, z1} : h{u3,z1}(X, z2) =∑
{u3,z1|z2=u3+z1} h

Y3(X, u3)h
{u1,u2}(X, z1)

• bucket {u4, z2} : h{u4,z2}(X, z3) =∑
{u4,z2|z3=u4+z2} h

Y4(X, u4)h
{u3,z1}(X, z2)

•
...

• bucket {uN , zN−2} : P (Z|X) =∑
{uN ,zN−2|z=uN+zN−2} h

YN (X, uN)

h{uN−1,ZN−3}(X, zN−2)

Computationally, the bucket computations will take O(N2|DU |2|DX |) time. Observe that if the

Yi’s are identically distributed conditioned on X , we have that

hYi(X, ui) = hYj(X, uj), ∀i, j ∈ [1, N ] (5.28)

Theorem 5.2.2.1 (FFT bucket elimination). Given a sequence of N temporal decomposition

buckets in ci-elim-bel for N i.i.d Yi’s that conditionally depend on variable X with domain size

|DX | and sum to variable Z, it is possible to compute the bucket sequence in O(|DX |RZ logRZ)

time where RZ is the numerical range of the domain of the final bucket.

Proof. We perform the following FFT reduction:

1. Define functions FYi

FYi
(X, k) = hYi(X, ui = k)
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i.i.d Y ′
i s non-i.i.d Y ′

i s

BE O(N |DX |R2
Z) O(N |DX |R2

Z)
FFT O(|DX |RZ logRZ) O(N |DX |RZ logRZ)

Table 5.1: Time complexity for computation of temporal decomposition buckets. Top row
(Bucket Elimination), Bottom row (FFT)

2. Perform the FFT: (O(|DX |RZ logRZ))

F̂Yi
(X, t) = F{FYi

(X)}(t)

3. Exponentiate the function F̂Yi
: (O(RZ))

F̂Yi
(X, t)N

4. Perform the inverse FFT: (O(|DX |RZ logRZ))

P (Z|X) = F−1{F{FYi
(X)}N}(Z)

Which in total takes O(|DX |RZ logRZ) time.

If the Yi’s are not identically distributed, we will need to perform an FFT for each FYi
and

replace step 3 with pointwise multiplications which in total will take O(NRZ) time bringing the

total time to O(N |DX |RZ logRZ). A comparison of the different methods can be seen in Table

5.1. For comparison purposes, we can approximately substitute N |DX | ≈ RZ .
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Extending ci-elim-bel. Using ci-elim-bel as the baseline, we can replace the computation of +

in addition based networks with the FFT to create the ci-elim-FFT algorithm (see Algorithm 6).

The FFT operation to compute hZi is performed with respect to the additive variables yl and yk.

Algorithm 6: ci-elim-FFT
Input: A Bayesian network B, evidence e
Output: P (x1|e)
1 Generate a decomposition network from B
2 Generate ordering o = {Z1, . . . , Zn} with Z1 = {x1} using B′

3 for i = n→ 1 do // create buckets
4 ∀x ∈ Zi, put all network functions with x as highest ordered variable in bucketi
5 end
6 for i = n→ 1 do // process buckets

// h1, . . . , hm are functions in bucketi
7 if Zi = {ul;uk}, u = ul + uk then
8 hul =

∏
j,ul∈hj

hj ;
9 huk =

∏
j,uk∈hj

hj ;
10 hZi = F−1{F{hul} · F{huk}}
11 else
12 use regular ci-elim-bel to compute hZi

13 Put hZi in the highest bucket that mentions hZi’s variable.
14 end
15 Return αhx1 , (α is a normalizing constant).

This means that we evaluate:

hZi = F−1{F{hyl} · F{hyk}} (5.29)

for every value of the variables of hZi except y, yl, yk.

5.3 Experimental Evaluation

We evaluate the effectiveness of both approaches proposed for accelerating inference in

Bayesian Networks. Specifically we evaluate the FFT reduction technique [as in section 5.2.1]
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Figure 5.5: Two branch supply-demand network

for network transformation on a selection of common substructures that may be present in larger

networks. We also evaluate the performance of ci-elim-FFT compared to ci-elim-bel on general

two layer additive networks also known as k − n networks. It has been shown that ci-elim-bel

can speed up inference exponentially on k − n networks when k > 2n [70]. We test the scaling

efficiency of ci-elim-FFT in cases where k > 2n where one might want to use ci-elim-bel.

5.3.1 Experimental Setup

We evaluate all inference tasks on a 64-bit machine with an Intel i7-10870H 2.2 GHz CPU

and 32 GB of RAM. The models are written in python with the library pomegranate and bucket

elimination is performed using the library’s pgmpy’s built-in variable elimination. The FFT is

computed using the library numpy. We also compare python implementations (not using pgmpy)

of ci-elim-FFT with ci-elim-bel where the only difference is the method for computing buckets

with two hidden variables.
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Figure 5.6: Two layer additive network

Figure 5.7: Inference times for three scenarios controlled for domain sizes (D = 2, D = 5)
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5.3.2 FFT Reduction Evaluation

We evaluate the FFT reduction for accelerating inference on a selection of networks with

casually independent summation nodes. For each network scenario, we test three different app-

roaches:

1. vanilla bucket elimination (Naive)

2. bucket elimination on a temporal network decomposition as in [63] (Temporal)

3. FFT reduction [as in Section 5.2.1] followed by bucket elimination (FFT)

We test each approach in finding the marginal distribution of a specific variable in three scenarios:

1. P (K = k) in an n-parent convergent network (Fig. 5.1) found in the distributed resource

applications described in [63]

2. P (E= e) in an n-path source-sink graph (Fig. 5.2) which can be found as substructures of

the Bayesian Networks for evolutionary games

3. P (A= a) in a supply and demand model for distributed resource production and consump-

tion shown in Fig. 5.5. This consists of two n-parent convergent networks that feed into

a boolean-valued node that is True if supply is larger or equal to than demand and False

otherwise.

For each network class, we evaluate end-to-end inference time (construction time and in-

ference time) for increasing numbers of casually independent nodes (Si in Fig. 5.1, Yi in Fig.

5.2, and Xi, Yi in Fig. 5.5). We also evaluate inference time for the FFT approach on networks

with i.i.d intermediate nodes vs. non-i.i.d nodes.
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5.3.3 Results of FFT Reduction

In the three scenarios tested, as seen in Fig. 5.7, the FFT reduction method obtains a sig-

nificant computational advantage over the naive approach as well as inference on the temporal

decomposition. In Fig. 5.7, it is easy to see how each method scales relative to their theoreti-

cal complexity. The naive bucket elimination approach scales exponentially while the temporal

decomposition method scales at a cubic rate. In comparison, employing the FFT reduction to re-

move i.i.d nodes before performing bucket elimination significantly decreases the computational

cost of subsequent inference.

Surprisingly, there is not much of a difference between networks with i.i.d nodes versus

non-i.i.d nodes for the FFT approach, suggesting that the inference time for the reduced network

overshadows the complexity of performing the FFT reduction.

5.3.4 Evaluating Ci-elim-FFT

We compare the computational efficiency of ci-elim-bel with ci-elim-FFT on 2-layer addit-

ive networks (Fig. 5.6). This is a generalization of the Binary 2-layer Noisy-Or (BN2O) networks

commonly used in medical diagnosis. Instead of binary variables, we assume that the sources can

be stochastically transformed into integer-valued variables which sum to an integer valued result.

These types of networks can be used to model numerical medical findings such as body temper-

ature or blood test results where separate causes (diseases and medications) have additive effects

on the observed findings. We measure the efficiency of finding

P (S1|F1 = e1, F2 = e2) (5.30)
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Figure 5.8: Inference times for two layer additive networks controlling for domain size (top) and
number of source nodes (bottom)
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given findings (e1, e2). We control for the number of causes ({S1, . . . , SN} in Fig. 5.6) as well

as the domain size of each variable.

Fig. 5.8 demonstrates ci-elim-FFT’s clear advantage over ci-elim-bel. This advantage

increases both as the number of source nodes increases and as well as when the domain size of

variables increases.

5.4 Related Work and Limitations

Our work is not the first work which has attempted to apply the Discrete Fourier Transform

(DFT) to exact probabilistic inference on Bayesian Networks. The DFT can be thought of as a

special case of the tensor decomposition approach first described in [71]. In [72], the DFT was

applied as a special case of the tensor decomposition towards test score prediction on a subset

of the source-sink type networks that we discussed in section 3. However, in their approach, a

naive application of the DFT was used that relies on matrix multiplication which is equivalent to

computing Eq. 5.11 directly. Due to this, we believe that our FFT based approach can provide

a method for lowering the computational cost of test score prediction even further beyond the

existing DFT approach using matrix multiplication. Furthermore, our work also improves upon

prior work by directly integrating the FFT into a general bucket elimination algorithm.

The FFT itself has also been applied towards the calculation of random variable sums in

[73], but not directly towards the similar problems as found in summation type nodes in Bayesian

Networks or combined with algorithms such bucket elimination.

Conceptually, the problem of accelerating the computation of summation-based CPTs is

also similar to the problem addressed through the use of counting factors in the literature on
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lifted variable elimination [74]. However, there are a few key differences. Most notably, while

lifting is said to work on general models, in practice several restrictions must be satisfied for

lifting to provide a computational advantage. In particular, it is necessary for the factors present

in the equation to be identical. This allows work to be exponentiated out through symmetry and

is equivalent to the case of i.i.d variables in our work. If the factors are not identical, then it is

necessary to perform grounding, defaulting to basic variable elimination.

While our FFT method provides the greatest computational advantage when all variables

are i.i.d, we note in corollary 3.3.1 and in the paragraph right after theorem 3.2, that the method

can still be applied even when the variables are not i.i.d, providing theoretical speedup (as shown

in Table 5.1) and an empirical speedup as observed (in Figure 5.7, 5.8). Importantly, CI-elim-

FFT can be applied to any Bayesian Network that include summation nodes, and not just to the

four types of networks demonstrated in the empirical results. For general networks, the only

requirement for ci-elim-FFT to provide a speedup over a temporal decomposition/ci-elim-bel is

the presence of summation type nodes.

It may be interesting to incorporate our FFT method as a type of lifted operator for counting

factors over asymmetric variables, extending ci-elim-FFT into an analagous lifted version. We

leave this problem for future research in this area.

5.5 Summary

In this chapter, we have presented an efficient method for reducing the size of summation-

based Conditional Probability Tables (CPTs) in Bayesian Networks having causal independence

(CI). We also have shown how to apply this reduction directly towards the acceleration of Bucket
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Elimination. We have provided experimental results showing the FFT reduction’s advantage for

inference on a selection of common sub-networks found in Bayesian Networks for modeling

distributed resource. We have developed an extension to ci-elim-bel called ci-elim-FFT and

provided empirical results that demonstrate its scaling advantages.
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Chapter 6: A Mean Field Game Model of Spatial Evolutionary Games

So far, we have mainly discussed evolutionary games, their spatial extensions, the methods

used for approximating their behavior, and methods for improving the quality of those approx-

imations. A Mean Field Game (MFG) is a different type of game altogether from evolutionary

games, but is likewise used to analyze the interactions between a large system of agents. In evo-

lutionary game theory, mean field approximations are used to approximate the dynamics of the

population by only analyzing a set of mean field terms.

Due to their properties, existing Mean Field Games are not capable of modeling an evo-

lutionary game and similar spatial systems. To address this, we have developed our novel Pair

Approximation Mean-Field game (Pair-MFG) model that is a generalization of the spatial evolu-

tionary game model such that the behavior of a given spatial evolutionary game (or more specif-

ically the behavior of its pair approximation) is a special case trajectory of the corresponding

Pair-MFG. In Section 6.1, we will start by giving a brief background on Mean Field Game The-

ory. This is followed in 6.2, where we describe the process for defining a Pair-MFG building

off of existing discrete MFGs. We then discuss our novel fixed point methods in Section 6.3 for

solving these models and then empirically demonstrate that these methods are capable of solving

the models in Section 6.4.
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6.1 Background on Mean Field Games

Mean Field Games (MFG) are a game theoretic model of large populations first developed

independently by Huang et al. [75] and Lasry and Lions [76] as a formalism for approximating

the behavior of a large number of rational agents. The central idea behind this model is the

notion of a mean field, or an aggregate population distribution. The combinatorial number of in-

teractions between players is approximated as a single interaction between a representative agent

and the aggregate mean field distribution. This approximation error tends to zero as the number

of agents becomes large. In MFGs, each agent independently optimize some cost function that

depends on a mean field term. The goal of each agent in an MFG is to optimize their control

(strategy) with respect to the cost (payoff) they receive. It is important to note that this is differ-

ent from evolutionary games where the strategy of each agent simply evolves according to some

evolutionary update rule.

Since its initial inception, many types of MFGs have been developed that encompass a wide

variety of mathematical models that allow for the simulation and analysis of large populations of

rational agents. In principal, like mean field approximations for evolutionary games, MFG’s can

be thought of as a type of macroscopic model. In this case, the macroscopic model is used to

approximate the behavior of a corresponding microscopic model which consists of a multi-agent

optimal control problem. An MFG consists of two components:

• A state evolution equation or forward equation: each agent has some state that evolves

over time. As an example, let xi be the state of an agent in some continuous state space,
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one possible forward equation is:

∂xi

∂t
= M(xi(t), α(t)) + w(t) (6.1)

where α is some control variable and w is additional random noise.

• An objective function or backward equation: each agent has some objective function that

they are tasked with optimizing over the time horizon. As an example, consider a finite

time horizon [0, T ], one possible backward equation is:

min
α

∫ T

0

F (xi(t), θ(t), α(t)) +G(xi(T ), θ(T )) (6.2)

where θ is a mean field term that denotes the average state of agents in the population, F

is the running cost function, and G is a terminal cost function.

Like the mean field approximation in spatial evolutionary games, the forward equations of each

individual agent can be rewritten to be formulated as a time evolution equation defined on the

population profile θ, instead of the individual xi’s. The primary difference between spatial evo-

lutionary games and mean field games is the presence of the backward equation which allows for

each individual in the population to have agency.

In existing literature, there are many types of mean field games. For the purpose of this

discussion, we’ll give an example of three types of MFGs that each deal with spatial systems

differently:

• Linear Quadratic Gaussian Mean Field Games (LQG-MFG): These types of games [77]

consider well mixed populations in which each agent interacts equally with every other
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agent in the population. In these types of games, constraints are placed on the format of

the cost functions (quadratic) and the forward equation (linear). This allows for efficient

algorithms for solving these games. As a result of being a well-mixed model, these types

of games lack a spatial component.

• Optimal Transport Mean Field Games: In the optimal transport mean field game [78], the

state space of each agent is their location in some real space. The control of each agent

is their velocity in this real space. While these types of models have a spatial component,

it is equivalent to their strategy component and thus these MFGs can’t be used to model

strategy evolution on networks.

• Graphon Mean Field Games (GMFG): A graphon mean field game GMFG [79] [80] is

a type of multi-population mean field game where a population of agents is divided into

subclusters located on nodes within a network. In this model, the dynamics and/or cost

function of an agent decompose into two components: a local well-mixed component and

an averaged effect over other population clusters. To our knowledge, this is the only type

of currently existing MFG model that can support distinct spatial and strategy components.

However, GMFGs differ from our approach in how the spatial component is handled. In

GMFGs, the spatial component is analyzed using a graphon, which is essentially the infinite

limit of an adjacency matrix. Since the effect of the spatial component is computed using

a pair-wise kernel integrated over the graphon, it is impossible to model nonlinear effects

of local configurations.

Due to their properties, none of these prior formulations are capable of modeling an evolutionary

game and similar spatial systems. To address this, in the following sections, we will describe our

123



novel Pair Approximation Mean-Field game (Pair-MFG) that is a generalization of the spatial

evolutionary game model such that the behavior of a given spatial evolutionary game (or more

specifically the behavior of its pair approximation) is a special case trajectory of the correspond-

ing Pair-MFG.

6.2 Mean-Field Game Formulation

In this section, we formulate the Pair Approximation Mean-Field Game (Pair-MFG), a

Mean Field Game (MFG) model that generalizes the behavior of spatial evolutionary games.

First, we will give an example of how a continuous MFG is formulated through the LQG-MFG

followed by a discrete version of that game.

6.2.1 Continuous Linear Quadratic Gaussian MFG

A Linear Quadratic MFG models [81] a population of agents {1, . . . , n} where each agent

i individually minimizes a cost function:

E
[1
2

∫ T

0

xT
t Ftxt + (xt − xt)

TF t(xt − xt) + vTt Ltvtdt

+
1

2
xT
TGTxT + (xT − xT )

TGt(xT − xT )
]

(6.3)

where:

• xt is a vector specifying the agent’s state

• xt is a vector specifying the average of all agent states

• vt is a vector specifying the agent’s control
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• Ft is a matrix specifying the quadratic running cost of being at state xt

• Lt is a matrix specifying a quadratic transport cost of using control vt

• F t is a matrix specifying the quadratic running cost of being at state xt with respect to the

population average xt

• GT and GT being the terminal cost versions of F

The position of each agent changes according to a state evolution equation:

dxt =
(
Atxt +Btvt + Atxt

)
dt+ σtdWt (6.4)

where At, At, Bt are some matrices that describe the movement of the agent as a function of its

control vt, current state xt and the average of other agent states xt. The last term σtdWt can be

used to describe additional Gaussian noise present in the state evolution equation.

6.2.2 Discrete Mean Field Game

Consider the discrete version of the LQG-MFG model presented in section 2 of [82]. Sup-

pose each agent x can be in a set of states si ∈ S and the state of a player evolves according to a

controlled Markov process:

P
(
x(t+ 1)= sj | x(t)= si

)
= αij(t) + ηij (6.5)
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Each agent specifies controls (or actions 1) αij that correspond to transition probabilities between

all si, sj ∈ S, i ̸= j and each agent tries to minimize the objective function:

min
α

E

[∫ T

0

C(x(t), θ(t), α(t))dt+G(x(T ), θ(T ))

]
(6.6)

where θ(t) describes the distribution of other players in each state at time t and the cost function

C is separated into the running cost F and a quadratic energy cost:

C(x(t), θ(t), α(t)) = F (x(t), θ(t)) +
1

L

∥α(t)∥2

2
(6.7)

where L is some constant and

∥α(t)∥2 =
∑
i ̸=j

αi,j(t)
2 (6.8)

6.2.2.1 Well-mixed EGT

Given the above discrete framework, it is easy to formulate an MFG model analogous to

an EGT model for a well mixed population. We define F (x(t), θ(t)) to be:

F (x(t), θ(t)) =
∑
i

Pxiθi (6.9)

where Pxi is the (x, i)-th entry of the payoff matrix P. The running cost is computed against θ(t)

which describes the average state distribution of the entire population. In essence, an agent will

1In reinforcement learning literature, this would correspond to actions taken at each timestep
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receive a cost from playing a game with a well-mixed population.

6.2.3 Pair Approximation Mean Field Game

We make an observation that, in the discrete MFG framework, the mean field θ(t) repre-

sents the distribution of a single agent. In EGT literature, this is the same property as evolutionary

dynamics defined on a well-mixed population such as the replicator dynamics. As mentioned in

Section 2.2.1, pair approximation is a natural extension of evolutionary dynamics to structured

populations where the equations use higher order distributions. Suppose then, in a manner similar

to pair approximation, we define a pair-level mean field distribution θ(t) over S × S. This will

be the basis for our Pair-MFG model.

The Pair-MFG builds on top of the discrete MFG through the addition of a local density

mean field. We denote this local density by θij . We define our running cost F for a single agent

in the state x to be:

F (x(t), θ(t)) =
∑
i

Pxi
θxi(t)

θx(t)

θx(t) =
∑
j

θxj(t) (6.10)

Like in the discrete MFG model we define a state evolution equation based on a Markov process,

this time using a more complicated equation using the pair-level mean field:

P (x(t+ 1) = sj|x(t) = si) =
∑

cf∈Cd

Pcf(i, t) · (αij(t, cf) + ηij) · γ (6.11)

where Cd is the set of all possible local neighborhood assignment configurations for an agent
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with d neighbors and γ is the percentage of agents that can change their strategies during each

generation. More rigorously, we define Cd as the set of tuples:

Cd = {(x1, x2, ..., x|S|) s.t.
∑

xi = d} (6.12)

where xi denotes the number of neighbors of the agent x that are playing strategy i and d is the

degree of the network. We constrain the control variables αij(t, cf) ∈ [0, 1] to ensure that equation

6.11 produces a valid probability distribution. Pcf(i) denotes the probability of the configuration

cf and is a function of θ(t) and we can approximate it by assuming all neighbors are independently

distributed:

Pcf(i, t) =

(
d

x1, x2, ..., x|S|

)∏
j

(
θij(t)

θi(t)

)xi

cf = (x1, x2, ...x|s|) (6.13)

In this setting, we define controls αij(cf) for each transition i → j that is some function of cf.

From Eq. 6.11, using pair approximation, we can derive the time evolution of joint probabilities:

θij(t+ 1) = θij(t) + ∆θij(α, t)

∆θij(α, t) =
∑
k

∑
cf∈Cd

[
θk(t)Pcf(k, t)

N(j, cf)
d

αki(t, cf)γ

−
∑
cf∈C

θi(t)Pcf(i, t)
N(j, cf)

d
αik(t, cf)γ

]
(6.14)

where N(j, cf) denotes the number of nodes assigned j in neighborhood configuration cf or the

xj value in the cf tuple. To simplify notation for further discussion, let M denote the mean field
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evolution equations that produce θ(t) according to Eq. 6.14:

θ = M(α, θ(0)) (6.15)

6.2.4 An example

Let us define a pair-MFG for modeling an evolutionary game on a square lattice grid (d =

4) with two strategies [0, 1] and the following payoff matrix:

PAY =

2 −1
3 0

 (6.16)

For our MFG model we want low costs for an agent to correspond to high payoffs in the original

EGT. A valid transformation for this mapping is to subtract PAY from the maximum value of

PAY and add a small constant cost, P = max(PAY)−PAY + 1:

P =

2 5

1 4

 (6.17)

Our mean field distribution is defined as four values: θ00, θ01, θ10, θ11 that sum to 1 and two

additional computed values: θ0 = θ00 + θ01, θ1 = θ10 + θ11 Our running cost F is:

F (x(t), θ(t)) =


1
θ0
(2θ00 + 5θ01) x = 0

1
θ1
(1θ10 + 4θ11) x = 1

(6.18)

and our terminal cost is the same: G(x(T ), θ(T )) = F (x(T ), θ(T ))
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Since our model only has two strategies, a configuration cf can be represented with just

one variable c ∈ [0, 4] that denotes the number of agents in the neighborhood playing the first

strategy. As an example, we have that θ00 evolves as such:

P
(
x(t+ 1)=1 | x(t)=0

)
=

4∑
c=0

Pc(0) · α01(t, c)γ

∆θ00 =
4∑

c=0

θ1Pc(0)
c

4
α10(t, c)γ − θ0Pc(0)

c

4
α01(t, c)γ

Pc(0) =

(
4

c

)(
θ00
θ0

)c (
θ01
θ0

)4−c

(6.19)

The transition probabilities and equations for other θij are similarly defined.

6.2.5 Features

6.2.5.1 Generalization of best response

The model is a generalization of a spatial evolutionary game using the best response update

rule. To see how this is the case, suppose we limit our pair-MFG model to one generation t ∈

{0, 1}.

Theorem 6.2.5.1 (Generalization of best response). There exists a set of controls α (and cost

functions C,G) such that the pair-MFG model is equivalent to a pair approximation model of a

best response spatial evolutionary game over the time interval t ∈ {0, 1}.

Proof. Consider a best response spatial evolutionary game. A given agent x playing strat-

egy i will change its strategy based on the strategies of its neighbors. This is a deterministic
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function R of a given neighborhood configuration cf:

R(i, j, cf) =


1 Pay(j, cf) > Pay(k, cf) ∀k ∈ S

0 otherwise

(6.20)

The above function is the probability in the best response model that a given agent x playing i will

change its strategy to j. In our pair-MFG formulation, the control term α models the probability

of an agent changing its strategy given a neighborhood configuration cf. If we let our control

terms be:

αij(cf) = R(i, j, cf) (6.21)

the equations 6.11 and 6.14 are then equivalent to the pair approximation equations for a best

response spatial evolutionary game. Now consider the cost function:

α∗ = argmin
α

E [C(x(0), θ(0), α(0))dt+G(x(1), θ(1))] (6.22)

Replacing the C and G terms:

α∗ = argmin
α

E

[
F (x(0), θ(0)) +

1

L

∥α(t)∥2

2
+G(x(1), θ(1))

]
= argmin

α
E

[
1

L

∥α(t)∥2

2
+ F (x(1), θ(1))

]
(6.23)

If we make two additional assumptions for the terms in C,G:

• let L be a large enough such that 1
L

∥α(t)∥2
2

<< G(x(1), θ(1)) or equivalently that the energy
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term does not significantly impact the minimum of our cost function.

• let γ << 1, so that θ(1) ≈ θ(0)

we have that

α∗ ≈ argmin
α

E [F (x(1), θ(0))] (6.24)

which is the decision rule for a best response spatial evolutionary game. As γ → 0, the closer the

pair-MFG model approaches the best-response spatial evolutionary game.

6.2.5.2 Beyond best response

A key concept in the pair-MFG model is that the agent’s control is their transition prob-

ability given a certain neighborhood configuration. The original spatial evolutionary game is a

special case of the pair-MFG where the ”control” probabilities are determined using the update

rule. Following this logic, we can model any update rule that can be specified by local config-

urations of strategy assignments. In section 6.2, we defined our configuration space as:

cf ∈ Cd, Cd = {(x1, x2, ..., x|S|) s.t.
∑

xi = d} (6.25)

For the Fermi rule, we can define a configuration space:

cf ∈ S × C2
d−1, S × C2

d−1 = {(o, n1, n2)|o ∈ S, n1, n2 ∈ Cd−1} (6.26)

132



The new cf defines a neighbor o and the neighborhood distributions of the other d− 1 neighbors

of our agent and the d − 1 neighbors of o. By replacing Cd in equations 6.11 and 6.14 with

the new configuration space, we obtain a pair-MFG model that generalizes spatial evolutionary

games that use the Fermi rule. Like for best response, there exists values of the control αij(cf)

such that the pair-MFG model is equivalent to the pair approximation equations for the Fermi

rule spatial evolutionary game.

6.3 Solving the Model

The Pair-MFG model is not necessarily monotone. As a result, the solution to a Pair-MFG

may not necessarily be unique. We define a solution to our pair-MFG model as a pair: (θ∗, α∗)

such that:

α∗ = J(θ∗) = argmin
α

E

[
T−1∑
t

C(x(t), θ∗(t), α(t)) +G(x(T ), θ(T ))

]

P (x(t+ 1)=sj | x(t)=si) =
∑

cf∈Cd

Pcf(i, t) · αij(t, cf) · γ

θ∗ = M(α∗, θ(0)) (6.27)

given an initial condition θ(0).

6.3.1 Existence

Our optimization problem is not necessarily convex given certain specifications of the pay-

off matrix PAY and subsequently the cost function C, but because both θ and α are defined

on convex compact sets there exists some (θ, α) pair such that the above equations are satisfied.
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Using the Brouwer/Kakutani fixed point theorem, it is easy to see that (θ∗, α∗) is a fixed point of

the function:

(θ, α)→ (M(J(θ)), J(θ)) (6.28)

which ensures that there exists a solution to the Pair-MFG model.

6.3.2 Fixed Point Iteration

Since we know that the optimal pair (θ∗, α∗) must be a fixed point of the mapping in

Eq. 6.28, we can try iterating the function until convergence. However, this approach is not

guaranteed to converge, since we have no guarantee that Eq. 6.28 is a contraction mapping. In

fact, in [83], it was shown that in general, Eq. 6.28 is not a contraction mapping for any finite

MFGs. As a result, there are many situations where fixed point iterations will get stuck alternating

between two different paths.

6.3.2.1 Adjustments

We developed several novel adjustments that can be made to the naive fixed point iteration

method that can improve its convergence:

• Step-size: The problem encountered by the fixed-point iteration is similar to the problem

occasionally encountered by hill-climbing optimization routines without a step-size adjust-

ment (eg. line search or backtracking). Assume that some black-box iterative optimization

routine is used to optimize J(θ). Instead of running this optimization routine until con-

vergence for each fixed point iteration, we can limit the number of iterations in the inner
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optimization loop and instead re-evaluate M more often. The number of inner black-box

optimizer iterations then serves as the ”step-size” for the outer fixed point iteration.

• Proximal terms: Suppose we consider each fixed point iteration as a separate sub-problem

in an algorithm for finding the solution of Eq. 6.27. At each iteration we add a proximal

term to the objective function J that penalizes iterations αn that move too far from the

previous iteration αn−1:

αn+1 = J ′(θn) = argmin
α

E
[( T−1∑

t

C(x(t), θn(t), α(t))

+
1

2
∥α(t)− αn(t)∥

)
+G(x(T ), θ(T ))

]
(6.29)

However, since we apply a proximal term at each iteration, the proximal terms closer to

t = 0 have a much larger effect than those later in time. Small changes in the trajectory

early on can disproportionally impact the later trajectory and cost obtained.

• Time-dependent Proximal terms: Due to the property where small perturbations near t = 0

can drastically change later trajectories, simply adding a proximal term at each iteration

is not likely to help the method converge. Since changes earlier in the time interval have

more impact on the final trajectory, we will want to penalize early changes more than later

changes. We define a new time-dependent proximal term:

1

2W (t)
∥α(t)− αn(t)∥ (6.30)

such that the function W (t) is a monotonically decreasing function of time.
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• Accumulating Proximal terms: An alternative approach for penalizing drastic changes is to

accumulate differences backwards in time. If large changes have already been made at a

later time, earlier changes should be penalized more. Several approaches are possible such

as:

– A new function W (t, δ(i) ∀i > t) where δ(i) = α(t) − αn−1(t) are the differences

computed from the current backward pass

– A new function WA(acc) where acc =
∑

δ(i) multiplied with the proximal term:

1
2W (t)

∥α(t)− αn(t)∥WA(acc)

Algorithm 7: Fixed-Point Iteration with Time-dependent Proximal terms
Input: α, θ0
Output: α∗, θ∗

1 for t← 1 to T do
2 θt = M(αt−1, θt−1) ;
3 end
4 Initialize V (x, t),∀t ;
5 while α, θ not converged do
6 V (x, T ) = G(x, θT ) ;
7 αp = α, acc = 0 ;
8 for t← T − 1 to 0 do // Bellman backwards
9 let: Jx,t(α) = C(x, θt, α)+

∑
y P (y|x, α)V (y, t+1)+ 1

2W (t)
∥α−αt,p∥WA(acc) ;

10 αt = argminα Jx,t(α) ;
11 V (x, t) = Jx,t(αt) ;
12 acc = acc+ 1

2
∥αt − αt,p∥

13 end
14 for t← 1 to T do // Pair Approximation forwards
15 θt = M(αt−1, θt−1) ;
16 end
17 end
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6.4 Empirical Results

We evaluate the fixed point iteration method with proximal heuristics on the Pair-MFG

model for several common games used in EGT models. In order to evaluate whether the fixed

point iteration method can obtain a solution we compute the optimal response difference ∆opt.

Given iterates (θi, αi) at iteration i of the fixed point algorithm, the optimal response difference

∆opt is the difference between the two costs:

• Cost Om obtained by an agent following the current controls αi with respect to the induced

mean field θi

• Cost Od obtained by an optimal defecting agent who uses strategy J(θi) (where J is the

Bellman equation with no proximal heuristics) against the mean field θi

∆opt = Om −Od (6.31)

It is easy to see that ∆opt = 0 only when a solution is found as this means a defecting agent has

no incentive to unilaterally deviate from the current control iterate (the same concept as a Nash

equilibrium). This quantity is similar to the notion of policy exploitability in section 6 of [83]. In

Fig. 6.1, we demonstrate empirical results where the fixed point iteration method with proximal

heuristics can reduce this quantity.

A solution to a MFG model (and thus the Pair-MFG model) is different compared to the

solution of a spatial evolutionary game. Agents in the evolutionary game do not directly optimize

their payoff over the entire time-horizon. Intuitively, the trajectories obtained by the Pair-MFG
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(a) EGT Simulations (b) Pair-MFG Trajectory (c) Optimal Response Difference

Figure 6.1: Comparisons of (a) best-reponse EGT simulations with (b) Pair-MFG trajectories
after 150 iterations of the fixed-point algorithm, in four evolutionary games. To demonstrate
convergence of the fixed-point algorithm, column (c) shows the optimal-response difference at
each of its iterations. The x-axes in column (c) denote iterations of the fixed-point algorithm (as
opposed to iterations of the evolutionary game in parts (a) and (b)).
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model are more optimal with respect to the possible trajectories of a rogue defecting/invading

agent.

It is well known that Evolutionary Stable Strategies (ESS) are an equilibrium refinement

of Nash Equilibrium. It is the same case here where only under certain conditions is it true that

the models have equivalent trajectories. However, many of the behaviors of the spatial EGT

simulation are preserved in the corresponding MFG model.

For example, in the Snowdrift game, a pull back after an initial increase in the proportion

of the first strategy is observed in the Pair-MFG trajectory. This pull back is a result that cannot

be obtained in a well-mixed population model for two strategies, but can frequently appear in

spatial models. Another example of the preservation of spatial effects can be seen in the Rock-

Paper-Scissors game. For the specific RPS payoff matrix used, the replicator equation and other

well-mixed models predict a limit cycle where the magnitude of the cyclic waves for each strat-

egy remains constant. In a spatial population, the population will instead converge to the Nash

Equilibrium of {1/3R, 1/3 P, 1/3 S} in which the magnitude of the cycle waves quickly dampen

as the population evolves towards equilibrium.

As seen in the optimal response difference curves in the bottom row of Fig. 6.1, the prox-

imal heuristics ensure that the optimal response difference values do not get stuck in a limit

cycle. By adjusting the optimization rate for the control variables, we can avoid one of the major

problems found in the application of fixed point iteration to solving mean field games.
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6.5 Mean Field Type Control

Suppose we directly optimize Eq. 6.27 for α under the assumption that the joint state θ is

controlled by the optimizer:

α∗ = argminα E
[∑T−1

t C(x(t), θ(t), α(t)) +G(x(T ), θ(T ))
]

θ = M(α, θ(0)) (6.32)

This transforms the problem into a single agent optimal control problem where the state consists

of both the agent state x and the global joint state θ. This formulation is also known as a mean

field type control (MFTC) problem. Note that if we let α′ be the solution to the above optimal

control problem and θ′ = M(α′), we are not guaranteed that α′ = J(θ′). The cost quantity in the

objective function is likely to obtain a lower value than the one in Eq. 6.27. The MFTC model is

analogous to having a central planner dictating individual agent strategies and is more akin to the

idea of a pareto optimality rather than a nash equilibrium.

This relaxation of a Pair-MFG model, which we would denote Pair-MFTC, is applicable to

many multi-agent optimization problems. One possible application is reactive risk management

for large-scale intrusion detection. For example, using a Pair-MFTC model, it becomes possible

to efficiently optimize over a spatial versions of the susceptible-infected-susceptible (SIS) model

that more accurately captures network connectivity compared to existing well-mixed SIS models.

A solution to the Pair-MFTC can be used to find optimal decentralized security policies for each

agent to follow based on the infection status of their local network dependencies.
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6.6 Summary

In this chapter, we have described Pair-MFG, a MFG generalization of the spatial evolu-

tionary game models. The Pair-MFG model allows for the formulation of the spatial evolutionary

game as a control problem, opening up additional avenues of research into controlling the out-

comes of these games. We have provided a walkthrough of the derivation of a Pair-MFG model

from the equivalent EGT model and shown that the behavior of a given spatial evolutionary game

(or more specifically the behavior of its pair approximation) is a special case trajectory of the

corresponding MFG. We have provided a method for solving this new Pair-MFG model using

fixed point iteration with time-dependent proximal terms and show empirically that this method

is capable of finding a solution to a selection of EGT games.
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Chapter 7: Bayesian Mean Field Games, Control Problems, and Applications

In Chapter 6, we defined the Pair-MFG model which approximates the forward dynamics

of a spatial evolutionary game using pair approximation. The transition probabilities in the pair

approximation equations correspond to the control variables to be optimized over in the control

problem. We have previously shown in Section 3.2.5 that a special case of the Truncated Dy-

namic Bayesian Network Approximation is computationally equivalent to pair approximation.

The transition probabilities in the pair approximation equations are directly encoded into the

Bayesian network itself.

In this chapter, we replace the forward equations in the Pair-MFG framework with an equiv-

alent Truncated Dynamic Bayesian Network Approximation that is parameterized by the control

variables of the MFG model. By using TDBNA we can define Bayesian-MFG models with higher

accuracy than Pair-MFG addressing the inherent limits of the pair approximation based model.

We expect that these more accurate models will also lead to better policies in the corresponding

Bayesian-MFTC.

In Section 7.1, we will define our new Bayesian-MFG framework and how it can be relaxed

into a Bayesian-MFTC in 7.1.1. We will then provide the mathematical approach for solving a

Bayesian-MFTC from Section 7.2 to Section 7.2.3. In the rest of the chapter, starting from

Section 7.3, we will verify that our hypothesis from Section 7.1.1 holds in a variety of application
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domains. Our goal is to confirm that using approximations that capture more accurate forward

dynamics will lead to better control policies. Numerically, we will compare the objective function

results for well-mixed, pair, and Bayesian MFTC problems and evaluate which method produces

the policies that obtain the lowest costs.

It is important to note that by the objective function here, we mean the objective function

results on the simulation. This is a two step process:

1. First, we solve the corresponding MFTC problem (well-mixed/pair/Bayesian) for a control

policy π. This control policy takes in the mean field of the system θ and outputs a control

α. The dimension of the state space is dependent on the complexity of the MFTC model.

In the case of the Pair-MFG model, the control policy would take in the second order mean

field θij,∀i, j and output an α for every configuration cf .

2. After solving the MFTC problem, we run an agent based stochastic simulation where the

behavior (value of their α parameter) of all agents in the population are computed using

the control policy obtained from the corresponding MFTC problem. We can compute the

objective function directly on the simulation and that is the quantity we will use to compare

the different MFTC problems.

For our empirical evaluation, we will consider spatial models originating from two domains:

reaction-diffusion and network security.

7.1 A Unified Approximation Framework for Spatial Mean Field Games

Given a multi-agent system with a population of agents xi, each optimizing an objective

function J(α, θ) with respect to a set of controls α and a mean field θ, suppose the state of
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Figure 7.1: Bayesian-MFG structure. Compared to Pair-MFG, we replace the pair approximation
equations and instead couple the Bellman equation with a Truncated Dynamic Bayesian Network
Approximation.

each agent xi follows some Markov process dependent on control α and the states of agents in a

neighborhood N(xi):

P (xi(t+ 1) = s′|xi(t) = s) = F (s, s′, xj(t), j ∈ N(xi))

We define a Bayesian-MFG as the following Mean-Field game:

J(α, θ), B(α) (7.1)

where J(α, θ) is an objective function and B = (I, T,O) is a Truncated Dynamic Bayesian

Network Approximation of the spatial multi-agent Markov process parameterized by the control

α. We can expect that like in Section 3.3, TDBNAs with larger input neighborhoods and/or target

neighborhoods will produce more accurate approximations of a given MFGs forwards dynamics.

In turn, the solution α∗ of a larger Bayesian-MFG will be closer to the solution α∗ of the original

multi-agent system.
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7.1.1 Bayesian Mean Field Type Control

Recall from Section 6.5 that we can relax a Pair-MFG model into a Pair-MFTC problem.

Likewise, we can relax a Bayesian-MFG into a Bayesian-MFTC problem. Furthermore, we can

expect that the resulting solution α∗ obtained from a Bayesian-MFTC problem can give a lower

cost with respect to the original multi-agent system compared to the cost obtained from the Pair-

MFTC problem. More concretely, consider the following multi-agent control problem:

• N agents {x1, ...xN}, a spatial component G, and an state space S. Let s be the state profile

of the N agents

• Each agent follow a central shared policy π that produces a sequence of controls α which

controls the time evolution of their state in S over time: P (xi(t+1) = s|x(t)) = F (α,x(t))

for some function F

• The goal of a central planner is to minimize a population cost J(α), over a time horizon

[0, T ]

In deterministic systems, the policy π is equivalent to a sequence of controls α. In stochastic

systems π is a function of θ that produces a given control α when the population is in a given state

θ. In both cases, the central planner solves for an optimal policy π that minimizes the objective

function over the controls α generated by the policy π. We consider three approximations of the

above multi-agent control problem:

1. Well-mixed MFTC problem: A central planner minimizes a population cost JW (α, θ)

where θ is simply the population profile of the agents over the state space S, and the time

evolution of the state of an agent is expressed as (xi(t+ 1) = s|x(t)) = F (α, θ).
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2. Pair-MFTC problem: A central planner minimizes a population cost JP (α, θ) where θ

denotes a second order mean field over joint states in the population. The time evolution of

the states of an agent and the joint states are expressed using pair approximation.

3. Bayesian-MFTC problem: A central planner minimizes a population cost JB(α,O) where

O denotes the set of mean field quantities in the output query of the TDBNA. The time

evolution of the quantities in O is specified using a TDBNA B(I, T,O).

Let αW , αP , αB be the controls generated by solution to each of the above problems. Our hy-

pothesis is that:

J(αB) ≤ J(αP ) ≤ J(αW ) (7.2)

if the TDBNA used for the Bayesian-MFTC problem increases beyond the size used for pair

approximation. To make our comparison easier, we will simply use BN-Large (25 node input

neighborhood) as the representative TDBNA for the Bayesian-MFTC problem.

Intuitively, this hypothesis suggests MFGs that have more accurate approximations of the

forward dynamics/time evolution of a spatial system can be relaxed into MFTCs which can be

solved for better policies in the original spatial system. This will allow us to apply the techniques

from Chapter 3 and 4 for improving the approximation of the time evolution of spatial systems

towards finding better policies for controlling them. Future work on improving approximation

efficacy can also be leveraged towards improving the quality of control policies.
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7.2 Mathematical Approach

In Chapter 6, we defined the concept of a Pair-MFTC problem, but we did not provide an

algorithm to solve it. Since the Pair-MFTC problem relaxes the connection between the forward

dynamics and the Bellman equation, we no longer need to use a fixed point approach and can

instead solve the Bellman equation directly. However, many existing algorithms struggle with

solving a Pair-MFTC problem. After relaxing the Pair-MFG, the resulting Bellman equation has

both continuous state and action spaces. Furthermore, the Pair-MFTC problem retains the chaotic

behavior from the Pair-MFG where small perturbations near initial timesteps can greatly change

later trajectories.

Unlike in the Pair-MFG where we solve for a sequence of α terms, in a Pair-MFTC problem

we solve for a controller or a policy π. An easy way to parameterize such a controller is to use a

neural network. In this chapter, we will apply an evolutionary method for learning neural policies

to our Pair-MFTC and Bayesian-MFTC problems.

7.2.1 Pair Approximation Mean Field Type Control

The Pair-MFG can be relaxed to a pair approximation mean field type control problem

(Pair-MFTC) under the assumption that instead of having individually optimizing agents in a

MFG, all agents will follow one policy decided by central planner. In [80], this type of relaxation

is known as the mean field teams solution. This means that the mean field θ is no longer an

argument to the backward equation J(θ) and we instead solve for directly for an optimal α that
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induces a mean field θ starting from an initial condition θ(0):

α∗ = min
α

T∑
t=0

∑
x,cf

F (xi(t), θ(t), α(x, t, cf)) Pr(cf)

+
∑
x,cf

G(xi(T ), θ(T )) Pr(cf)

θ(t) = MPA(α, θ(0), t) (7.3)

where MPA describes the pair approximation equations applied until time t. The problem is

transformed into a single agent optimal control problem where the state of the population is

described using the global joint state θ. Essentially, the population state is controlled using a

local policy α(x, t, cf). To formulate a Bayesian-MFTC, we simply replace the MPA with an

MBayes:

θ(t) = MBayes(α, θ(0), t) (7.4)

where the MBayes describes a Truncated Dynamic Bayesian Network Approximation applied

until time t.
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7.2.2 Finding a Solution

Let R(α) be the cost of a given sequence of controls:

R(α) =
T∑
t=0

∑
x,cf

F (xi(t), θ(t), α(x, t, cf)) Pr(cf)

+
∑
x,cf

G(xi(T ), θ(T )) Pr(cf)

θ(t) = MPA(α, θ(0)) (7.5)

A sequence of controls α∗ for every x ∈ S, t ∈ T, cf , is a solution to the PMTFC defined in

equation 7.3 if:

R(α∗) ≤ R(α) (7.6)

for every possible sequence of controls α. Note that the above solution assumes that the time

evolution of θ is deterministic. However, our goal is to use the solution to a PMTFC model

to control policies in a finite stochastic environment. Since the number of nodes in the real

world environments are not infinite, there is additional error in the forward equations aside from

the approximation error introduced by moment closure. Consequently, the model becomes a

stochastic optimal control problem instead where we need to solve for the optimal policy π,

where α(x, t, cf) = π(x, cf, θ). As previously noted in Chapter 6, due to the properties of the

pair approximation equations, the forward and backward equations are nonlinear and possess

many couplings between mean field θ terms. This makes it difficult to apply existing techniques

for solving stochastic optimal control problems that typically assume convexity and/or linearity.
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To address this, we propose to use an evolution strategies approach which has been previously

observed to have success with similarly hard problems.

7.2.3 Evolution Strategies

First developed for continuous parameter optimization in the control of nonlinear systems,

evolution strategies are a type of heuristic local search inspired by evolutionary computation.

The routine consists of an iterative process applied to a population of “individuals” where each

individual represents a set of continuous parameters. At each iteration of the routine, a function

is evaluated using each individual’s parameters to compute a real fitness value. Then the most

individuals with the highest fitness are selected from the current population and perturbed to

generate the next population of individuals.

Evolution strategies appear to have some success in application to difficult reinforcement

learning environments in which the state and action dynamics are highly nonlinear [84]. Because

of these appealing properties, we propose to employ an evolutionary strategy to learn a population

of neural networks that approximate the optimal policy σ in the PMFTC model. The algorithm

we propose is as follows:

1. Let {γ1, ...γL} be a population of L parameter sets. Each γi is a full instantiation of all the

weights for a neural network mapping from (x, cf, θ)→ [0, 1].

2. Evaluate each γi as an policy σ using the forward dynamics. To model the stochasticity of

the real system, we perturb θ(0) with ϵ noise. A sequence of αi is generated from time 0 to

T .

3. Evaluate the cost of the sequence of controls αi and let this be the fitness of the individual
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γi

4. Choose the top r networks of the the current population to be part of the next population.

5. Generate N − r− 1 children γj = γi+N (0, σ), i ∼ [1, r] where a randomly chosen parent

γi is perturbed with Gaussian noise N (0, σ) to produce a child γj .

6. For the last individual in the next generation, place a copy of the individual with the highest

fitness through all population iterations (this is a convention known as elitism).

7. Repeat from step 1.

This algorithm is based off a standard (r/1 + λ)-ES scheme [85] (where λ = N − r − 1) with

an additional slot for elitism [86] to learn a neural network γ that we can use as a policy σ to

generate our control sequence α.

7.3 Network Security

Compared to earlier research in the optimal control of pair approximation models [87],

the capability of marginalizing over a set of configurations cf in the Pair-MFG/MFTC model

allows for the arbitrary specification of network topology and controls over local configurat-

ions. More specifically, traditional pair approximation for SIR/SIS models, typically designed

for optimal vaccination, are limited to considering global controls (where the vaccination rate is

uniform and independent of an agent’s location in the network) [87] or pairwise controls (where

the vaccination rate can additionally depend on 2nd order terms) [88]. Pair-MFTC allows for the

consideration of controls over arbitrary local configurations. For example, in a SIS model with

demographics for pandemic spread, a local configuration consisting of a nurse taking care of a
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large group of high-risk patients should be given high priority for vaccination. With a global

control, such a configuration will not be considered at all while a pairwise control may not have

sufficient granularity for the targeted application of vaccination measures.

We propose that these advantages will allow for the derivation of more optimal solutions

towards many security policy optimization problems that occur on computer networks. An ex-

ample of such a problem is the prevention of a network contagion.

7.3.1 Network Contagion Scenario

Consider a network of N interconnected servers or computing resources. Nodes in this

network may connect to other nodes for various services. It is also reasonable to assume that in a

sufficiently large network a single node does not necessarily communicate with every other node

in the network suggesting that a well mixed model can have significant prediction errors.

A commonly studied network security threat is the propagation of zero-day attack vectors

through this interconnected network. As an example, consider the recent Remote Code Execution

(RCE) vulnerability Log4Shell in the Log4j java library, an ubiquitous logging library common

in many internet applications. This exploit allows attackers to execute arbitrary code through

injecting malicious text into any application the employs the compromised library. In extreme

scenarios, attackers may even develop self-propagating worms that can spread automatically as a

network contagion by exploiting interconnected service interactions on the network.

We consider the task of optimal resource allocation by a server admin to address the spread

of these zero-day attack vectors. Suppose the server admin has some finite resource M that can

be distributed to nodes in the network to perform different fixes or interventions to prevent the
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spread of a given network contagion. For example:

• Placing active agents for intrusion monitoring

• Perform system rollbacks

• Update system code

• Temporarily shutting down or isolating key systems

Each intervention may cost the server admin a different amount of the finite resource M and

can be treated as different strategies that the server admin can employ to address the network

contagion. In general, if the number of network nodes N is large, solving for optimal resource

allocation can be intractable.

7.3.2 Pair-MFTC Model

We propose a game-theoretic formulation of the above task that can be solved approx-

imately as a PMFTC problem. Our initial model will be based on the cyber-security example

discussed in [80]. Consider a system of N nodes that are faced with a malware attack:

• Each agent can have two states: S = {0, 1}, healthy and infected.

• Each agent has control over a parameter α(cf, θ) which is a choice of whether to get repaired

or not during a given iteration. In this model, each agent has the ability to look at the

infection status of its local neighborhood cf and the overall infection status of the network

θ to control a continuous parameter α which determines the probability of a successful

repair.
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• Each agent accrues a cost k for being infected and a cost F (α) = λα as the cost of a given

repair policy alpha.

The goal of central planner is to deduce optimal policy for α that minimizes average cost over the

population on a finite time horizon T . The setup of this model is similar to that of the SIS model

in existing literature where each network can be in on of two states: susceptible or infected.

The repair function in our model can be thought of as similar to vaccination in an epidemic

model. Instead of solving for an optimal control over a SIS model, we will solve a Pair-MFTC

problem. To define this Pair-MFTC problem, we first need to define the corresponding forward

and backward equations.

• Forward Equation: The state of each node on the network evolves stochastically through

a Markov Process as a function of its local neighborhood and the interventions performed

on a given node. In a given iteration, if a node’s state is healthy (x = 0), we have:

Pr(x(t+ 1) = 1 | x(t) = 0) = q(1− α)
1

|cf |
∑
j∈cf

Ixj(t)=1 (7.7)

where the parameter q denotes the maximum rate of spread given all neighbors are infected.

For example, if a node is healthy, all of its neighbors are infected, and the node has opted to

spend 0 resources on repair (α = 0), then the node has a probability of q to be infected in

the next timestep. Note that this formulation allows for an extension to nonlinear infection

dynamics as well:

Pr(x(t+ 1) = 1 | x(t) = 0) = q(1− α)FS(cf) (7.8)
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with a function FS which can be used to model situations where the probability of infection

grows non-linearly in the number of infected neighbors.

• Backward equation: The running cost obtained by the central planner can be written as:

F (x, θ, α(x, cf)) = kθx +
∑

cf

λα(x, cf)Pr(cf) (7.9)

By modeling our problem as a Pair-MFTC, we can also model cost functions that depend

locally on the configuration state cf of a given node. For example, if a server node requires

the services of neighboring nodes and an attacker has compromised the effectiveness of

those services, it can be practical to model this interference as an additional cost that sus-

ceptible nodes accrue by being next to infected nodes.

7.3.3 A Mean Field Model

To compare with the PMFTC problem, we can design a similar MFTC where α does not

depend on the configuration. In this case, we have that the transition probability is simply:

Pr(x(t+ 1) = 1 | x(t) = 0) = q(1− α)θ1 (7.10)

where the agent’s transition probability is modeled against the mean field θ1 and the central

planner minimizes:

min
α

T∑
t=0

kθ1 + λα(θ) (7.11)
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Because this model simply optimizes against a mean field θ1 and does not take into account local

configurations, we can expect that the policy obtained from solving this model will be worse

than the one obtained from the PMFTC. In the next section, we’ll verify this behavior by solving

MFTC and PMFTC problems for the network contagion scenario.

7.3.4 Empirical Results

To show that policies obtained from PMTFC problems are better than ones obtained from

MFTC problem, we numerically solve the aforementioned network contagion scenario where an

administrator is tasked with repairing an infected network. First, we construct a stochastic net-

work simulation to be our ground truth environment. At the start of this simulation, a percentage

of the population θ1(0) starts off as infected. Each node in the network can control their repair

rate α. To derive policies for controlling α, we construct MFTC and PMFTC problems that use

the same parameters as the stochastic simulation. Solving these control problems will give us

approximately optimal policies for α that we can then evaluate in the stochastic simulation to

obtain an observed cost.

For our experiments, the model parameters are assumed to be: q = 0.9, k = 0.3, λ = 0.2.

We consider a square toroidal grid for our spatial domain with a Von Neumann neighborhood.

For evaluation, we use a stochastic simulation populated by 100 × 100 agents on the toroidal

network.

As a simple baseline and sanity check, we provide the cost obtained from a baseline con-

stant rate policy that assigns the repair rate α = c for some c ∈ [0, 1]. The results of this constant

rate policy can be found in Figure 7.2 when starting from a network with low infection rate
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θ1(0) = 0.1 and a highly infected network θ1(0) = 0.8. As expected, a more aggressive repair

policy is needed for a population that starts out more infected.

As mentioned before, solving a 10000 dimensional optimal control problem is intractable,

so our goal is to instead efficiently derive an approximately optimal policy. We compare our pro-

posed Evolutionary Strategies approach with several common reinforcement learning algorithms

[89] in Figure 7.4. Notably, our approach is superior to all four reinforcement learning approaches

tested in convergence rate, final cost obtained, and computational efficiency. For reference, the

best competing baseline, DDPG takes 21 minutes to train on 500 episodes compared to less than

5 minutes for our ES approach. Furthermore, due to the nature of the PMTFC problem, many

existing reinforcement learning algorithms fail to converge to any reasonable solution and even

DDPG converges to an approximate policy that has a higher cost (cost = 4.45) compared to the

approximate policy obtained the ES approach (cost = 2.8).

By solving the MFTC problem and the PMFTC problem we can obtain far more optimal

solutions than a constant rate policy as shown in Table 7.1. The trajectories generated by these

approximately optimal policies can be seen in Figure 7.3 for initial infected rates of θ1(0) = 0.1

and 0.8. Notably, the policy obtained from the PMFTC problem allow the population to remove

the infection much faster than the policy obtained from the MFTC problem. Both models allow

for the derivation of a more optimal policy than the constant rate policy and the PMFTC policy

obtained has a lower cost than the MFTC policy.
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7.3.4.1 Comparing with Bayesian-MFTC

In Table 7.1, a comparison with Bayesian-MFTC (BMFTC) is also provided. What is

important to note is that the order of cost exactly satisfies our hypothesis from Eq. 7.2. The

solution obtained from BMFTC is always better than PMFTC which is always better than MFTC

regardless of the value of the initial condition θ1. There are two main factors for this decrease in

cost:

• As mentioned previously, the control α in a PMFTC has additional granularity when com-

pared to a MFTC model. Compared to the MFTC model where the control α is only a

function of θ, the control α is a function of the configuration variables cf as well. However,

this does not explain the gap between PMFTC and BMFTC as both models have the same

level of granularity for their control α.

• The second factor is the accuracy of the forward dynamics. Notice that the gap between

the three models increases as the initial condition θ1 increases. This is directly due to the

chaotic behavior present in the model’s forward dynamics. From a modeling perspective,

the goal of any policy in the network contagion scenario is to reduce θ1 to zero as efficiently

as possible. When θ1 is low, the system is already close to the target state and the problem

can be solved within a few timesteps. When θ1 is high, it takes much more timesteps

and thus a longer trajectory to reduce the network’s infection to zero. The error arising

from the approximation of the model’s forward dynamics in the MFTC/PMFTC/BMTFC

will be much more noticeable over longer time frames and this causes the solution to the

corresponding control problem to drift away from the optimal policy on the simulation.
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Figure 7.2: Right: number of healthy individuals at time T as a function of constant repair rate,
Left: cost obtained as a function of constant repair rate, Top: θ1(0) = 0.1, Bottom: θ1(0) = 0.8.

Table 7.1: Average cost obtained on network security stochastic simulation using different poli-
cies.

θ1(0) Constant Rate MFTC PMFTC BMFTC

0.1 2.247 0.385 0.114 0.113
0.5 2.816 1.012 0.643 0.497
0.8 3.032 2.139 1.138 0.797
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Figure 7.3: Right: number of healthy individuals as a function of time using the MFTC optimal
policy, Left: number of healthy individuals as a function of time using the PMFTC optimal policy,
Top: θ1(0) = 0.1, Bottom: θ1(0) = 0.8
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Figure 7.4: Convergence plots for common reinforcement learning (DDPG, PPO, SAC, TD3)
algorithms compared to our proposed evolutionary strategies (ES) approach. Solid lines indicate
a running average of 100 episodes. Only DDPG and our ES approach converge towards the
optimal policy and DDPG reaches a worse final cost at a slower rate (4.55) compared to our ES
algorithm (2.8).
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Figure 7.5: Running averages (top) and maximum achieved reward (bot) from Figure 7.4 for
common reinforcement learning (DDPG, PPO, SAC, TD3) algorithms compared to our proposed
evolutionary strategies (ES) approach.
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7.4 Reaction Diffusion Equations

The second domain we will apply our control problems to is a spatial model based on

reaction-diffusion systems. A reaction-diffusion system is a set of differential equations that

describe the time evolution of a system of different types of particles on a spatial domain. The

system includes two independent stochastic processes:

• A reaction process, typically used to model chemical interactions, that describes how cer-

tain types of particles may be transformed into other types through local particle interact-

ions.

• A diffusion process that describes how particles spread over the spatial surface.

As a model over types of particles, reaction diffusion systems naturally occur in chemistry but

examples can also be found in social models, opinion dynamics, biological and ecological sys-

tems (morphogenesis, tumor growth, etc.). Reaction diffusion systems have been modeled as

discrete spatial models in previous literature such as [90] where a stochastic cellular automata

was devised to study chemical reactions on a platinum catalyst. The goal of this section will be

to devise a discrete model based on a set of reaction-diffusion equations.

For this analysis, we will consider the reaction diffusion equation formulated in section 3.1

of [91] which is given by:

∂tu(t, x) = ∆F (u(t, x)) +R(u(t, x)) (7.12)

This equation is defined over x ∈ Ω which is some convex compact spatial domain. Notice that
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in this equation, there is only one particle type and the variable u denotes its density function

over Ω.

Given this reaction diffusion equation, we will construct a comparable discrete stochastic

spatial model defined over individual stationary agents that play strategies from a strategy set.

After defining this spatial model, we can construct a Pair-MFG model that approximates its be-

havior. For this example, we will use a 2D lattice grid with periodic boundary conditions to

approximate Ω.

Let us define a strategy set S = {s1, s∅}. The density variable u is analagous to the

probability that a node on the 2D lattice grid is playing strategy s1. We have an additional

null strategy s∅ that denotes empty spaces in the grid. Using this convention, we can model

particle motion in the original reaction-diffusion system as strategy evolution in our analagous

system. Let θ be the mean-field variable of our new system. From the application of the pair

approximation we have that:

θ̇(t) =
∑

cf

P (cf)θ̇(t, cf) (7.13)

where θ̇(t, cf) denotes the rate of change of the mean field θ conditioned on the local configurat-

ion. On a 2D grid, a configuration cf for a reaction diffusion equation can be defined as a single
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focal node and four neighbors. We denote this as:

cf =



xi−1,j

xi,j−1

xi,j

xi+1,j

xi,j+1


(7.14)

A laplacian operator is simply a pointwise multiplication with the filter:

∆ =



1

1

−4

1

1


(7.15)

We may also want R to depend on the local neighbors of the focal agent, so we write R as a

function of cf. We can then write our equation as:

θ̇(t) =
∑

cf

P (cf)
[
∆TF (cf) +R(cf)

]
(7.16)

Jump Process Currently our model is still a continuous model over a density variable θ. To

make the model discrete, we will model the reaction-diffusion system as a Markov jump process.

To do this, we first need to make an assumption on the density variable θ. In contrast to u in Eq.

7.12, we will limit θ to be within [0, 1]. First we consider the case where the reaction and the
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diffusion components of the system are separable.

Separable Reaction/Diffusion Let x denote a focal agent and N(x) its local neighborhood. We

consider a situation where reaction and diffusion effects do not occur at a given node during a

single iteration at the same time (the effects are separable). For this, denote a coefficient k which

determines the probability that a reaction will occur, otherwise diffusion will occur.

• Local Reactions: Let R(i, j, cf) : S × S × cf → [0, 1] be a reaction function that gives the

probability of a focal agent transitioning from state i to state j given the local configuration

cf. We can also parameterize this R function with a control α that can control the reaction

rates conditioned on the local neighborhood configurations.

• Diffusion: In this two state model, diffusion consists of two transitions s1 → s∅ and

s∅ → s1. In practice, we can model diffusion behavior using an equation similar to the

Fermi rule/Glauber dynamics. Because of how the discrete Laplacian is formulated, we

can treat F (cf) as a payoff function in an EGT sense:

∆TF (cf) =
∑

y∈N(x)

F (y)− F (x) = 4(F̄ (y)− F (x))

Pdiffusion(x(t+ 1) = s1|x(t) = s, cf) =
1

1 + e−4(F̄ (y)−F (x))
=

1

1 + e−∆TF (cf)
(7.17)
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The final probability is then: θ is:

P (s∅ → s1, cf) =

P (x(t+ 1) = s1|x(t) = s∅, cf) =
∑

cf

P (cf)
(
(1− k)

1

(1 + e−∆TF (cf))
+ k(R(∅, 1, cf))

)
(7.18)

We can apply pair approximation equations to derive the time evolution equations for the joint

mean field θij as well:

θij(t+ 1) = θij(t) + ∆θij(t)

∆θij(t) =
∑
k

∑
cf

[
θk(t)P (cf)

N(j, cf)
d

P (k → i|cf)− θi(t)P (cf)
N(j, cf)

d
P (i→ k|cf)

]
(7.19)

where N(j, cf) is the number of nodes in the configuration cf that have the state j. In this model,

we can parameterize the function R(i, j, cf) with a control α:

R(i, j, cf) = U(αi,j(cf)) (7.20)

If U is the identity function and we define some objective function, the resulting model is a

standard Pair-MFTC model with added Laplacian dynamics.

Objective Function For some applications, one might be interested controlling the final dis-

tribution of reaction diffusion equation on a lattice (for example to get a particular clustering

pattern). In this situation, the control α could be the application of heat/energy over time to the
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lattice that modifies the reaction rate R through the function U . The reaction rates can be non-

linear in the local configuration (e.g. adding heat of a certain amount makes local configurations

with 3 or more s1’s accelerate, but does not change the reaction rates of configurations with 2 or

less s1’s). This may be useful in modeling certain chemical reactions.

Given a target clustering pattern, first we acquire the θij distributions θ′ that we want to

optimize towards and define the following Pair-MFTC objective function:

argmin
α

E

[
T−1∑
t

C(x(t), θ(t), α(t)) +G(x(T ), θ(T ))

]

θ = M(α, θ(0)) (7.21)

Using this objective function, we can design cost functions C,G to avoid undesirable local pat-

terns during the trajectory. A simple model can be defined using the following functions:

• G(x(T, θ(T )) = L∥θ(T )− θ′∥2

• C(x(t), θ(t), α(t)) = 1
2
∥α(t)∥2

where L is some scaling constant that denotes the importance of reaching the target distribut-

ion compared to the energy spent reaching it. Alternatively, one can also formulate the target

distribution as a constraint if it is known that the target distribution is feasible.

7.4.1 Empirical Results

Consider a discrete separable reaction-diffusion lattice model as described in the previous

section. Suppose through experimentation on the model and adjusting a set of controls we find a

desired target distribution or pattern. In a chemistry application, the control might correspond to
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heat added to the system which affects the rates of each reaction in Eq. 7.20. For simplicity, we

will assume that U is the identity function in Eq. 7.20.

For our empirical experiments, we perform a three step process:

1. We first set R(i, j, cf) to some predetermined value. We run the discrete stochastic simulat-

ion with R(i, j, cf) for T iterations. At the end of the simulation we record pij for the grid

and set that to be our target distribution.

2. Like in the network security model, we solve a MFTC problem (Pair or Bayesian) for an

optimal policy π using evolution strategies. We will define our cost function as:

G(x(T, θ(T )) = L∥θ(T )− θ′∥2

C(x(t), θ(t), α(t)) = L∥θ(T )− θ′∥2 +K · 1
2
∥α(t)∥2 (7.22)

Based on how the model is set up, the solution to the MFTC problem will be a policy

for R(i, j, cf) that aims to efficiently bring the distribution of the system close the target

distribution as fast as possible. The speed vs cost tradeoff can be adjusted using the L and

K parameters.

3. After obtaining the policy π from the MFTC problems, we can then evaluate on the simul-

ation to obtain the final cost for comparison. We expect to see the same cost ordering with

J(αB) ≤ J(αP ) as in the network security model.

For the purpose of this comparison, we set k = 0.2 and initial distribution θ1(0) = 0.001

with a target distribution of θ = [0.2, 0.31, 0.31, 0.18]. An example of the initial and target

distributions can be seen in Fig. 7.6.
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Figure 7.6: Left: an example initial distribution for the reaction diffusion model, Right: an
example target distribution for the reaction diffusion model.

Table 7.2: Average cost obtained on reaction diffusion stochastic simulation using different poli-
cies.

Original setting PMFTC BMFTC

5.505 4.3818 4.2710

We run 100 simulations with each policy to evaluate the average cost of the policy. As

can be seen in Table 7.2, we again get the result where the cost for the BMFTC policy is better

than the PMFTC policy. Both policies obtain a better cost than the original setting for R used to

generate the target distribution.

7.5 Summary

In this chapter, we devised an evolutionary method for learning neural policies to solve

novel Pair Mean Field-Type Control Problems (PMFTC) and Bayesian Mean Field-Type Control

Problems (BMFTC). The non-linearity and non-convexity of PMFTC problems breaks many of

the conditions typically assumed by conventional optimal control algorithms.
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We designed a network contagion problem and reaction-diffusion problem using the PM-

FTC paradigm and demonstrate empirically that our proposed evolutionary algorithm can solve

the resulting PMFTC system. Furthermore, the evolutionary method obtains better results than

existing reinforcement learning algorithms while also having higher sample and time efficiency.

We showed that that the policies obtained from the PMFTC problem are more optimal

compared to other existing mean field control models by evaluating them in stochastic agent

based simulations. This extends to policies from Bayesian-MFTC problems which are in turn

better than ones obtained from PMFTC problems.
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Chapter 8: Conclusion

Even though both evolutionary games and mean field games have already been applied to a

wide variety of problems in the existing literature, there are still areas of improvement that can be

made to the methods for solving these games. This thesis presents a foray into new methods that

first serve as an initial springboard for alternative probabilistic methods for solving the prediction

problem in evolutionary games and the control problem in mean field games.

8.1 Summary of Contributions

The main contributions of this thesis are 1) a novel method using Bayesian networks for

approximating the dynamics of spatial evolutionary games, 2) a novel algorithm for performing

approximate inference on evolutionary game Bayesian networks, 3) a novel mean field game

model called Pair-MFG that can be relaxed into a control problem framework, and 4) an extension

of this pair-MFG framework with Bayesian networks instead of pair approximation allowing for

models that have more accurate forward dynamics. More specifically:

1. We described Truncated Dynamic Bayesian Network Approximations (TDBNA), a me-

thod for approximating the forward dynamics of spatial markov processes. In general,

any forward equation arising from a Markov process defined on spatial models with dis-

tinct strategy spaces (beyond just spatial evolutionary games) can be approximated using
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Bayesian networks to desired accuracy by adjusting the size of the resulting TDBNA. We

show empirically on several evolutionary games that adjusting the size of a TDBNA can

result in better approximations of the game dynamics.

2. We introduce a novel method using surrogate Bayesian networks to perform approximate

inference on large TDBNAs. The new method, termed KL-search is a hybrid sampling/

search scheme that provides informative samples for MLE estimation on a surrogate net-

work. We show empirically that this method is superior to existing approximate inference

approaches such as Abstraction Sampling in both accuracy and computational efficiency.

3. We have devised an efficient method for reducing the size of summation-based Conditional

Probability Tables (CPTs) in Bayesian Networks having causal independence (CI). We also

have shown how to apply this reduction directly towards the acceleration of Bucket Elim-

ination. We have provided experimental results showing the FFT reduction’s advantage for

inference on a selection of common sub-networks include sub-networks found in Bayesian

networks for spatial evolutionary games. We have developed an extension to ci-elim-bel

called ci-elim-FFT and provided empirical results that demonstrate its scaling advantages.

4. We described Pair-MFG, a mean field game model designed to address the lack of spatial

models with distinct strategy and spatial components in Mean Field Games. We devised a

novel fixed point algorithm to solve these Pair-MFG problems and demonstrated empiric-

ally that it can solve Pair-MFGs modeled after a variety of evolutionary games.

5. We presented a unified framework for the approximation and control of large-scale spatial

games. We extend the Pair-MFG model into a Bayesian-MFG model by replacing the
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pair approximation equations with a TDBNA. We show how Pair-MFGs/Bayesian-MFGS

can be relaxed into Pair-MFTC/Bayesian-MFTC problems which can then be applied to a

variety of interesting domains.

6. We demonstrate how Bayesian-MFTC problems can be solved to obtain policies that are

better than those obtained from Pair-MFTC problems (which are better than policies from

normal MFTC problems) on problems that originate from network security and reaction-

diffusion equations.

8.2 Limitations and Future Work

One limitation in this work is the assumption that the strategies of all agents have to be

discrete. In domains such as evolutionary game theory, one might want to study models where

agents can have a continuous strategy. In the reaction-diffusion model, it would be more accurate

to develop a model that allowed for a continuous strategy space. There are a few ways to address

this, such as bucketing a continuous strategy into a set of discrete strategies or using continuous

or hybrid Bayesian networks. For future work, it would be interesting to explore what methods

are effective ways to let TDBNAs handle continuous strategy spaces.

While not the main focus of this dissertation, it was necessary to propose new algorithms

and use non-standard solutions such as evolution strategies to solve pair-MFG/Bayesian-MFG

models and their MFTC counterparts. In many of these models, evaluating the forward dynamics

maybe take a significant amount of computational resources (relative to a simpler approximation

like a mean field approximation). An interesting direction would be to see if there are algorithms

that are more sample efficient for solving these problems. An alternative approach is to consider
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techniques that accelerate probabilistic inference. Since the forward direction of a Bayesian-

MFG model requires the evaluation of many probabilistic inference problems on the same model

with just some changed parameters, it may be possible to compile the network instead of running

something like bucket elimination each time.
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[72] Martin Plajner and Jiřı́ Vomlel. Bayesian networks for the test score prediction: A case
study on a math graduation exam. In European Conference on Symbolic and Quantitative
Approaches with Uncertainty, pages 255–267. Springer, 2021.

[73] Joseph Beyene. Uses of the fast Fourier transform (FFT) in exact statistical inference. PhD
thesis, National Library of Canada= Bibliothèque nationale du Canada, 2001.
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