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The greedy method is a well-known approach for problem solving directed mainly at the solution of optimization
problems. Leading theoretical frameworks dealing with the optimality of greedy solutions (e.g., the matroid and
greedoid theories) tacitly assume that the greedy algorithm is always guided by the cost function to be optimized,
namely, it builds a solution by adding, in each step, an element that contributes the most to the value of the cost
function. This paper studies a class of problems for which this type of a greedy algorithm does not optimize the
given cost function, but for which there exists a secondary objective function, called a greedy rule, such that
applying the greedy algorithm to the secondary objective function yields a solution which is optimal with respect

to the original cost function.

The greedy method is a well-known approach for
problem solving directed mainly at the solution of
optimization problems involving the selection and/or
the ordering of elements from a given set so as to
maximize or minimize a given objective function.
Nilsson™ views the greedy algorithm as an irrevocable
(i.e., without backtracking) search strategy that uses
local knowledge to construct a solution in a “hill climb-
ing” process. The greedy control strategy selects the
next state so as to achieve the largest possible improve-
ment in the value of some measure that, as pointed out
by Horowitz and Sahni,'" may or may not be the
objective function.

Our interest in greedy methods originated in earlier
research in the area of heuristic problem solving.”*! The
connection between these two subjects is twofold. First,
greedy schemes are probably the closest to emulate
human problem-solving strategies because they require
only a minimum amount of memory space and because
they often produce adequate (if not optimal) results.
(Due to the small size of human short-term memory, it
is very hard to conceive of a human conducting best-
first or even backtracking search, both requiring reten-
tion of some properties of previously suspended alter-
natives.) Second, greedily optimized problems (i.e., for
which a greedy algorithm produces optimal solutions)
represent a class of relatively easy problems. Pearl!'%)
has demonstrated that many heuristics used in the
solution of hard problems are based on simplified
models of the problem domain, which admit easy so-
lutions. Therefore, the ability to characterize classes of
easy problems is important, particularly if the process
of discovering heuristics is to be mechanized.

Subject classification: Analysis of algorithms: optimality of greedy algorithms.
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This paper is concerned exclusively with ordering
problems, involving a set of elements and a cost func-
tion defined on all permutations of the elements, where
the task is to order the elements so as to maximize (or
minimize) the value of the cost function. Job sequenc-
ing on a single machine and the traveling salesman
problems are two examples of this class of problems.

A theoretical framework, called greedoid theory,
which characterizes a class of ordering problems that
can be solved optimally by greedy algorithms, is due to
Korte and Lovasz.”®! The greedoid structure is a gener-
alization of the matroid structure which provides a
theoretical foundation for the optimality of the greedy
algorithm on selection problems. (In contrast with or-
dering problems, selection problems involve a set of
elements and a cost function defined on all unordered
subsets of elements, where the task is to select a subset
of elements which satisfies some property, so as to
maximize (or minimize) the value of the cost function.
The minimum weight spanning tree problem is a well
known example of this class of problems. For further
details on matroids refer, for exampie, to Lawler'®! or
Welsh!'?),

The greedoid theory (as well as the matroid theory)
considers only greedy algorithms that use the cost func-
tion to be optimized as their selection criterion, namely,
which build the solution by adding, at each step, that
element which results in maximum improvement in
the value of that cost function. The appendix to this
paper lists a number of known ordering problems for
which this greedy algorithm does not optimize the cost
function, but for which there exists a secondary objec-
tive function, which we call a greedy rule, such that
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applying the greedy algorithm to the greedy rule yields
a solution which is optimal with respect to the original
cost function. Our objective in this paper is to charac-
terize these problems, which are not covered by the
greedoid theory.

The remainder of the paper is organized as follows,
In Section 1 we briefly review the basic facts of the
greedoid theory and demonstrate that it does not cover
all greedily optimized ordering problems. In Section 2
we generalize the notion of greedy optimization, define
ranking functions and state the necessary and sufficient
conditions for a class of problems to be greedily opti-
mized by such functions. Section 3 discusses a class of
ranking functions, called uniform ranking functions,
which are guaranteed to be optimizing. Necessary and
sufficient conditions for a class of problems to have a
uniform ranking function and methods for its discovery
are also discussed. In Section 4 we contrast problems
which are greedily optimized by a ranking function
with those which are greedily optimized by the cost
function. Two examples are given in Section 5 to
demonstrate the results and methods developed in the
paper. A summary and conclusions are given in
Section 6.

1. Greedoids,
Optimization

Greedoid Costs, and Greedoid

Greedoids is a mathematical structure that was pro-
posed by Korte and Lovasz® for the study of the
optimality of greedy solutions. A greedoid is a pair
(E, L), where E is a finite set and L is a collection of
finite sequences (without repetitions) of elements of E,
also called strings or words, which satisfy the following
axioms:

1. e L

2.ifa€landa=8-vythenBE L

3.if a, B € L and |a| > |B], then there exists an
xE€asuchthatg - (x) € L,

where « - 8 denotes the concatenation of two words a,
8, and | « | is the length of a.

A word is called feasible if it belongs to L. Maximal
feasible words are called basic words. The optimization
problem P considered by the greedoid theory is a pair
((E, L), w), where (E, L) is a greedoid and w: I — R
is real valued objective function. The task associated
with P is:

(0) max{w(a)| « is a basic word in L}.

Let £* denote the collection of all possible strings
over E. Then, (E, E*) is a greedoid, and each ordering
problem of the type defined in the previous section can
be viewed as a greedoid optimization problem P =
((E, E*), w), where w: E* - R.

The greedy algorithm considered by the greedoid
theory for (O) is described as follows:

(GA) Fori=1,2,...choose an element x, € E such
that
(X1 ... xiy € L
and
w({x) ... x))
= max{w((x, ... Xi—i, YY) (X ... xi\, vy € L)}

Stop if no such x, exists.

Korte and Lovasz provide the following sufficient
condition on the objective function w that guarantees
that the greedy algorithm produces an optimal solution
to (O).

(W) Letbea€Landa - (x) € L.
If for all y € E such that « - (yyelLlL

wla - (X)) = wla - (y)),
then

(1) forall y € E and B, ¥y € E* such that
a-B-(x)-y, a-B-(y)-yEL:
wla-B-(x)-v)=wla-8-(y)-v),

and

(i) forall y € E and 8, v € E* such that
a-(x)-B-(y) v, a-(y)-B-(xy.y€EL:
Wla - (x)-B-(y)-v)=wla-(y)-B-(x) 7).

While the underlying structure of all the problems
in the appendix is a greedoid, their objective functions
do not satisfy the sufficient condition, and, indeed, they
cannot be optimally solved by the greedy algorithm
(GA). Yet, each of these problems can be solved by a
greedy algorithm applied to a secondary function.

For example, consider the problem of minimizing
weighted average flow-time on a single processor (prob-
lem #5 in the appendix). This problem can be formu-
lated in terms of a pair ((E, E*), C), where E is a set of
Jobs, and the cost function (to be minimized), C, is
defined on any sequence ¢ € E* of 1 jobs as follows:

Clo) = -.i. u; -zl“. Djs (1)

where p; and u;, respectively, associate with the ith job
in the sequence a processing time and an importance
weight. Applying the greedy algorithm (GA) does not
guarantee an optimal solution. However, it is well
known that an optimal solution is easily obtained by
a greedy algorithm which, in each step, adds to the
sequence a job with a minimum value of p;/u;.



This requires a slightly different view of greedy algo-
rithms than the one expressed by (GA). Greedy
algorithms build solutions by, at each step, adding to a
partial solution one element that, individually, has the
highest merit among all remaining elements. This “fig-
ure of merit” is the value of some criterion function
which we have called a greedy rule. In the next section
we discuss briefly greedy rules in general and then shift
our attention to a special type of greedy rules called
ranking functions.

2. Greedy Rules and Ranking Functions

In general. greedy rules are real valued functions de-
fined on the language L in precisely the same manner
as the cost function w. Let f: L — R be a greedy rule.
Then solving the problem (O) using the greedy rule f
means using algorithm (GA) where w is replaced
with [

Each of the ordering problems in the appendix is
optimized by a single argument greedy rule satisfying:

SUx, ..

where g is a real-valued function defined on each ele-
ment. Namely, evaluation of the greedy rule requires
only information pertaining to the last element in the
sequence. We refer to such rules as ranking functions.
A ranking function induces a weak order on the ele-
ments of £ and the greedy procedure simply chooses
elements in a nonincreasing order of /. The remainder
of this paper is concerned only with problems which
are greedily optimized by ranking functions.

The greedoid theory does not explicitly make the
distinction between a class of problems and its in-
stances. However, observe that every greedoid optimi-
zation problem really represents a class of problems.
For every subset £, C E of the ground set £ of a
greedoid (E, L) there is a corresponding structure (E,,
L,), called a restriction, where L, = la €EL|a € EX.
It is easy to see that the restriction (E;, L,)isa greedoid.
We refer to the problem P, = ((E,, L,), w), associated
with each of the restrictions (E,, L,) of a greedoid
(E, L), as a subproblem of the problem P = ((E, L), w).
If the sufficient condition (W) for greedoid optimization
holds for a problem P, then it holds for any of its
subproblems. We should expect any optimizing greedy
rule to have a similar hereditary property.

'yxl>)=g('rl)v (2)

Definition. A ranking function is optimizing for some
problem P, if for every subproblem, P;, a sequence is
optimal if and only if it satisfies the weak order induced
by it. A problem is said to be greedily optimized by a
ranking function if it permits an optimizing ranking
function. (In the sequel we will occasionally use the
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term greedily optimized to stand for greedily optimized
by a ranking function when no confusion can arise.)

We now give a necessary and sufficient condition
for a problem to be greedily optimized.

Theorem 1. A necessary and sufficient condition for a
problem P to be greedily optimized is that for any two
elements a and b, and for all subproblems in which they
both participate, one of the following situations must
occur:

L. If there exist a subproblem in which a precedes b in
all of its optimal sequences then a precedes b in all
optimal sequences of all subproblems, or else,

2. In all subproblems where both elements a and b
appear any optimal sequence in which a appears
before b can be transformed into an optimal sequence
in which b stands before a by exchanging the posi-
tions of a and b.

Proof. Suppose the problem is greedily optimized by a
ranking function and let a and b be two elements in
some subproblem, P;. If a precedes 4 in all optimal
sequences, / must rank a strictly higher than b in order
to generate this problem’s optimal sequences and none
else. Therefore, in all other subproblems fwill generate
only sequences where a precedes b. Since fis assumed
to generate all optimal sequences, they all must have ¢
before b. If a doesn’t precede b in all optimal sequences
(we are in part 2 of the condition) then there are at
least two optimal sequences with both a before b and b
before a. For an optimizing ranking function to yield
these two sequences it must rank a and b as equal (i.e.,
Sf(a) = f(b)). Such a ranking function must generate all
sequences in which a and b’s locations are completely
exchangeable, and since it is optimizing all such
sequences must be optimal for all subproblems. This
yields the necessary part.

The condition is sufficient since the relative posi-
tions of any pair of elements in all optimal sequences
defines an order relationship among the elements.
Namely, if a appears before b in some optimal se-
quences we say that a < b. It is easy to show that the
condition guarantees that this is a well defined relation
which is also transitive and thus constitutes a weak
order. There exists, therefore, a real function f, defined
over all the elements which satisfy f(a) < f(b) iff
a < b (see [7]). The function f'is the ranking function
that yields the optimal solutions. M

To illustrate the necessary condition of Theorem
1, consider a problem defined by a set of four elements
{1, 2, 3, 4} and some cost function. Suppose that the
only optimal sequence for the subproblem defined by
the set {1, 2, 3} is (3, 2, 1), and that the only optimal
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sequence for the subproblem defined by the set {1, 2,
4} is (4, 1, 2). Then, this problem does not have any
optimizing ranking function because elements | and 2
do not have the same ordering in the two optimal
sequences.

The verification of the condition given in Theorem
1 usually depends on the knowledge of all optimal
solutions in each subproblem, and cannot be carried
out by simple manipulation of the problem represen-
tation. Therefore, its usefulness is very limited. In the
next section we present stronger, potentially more
easily verifiable, requirements that constitute sufficient
(but not necessary) conditions for greedily optimized
problems.

3. Uniform Ranking Functions

A reasonable approach for obtaining sufficient condi-
tions for greedily optimizing problems is to extend the
properties required by Theorem 1 for the optimal
sequence to all possible sequences. This leads to the
following definition.

Definition. Let P = ((E, E*), C) and let / be a ranking
function. A ranking function f'is called uniform relative
to P, if for every sequence o of elements in E,

Clo) > C(a) iff(a)) > flo,0)) (3)
and

Clo) = C(aY) if f(0:) = f(0,41)

for all i, where o, is the ith element in o and o' 1s the
sequence resulting from the exchange of the jth and
(i + 1)st elements in o.

Theorem 2. Every problem P that has a uniform rank-
ing function f, is greedily optimized by it.

Proof. We have to show that if P has a uniform ranking
function f then every sequence generated by it is opti-
mal and that every optimal sequence can be generated
by it. Let P, be any subproblem of P, ¢ be any sequence
generated by the uniform ranking function £, and o * be
an arbitrary optimal sequence of P,. To prove that ¢ is
optimal we will show that o* could be transformed into
o by local exchange operations in a way that does not
change the cost associated with intermediate sequences.
Let / be the first location in which the two sequences
differ, namely, for all k < i — 1, o,* = ¢, and the sets
of elements from i to » in both sequences are identical.
Therefore, element o; appears in some subsequent lo-
cation of o*. Assume ¢; = ¢,* for some j > /. Since o’s
elements are sequenced by f, f(q;) is greater than or
equal to the f value of subsequent elements in g, and
therefore it is greater than or equal to subsequent
elements of ¢*. In particular, f(s,) = f(a* = f(ol)).
If f(o*) > f (o)) then the cost of ¢* must increase by

exchanging ¢ * | with ¢,*, but this would contradict the
assumption that ¢* is optimal. Thus, it must be that
fla*) =1 (o)), which means that o, and o;* may be
exchanged without changing the value of the cost func-
tion. The resultant sequence is therefore also optimal.
The (original) ¢,* element which is now in location
J = 1 of 6* can propagate down in this fashion with no
change in the cost until it reaches the ith position. At
this point the prefix of / elements of the resultant
optimal sequence and the prefix of / elements of ¢ are
identical. The next differing position between the two
orderings, which may appear only in a position higher
than 7, will be identified, and the process will continue
in the same way. Since the discrepancies between the
sequences appear in increasing locations, the process is
guaranteed to terminate.

To show that every optimal sequence may be gen-
erated by the uniform ranking function consider again
the sequences o and ¢ * as defined in the first part. The
procedure described above implies that S(a)) = f(a®),
which means that by applying the tie-breaking rule
differently, the greedy algorithm using f could have
picked o.* for the ith position in o. Thus, the ranking
function fcan be used to generate an optimal sequence
with at least the first i elements identical to the first i
elements of o*. Repeating this argument as necessary,
it is easy to see that longer and longer prefixes of o *,
and eventually the entire sequence, can be generated
using f by breaking ties “correctly.” W

We next examine a necessary and sufficient con-
dition on the cost function for there to exist a uniform
ranking function. Let E?, be the set of all permutations
of subsets of E in problem P for which element a
immediately precedes element b.

Definition. A cost function C is said to be pairwise
preferentially independent (p.w.p.i.) if Va, b either

C(e) > C(¢%) Vo€ EL, 4)
or

Cle) < C(s%) Vo E€EY,
or

C(o) = C(¢%) Vo € EY,

where ¢ is the sequence resulting by the exchange of
the adjacent elements a and b in . In the first two
cases we say that C prefers a over b (resp. b over a),
and denote it by @ >, b (resp. b >, a). In the third
case we say that C is indifferent between @ and b and
use the notation a ~,, b.

Definition. A pairwise preferentially independent cost
function C is said to be acyclic if the relation Zpw IS



transitive, 1.e.,
ifaz,. b and b=,. c thenaz,, c (5

This last property (i.e., that the relation “C prefers
a on b” satisfies transitivity) is required to assure a
weak order'” and does not follow automatically from
the p.w.p.1. property. The following example shows that
a cost function can be pairwise preferentially independ-
ent but not acyclic. Consider a subproblem defined by
a set of three elements {1, 2, 3} with a cost function C
that creates the following complete order among all
different sequences:

(321) > (132) > (213) > (312) > (123) > (231).

For this subproblem, C is pairwise preferentially inde-
pendent with 3 being preferred to 2 and 2 being pre-
ferred to 1. However, 1 is preferred to 3 thus violating
transitivity.

Theorem 3. A4 necessary and sufficient condition for a
problem P = ((E, E*), C) to have a uniform ranking
Junction is that C is p.w.p.i. and acyclic (denoted
a.p.w.p.i.).

Proof. Tt is obvious that the existence of a uniform
ranking function for a problem P implies that the cost
function is a.p.w.p.i. We will therefore show only the
sufficiency part. Since C is a.p.w.p.1i. it induces a weak
order on all the elements of E. Therefore, there exists!”!
a real function fon the elements of E that reflects this
ordering, i.e.,

a >y b iff f(a) > f(b) (6)

and
a ~pw. b iff f(a) = f(b).

Obviously, f'is a uniform ranking function, and, by
Theorem 2, P is greedily optimized by it. W

The next theorem suggests a process which has the
potential of identifying an a.p.w.p.i. cost function and
indicating its optimizing ranking function.

Theorem 4. Let P be a problem P = ((E, E*), C) and
o any sequence of any subset of the elements in E. If the
cost function C satisfies

Clo) = C(a') = K(0) - (d(o,) — d(0i1)) (7)

Jor all i, where K(o) is a nonnegative function defined
on ¢ and d is a function defined on single elements, then
d is an optimizing ranking function.

Proof. 1t is easily seen that d, satisfying (7), is a uniform
ranking function and therefore, by Theorem 2, opti-
mizing. W

The process Theorem 4 suggests is: perform sym-
bolic manipulation on the difference between the cost
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of an arbitrary sequence and that of the sequence which
results from exchanging the ith and (i + 1)st elements.
If you obtain an expression that satisfies condition (7)
then an optimizing ranking function exists and is given
by d in that expression.

As an example consider again the single-processor
Job sequencing problem whose cost function is given in
(1). Let ¢' be a sequence resulting from the exchange
of the ith and (i + 1)st elements. For this cost function
we get:

C(o) — C(a") (Uis1Di — UiDivy)

umu,(& - M) ®)

ul uH—l

In this case the ranking function suggested from the
above representation is f(p,, u;) = p;/u,.

The requirement that an optimizing ranking func-
tion must be optimal for all subproblems of a problem
provides a simple means for screening potential ranking
functions, which is summarized in the following result:

Theorem 5. If P is any greedily optimized problem
then an optimizing ranking function f has to agree with
the ordering dictated by the cost function on pairs of
elements, namely, for every two elements a and b,

C(a, b)> C(b, a) iff f(a) > f(b).

Proof. Ifaproblem has an optimizing ranking function,
then it also has to optimally solve all subproblems of
two elements. To do that the ranking function has to
satisfy the above condition, which will induce a weak
order on the elements of £. W

If a problem is known, or believed, to be greedily
optimized, then Theorem 5 suggests a way for gener-
ating an optimal solution: sequence the element in an
order satisfying the weak order dictated by applying the
cost function to pairs of elements. When a problem is
not known a priori to be greedily optimized, Theorem
5 may be used to screen candidate ranking functions
by rejecting any candidate that does not satisfy C(a, b)
> C(b, a) iff f(a) > f(b) for any two elements a and b
of E. If the relation implied by the cost function on
pairs is not transitive, we can conclude that the problem
does not have any optimizing ranking function. Assert-
ing that a candidate f is indeed optimizing requires
other means (e.g., the a.p.w.p.i. property).

4. Dominant Ranking Functions

As noted earlier, a common greedy rule is the cost
function itself, i.e.,

f((xl,---,xi))=c((xu---,Xi>)- 9)

This means that at each step the algorithm chooses that
element which, if it were the last, would yield the best
cost (i.e., a “myopic” policy). The Greedoid Theory is
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concerned solely with this particular greedy rule. In this
section we characterize the optimal sequences of prob-
lems that are greedily optimized by their cost functions,
and provide a necessary condition for a ranking func-
tion to generate such sequences.

The cost function is an optimizing greedy rule for
a problem P if, and only if, for any subproblem P;, any
subsequence (x,, ..., x,) of £, that has a maximal cost
over all subsets of size j of E; can be extended to a
sequence of length j + 1 that has a maximal cost over
all subsets of size j + | of E,. Formally,

Vi{x, ..., X,) optimal over &,
(10)
3xl+l E El - {X|, se ey xl}
such that
(X1, ..., Xi, X,+1) is optimal on &,,,,

where ®; denotes all permutations of subsets of ; ele-
ments in £;. When condition (10) is satisfied, the greedy
rule (9) generates an optimal sequence, o, satisfying the
following property: any subsequence (X1,...,x)of ¢
has a maximal cost over all subsets of size jof E;. An
optimal sequence that has this property is called a
dominant sequence. Clearly, a problem which is opti-
mized by the cost function has all its optimal sequences
dominant. Also, if a problem has only dominant opti-
mal sequences it can be greedily optimized by the cost
function. Theorem 6 summarizes the above:

Theorem 6. A necessary and sufficient condition Jfor a
problem to be greedily optimized by the cost function is
that all its optimal sequences are dominant.

Dominance is not a necessary condition for the
optimality of a greedy rule, however. For example, the
cost function

C)=Sutp (an

1=

which, as we already know, is greedily optimized by
the ranking function g(u, p) = p/u, is not dominant.
To see this, consider the three-element subproblem,
in which each element i has the parameters (u;, pi):

xi=(1,4), x2=(05,3), x3=(5,10). (12)

The values assigned by the ranking function to the
elements are: g(x,) = 4, g(x;) = 6, g(x3) = 2, so that
the optimal sequence is: (x,, X, X3 ). Evaluating se-
quences of two elements we see that

C((x2, x1)) = 8.5
while

C((Xj;, X >) = 64.

greedod's costs

dominantly opumized cost

opimized by ranking function
;

apwpi

Figure 1. Relationships among classes of greedily optimized
problems.

Obviously, the length-2 subsequence of the optimal
sequence is not maximal, and thus the ranking function
is not dominant.

We observe, similar to the discussion at the end of
the previous section, that there is a simple way for
recognizing cost functions which are not dominant.
Since the cost function is defined for sequences of one
element as well, to make pairs dominant, the cost
function must satisfy

if C({a, b)) > C((b, a)) then C(a) = C(b). (13)

In particular, a dominant ranking function, /, has to
agree with the partial order imposed by the cost of pairs
and with the partial order imposed by the cost of single
elements and, therefore, these two partial orders (as-
suming both are transitive), should coincide. If incon-
sistency is found, i.e., condition (13) is not satisfied,
then the hypothesis that the problem has a dominant
optimizing greedy rule can be rejected. (It still may be
optimized by a non-dominant greedy rule as the last
example has demonstrated.)

The relationships between the different classes of
greedily optimized problems discussed thus far is pre-
sented in Figure 1.

5. Examples

In this section we illustrate the ideas presented above
by verifying the properties of two known greedily opti-
mized problems.

The first problem is minimizing maximum job late-
ness on a single machine (#6). Given n jobs, each
associated with a deadline d; and a processing time Di,
find an optimal sequencing that minimizes the maxi-
mum job lateness, max{F, — d,}, where F, is the flow
time of job i/ defined by:

Fi: zpj

J=1



Jackson!"! proved that the problem is greedily optimized
by the due-dates (he used the process suggested by
Theorem 4).

Let x, = (pi, di) and x; = (pa, d>) be a pair of jobs
with their processing times and due-dates. Using the
process suggested by Theorem 35, of identifying ranking
functions based on costs of pairs, it can be shown that

Cl{xi, 2)) > C(x2, 1)) & dy > dy,  (14)
that is,

max{p, — d\, p, + p, — d-} (s
>max{p, —dy, p+p —d\}| o d >d,.
Therefore, d, constitutes indeed an optimizing ranking

function. The cost associated with one element is

Cxi)=p —d,. (16)

This cost does not provide the same ordering as the
due-dates and. therefore, the necessary condition for
being greedily optimized by the cost function is violated
(see (13)).

The second problem is minimizing maximum flow-
time in a two-machine flow-shop. Let (4,, B,) be a pair
associated with the ith job. 4, is the length of time the
job must spend on the first machine of the shop and B,
is the time spent on the second machine. For each i, 4,
must be completed before B; can begin. Given the 2n
values: 4,, 45, ..., A,, By, B>, ..., B,, find the
ordering of these jobs on each of the two machines so
that neither the precedence nor the occupancy con-
straints are violated and so that the maximum of the
flow time F, is made as small as possible.

It has been shown,!"! again, by following the process
suggested by Theorem 4, that the maximum flow-time
is minimized if job j precedes job j + |1 when

min{d4,, B,,,} < min{4,.,, B;}. (17)

Looking only at two-job problems, it is easily verified
that the ordering dictated by (17) coincides with the
order determined by costs on pairs. If (4,, B, ) and (4>,
B, ) are two jobs then the cost function for the sequence
(X1, X2 ) 18

C((x1, x2)) = A, + max{4,, B;} + B.. (18)
It can be shown that
A, + max{4,, B,} + B
< A; + max{A4,, B,} + B, (19)
iff
min{4,, B>} < min{4,, B}, (20)

which is indeed the same as (17). From the transitivity
property of the order induced by (20) we know that
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there exists a ranking function fon individual jobs that
reflects this order. After some manipulation such a
ranking function can indeed be formed. It can be shown
that if

min{4,, B,} < min{4,, B,} 2n
then
sigg(A, - B)) sigp(Az - Bz). 22)
min{4,, B,) min(A4,, B,)
Therefore the function
fi, By = Bt 23)

is a uniform ranking function for the problem. (The
processing times on both machines are assumed to be
strictly positive, but a generalization to the case where
either one is zero is straightforward.) The cost associated
with one element only is 4, + B, and it does not
coincide with the ranking function (23). We can there-
fore conclude that this cost function will not necessarily
yield an optimal solution since the necessary condition
(13) is violated.

6. Summary and Conclusions

This paper provides necessary and sufficient conditions
for a problem to be greedily optimized by a ranking
function. The virtue of these conditions is that they are
easy to test and thus may be useful in mechanizing the
process of generating greedy strategies by computers.

The necessary condition (Theorem 5) can be trans-
lated into a simple procedure for rejecting the hypoth-
esis that a problem is greedily optimized and otherwise,
determines a partial order which all optimizing ranking
function (given that there is one), must satisfy. The
sufficient condition identifies a class of pairwise pref-
erentially independent and acyclic (a.p.w.p.1.) problems
that are optimized via a uniform ranking function, and
show that several well known examples fall into this
class. A procedure, which can be used to verify the
p.w.p.L. property, and which can identify uniform rank-
ing functions is provided. Although the p.w.p.i. prop-
erty is quite restrictive, all the problems in the Appendix
that are optimized by a ranking function possess this
property (Figure 1).

Observing that the optimal solutions to many
greedily optimized problems are dominant, and since
human intuition usually suggests using the cost as the
greedy rule, we also relate our study to this class. We
stress that this is a limited class since many greedily
optimized problems do not have dominant solutions.
The greedoid theory provides a sufficient condition for
dominance. A simple, but useful, necessary condition
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for a problem to be dominantly optimized is given in
(13).

Appendix: A Glossary of Greedily Optimized
Ordering Problems

1. The spanish treasure problem..''! An unknown
number of chests of spanish treasure have been buried
on a random basis at n sites. For each site / there is a
known unconditional probability p, that a chest was
buried there, and an excavation cost ¢,. Find a search
strategy (i.e.. a permutation of the integers from | to n)
that minimizes the average cost of finding the first chest.

Greedy strategy: Select the sites in nondecreasing order
of g./p..

2. A sequential search problem.”’ An object is
hidden in one of n locations. Let p; be the prior proba-
bility that the object is in location / (3=, p, = 1), and
a; be the probability that the object is overlooked in
location /, even though it is there. The cost of each
search at location { is ¢,. Find a search procedure that
will minimize the expected total cost of finding the
object.

Greedy strategy: Choose the locations in a nondecreas-
ing order of the ratios

C
Ti(k),

where w,(k) is the probability that the object will be
found for the first time during the kth search of location
i, le.,

W}(k) = p!alk_l(l - Cl,').

3. Job sequencing with deadlines. Given n jobs,
for each job i a deadline d; and a profit p,, and assuming
that each job takes one unit to process, find a maximum
profit subset of jobs that can be completed by their
deadlines.

Greedy strategy: Select the jobs in a nonincreasing
order of profits as long as they can be completed by
their deadlines.

4. Job sequencing on a single processor. Given n
jobs with a processing time p; for job i find a sequencing
that will minimize the following performance measure:

i Fi&
n

where the jobs are indexed here by their positions in
the sequence, Fi. = Y%, p;, and a > 0. In the special
case where a = 1, F, is the mean flow time of job k,
and in this case the problem is identical to problem 3
above, and is also a special case of problem 10 below
(when all weights are equal).

Greedy strategy: Sequence the jobs in order of non-
decreasing processing times:

psp;<---<p,

5. Minimizing weighted average flow-time on a
single processor. Given # jobs with processing time p,
and weight u; for job i/ find a sequencing that will
minimize the weighted mean flow time:

n k
F= 2 Uk z p}v
k=1 =1

where the jobs are indexed by their positions in the
sequence.

Greedy strategy: Sequence the jobs in a nondecreasing
order of p;/u;.

6. Minimizing maximum job lateness on a single
machine. Given 7 jobs, each associated with a deadline
d; and a processing time p,, find a sequencing that
minimized the maximum job lateness or the maximum
job tardiness. The /ateness L, of job i is

L =F —-d,
and its tardiness T; is
T; = max(0, L,),
where F; is the flow time of job i.

Greedy strategy: Sequence the jobs in nondecreasing
order of their due-dates.

7. Maximizing minimum job lateness on a single
machine. Given n jobs, each with a deadline d, and a
processing time p;, find a sequencing that maximizes
the minimum job lateness or minimum job tardiness.

Greedy strategy: Sequence the jobs in a nonincreasing
order of their slack times, i.e., so that

d|—p,Sd2—p2$-~Sdn—p,..

8. Minimizing maximum flow-time in a two-
machine flow-shop. A set of 7n jobs is to be processed
on two machines A and B such that, for each job, the
work on machine A must be completed before the work
on machine B can start. Given, for each job i, the
processing times 4, and B; on machines A and B,
respectively, find an ordering of the jobs on each of the
two machines so that neither the precedence nor the
occupancy constraints (i.e., each machine can process
only one job at a time) are violated, and so that the
total time to complete all the jobs (maximum flow-
time) is minimized.

Greedy strategy: Sequence the jobs so that for every j
job j precedes job j + 1 if

min(A,, Bj+|) < min(Aj+|, Bj)



9. Optimal storage on tape. Given a set of n pro-
grams such that program / has a length /,, find an order
in which they should be placed on a tape so that the
average retrieval time is minimized. The average re-
trieval time is given by

/)

[N o
I ™ >

k=1 j

Where /, is the length of the jth program in the selected
ordering.

Greedy strategy: Select the programs in a nonincreasing
order of their lengths.
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