|
R79
Mini-Bucket Heuristics for Improved Search
Kalev Kask(kkask@ics.uci.edu) & Rina Dechter (dechter@ics.uci.edu)
Abstract
The paper is a second in a series of two papers evaluating the power of a new scheme that generates search heuristics mechanically. The heuristics are extracted from an approximation scheme called mini-bucket elimination that was recently introduced. The first paper introduced the idea and evaluated it within Branch-and-Bound search. In the current paper the idea is further extended and evaluated within Best-First search. The resulting algorithms are compared on coding and medical diagnosis problems, using varying strength of the mini-bucket heuristics.

Our results demonstrate an effective search scheme that permits controlled tradeoff between preprocessing (for heuristic generation) and search. Best-first search is shown to outperform Branch-and-Bound, when supplied with good heuristics, and sufficient memory space.

  [ps] [pdf]