AND/OR Search Spaces: for Anytime Probabilistic Reasoning

Rina Dechter

UCl

Main Collaborators:
Alexander Ihler
Kalev Kask
Radu Marinescu
Bobak Pezeshki
Junkyu Lee

Outline

- AND/OR search spaces vs. Probabilistic circuits
- Review AND/OR search spaces for PGM
- AND/OR Multi-valued Decision Diagrams (AOMDD)
- Anytime algorithms over AND/OR search spaces
- AND/OR Abstraction sampling.
- Moving forward: Neurosymbolic, causality

Outline

- AND/OR search spaces vs. Probabilistic circuits
- Review of AND/OR search spaces for PGM
- AND/OR Abstraction sampling, balancing exact vs approximate, time vs memory vs accuracy.
- Moving forward: Reasoning under partial models and data.

AND/OR vs Arithmetic Circuit Example

AND/OR Spaces and Circuits

AND/OR space

- Isomorphic in practice
- Pseudo trees
- Used, anytime algorithms
- Input: a full graphical model
- Input is a graph + data
- Can exploit local structure
- Multi-valued variables and tabular representation

Probabilistic Circuits

- Can be more expressive
- Dtrees
- Used for compilation
- Input: a full graphical model
- Input is a graph/circuit + data.
- Exploit logical structure.
- Bi-valued variables, logical functions.

Graphical Models - Overview

Probabilistic Reasoning Problems

$$
\begin{aligned}
X & =\left\{X_{1}, \ldots, X_{n}\right\} \\
D & =\left\{D_{1}, \ldots, D_{n}\right\} \\
F & =\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}
\end{aligned}
$$

Exact Algorithm by BE or AND/OR search, Complexity

Anytime vs Compilation Methodology

- We want a unifying methodology that is anytime and provide bounds that improve with time regardless of memory
- Winning frameworks: search, or sampling guided by heuristics generated via compilation.

Outline

- AND/OR search spaces and Probabilistic circuits
- AND/OR search spaces for PGM
- Anytime algorithms over AND/OR space
- AND/OR Abstraction sampling, balancing exact vs approximate, time vs memory vs accuracy.
- Moving forward: Reasoning under partial models and data.

AND/OR vs. OR

OR

AND
OR

AND
OR
AND
OR

(D)

AND/OR

AND/OR size: $\exp (4)$,
OR size $\exp (6)$

From AND/OR Tree

Simon Institute 10/17/2023

Potential Search Spaces

A	B	f_{1}	A	C	f_{2}	A		f_{3}	A		f_{4}	B	C	f_{5}	B	D	f_{6}	B	E			c	D	f_{8}	E	F	${ }_{9}$
0	0	2	0	0	3	0	0	0	0	0	,	0	0	0	0	0	4	0	0			0	0	1	0	0	1
	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1			0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	0		1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1		1	1		1	1	0	1	1	1		1	1	0	1	1	

© (AE]
[Dechter \& Mateescu, 2007]

Cost of a Solution Tree

Value of a Node (e.g., Probability of Evidence)

$P(E \mid A, B)$			
\mathbf{A}	\mathbf{B}	$\mathbf{E}=\mathbf{0}$	$\mathbf{E}=\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$. $\mathbf{4}$.6
$\mathbf{0}$	$\mathbf{1}$.5	.5
$\mathbf{1}$	$\mathbf{0}$.7	.3
$\mathbf{1}$	$\mathbf{1}$.2	.8

Evidence: $\mathrm{E}=0$

$P(B \mid A)$		
A	$\mathrm{B}=0$	$B=1$
0	. 4	. 6
1	1	. 9

$P(C \mid A)$		$P(A)$				
\mathbf{A}	$\mathbf{C}=\mathbf{0}$	$\mathbf{C}=\mathbf{1}$				
$\mathbf{0}$.2	.8				
$\mathbf{1}$.7	.3		\quad	\mathbf{A}	$\mathbf{P}(\mathbf{A})$
:---:	:---:					
$\mathbf{0}$.6					
$\mathbf{1}$.4					

$$
\mathrm{P}(\mathrm{D}=1, \mathrm{E}=0)=?
$$

$$
.24408 \text { A }
$$

Value of node $=$ updated belief for sub-problem below

AND node: product

OR node: Marginalization by summation

Answering Queries: Sum-Product (efeief upading)

Simon Institute 10/17/2023

The Impact of the Pseudo Tree

(C K HABEJLNODPMFG)

What is a good pseudo tree?

Outline

- AND/OR search spaces vs. Probabilistic circuits
- Review AND/OR search spaces for PGM
- AND/OR Multi-valued Decision Diagrams (AOMDD)
- Anytime algorithms over AND/OR search spaces
- AND/OR Abstraction sampling, balancing exact vs approximate, time vs memory vs accuracy.
- Moving forward: Neurosymbolic, causality

From Context Minimal AND/OR Graphs to AND/OR MDDs

[Mateescu, Marinescu, Lam, Dechter, 2007, 2013]

		12
	01	5
	10	18
01	11	2
10		4
10		10
11	10	6
	11	4

M|B]C $\operatorname{la(M.B,C)}$ \begin{tabular}{|l|l|l|l|}
\hline 0 \& 0 \& 0 \& 3

\hline 0 \& 0 \& 1 \& 5

\hline

\hline 0 \& 0 \& 0

\hline 0 \& 0 \& 1

\hline 0 \& 1 \& 0

\hline 0 \& 1 \& 0 \& 14

\hline 0 \& 1 \& 1 \& 12

\hline

\hline 1 \& 0 \& 0 \& 9

\hline 1 \& 0 \& 1 \& 15

\hline
\end{tabular}

1	1	0	7
1	1	1	6

(1)

Figure 20: AND/OR search tree and context minimal graph

Figure 22: AOMDD for the weighted graph

Outline

- AND/OR search spaces vs. Probabilistic circuits
- Review AND/OR search spaces for PGM
- AND/OR Multi-valued Decision Diagrams (AOMDD)
- Anytime algorithms via AND/OR heuristic search
- AND/OR Abstraction sampling, balancing exact vs approximate, time vs memory vs accuracy.
- Moving forward: Neurosymbolic, causality

Anytime Algorithms via Heuristic Search

Pseudo-tree
Heuristic $h(n)$:
Estimate of the mass/value of the subtree rooted at node n.

Applicable to any task.

Mini-Bucket Elimination for optimization

Tighten by cost-shifting

bucket B:
bucket C:
bucket D:
bucket E:
bucket A:

$$
\begin{aligned}
& \lambda_{B \rightarrow C}(a, c)=\max _{b} f(a, b) f(b, c) \\
& \lambda_{B \rightarrow D}(d, e)=\max _{b} f(b, d) f(b, e)
\end{aligned}
$$

$\lambda_{C \rightarrow E}(a, e)=\max \ldots$
Simon Institute 10/17/2 \mathcal{C}_{23}

Can tighten heuristics using cost-shifting, Power summation and increased i-bound

Weighted Mini-Bucket

(for summation bounds)

Exact bucket elimination:

$$
\begin{aligned}
& \lambda_{B}(a, c, d, e)=\sum_{b}[f(a, b) \cdot f(b, c) \cdot f(b, d) \cdot f(b, e)] \\
& \leq\left[\sum_{b}^{w_{1}} f(a, b) f(b, c)\right] \cdot\left[\sum_{b}^{w_{2}} f(b, d) f(b, e)\right] \\
& =\lambda_{B \rightarrow C}(a, c) \cdot \lambda_{B \rightarrow D}(d, e) \\
& \text { where } \sum_{x}^{w} f(x)=\left[\sum_{x} f(x)^{1 / w}\right]^{w}
\end{aligned}
$$

is the weighted or "power" sum operator

By Holder's inequality,

$$
\begin{aligned}
& \sum_{x}^{w} f_{1}(x) f_{2}(x) \leq\left[\sum_{x}^{w_{1}} f_{1}(x)\right]\left[\sum_{x}^{w_{2}} f_{2}(x)\right] \\
& \text { where } w_{1}+w_{2}=w \text { and } w_{1}>0, w_{2}>0
\end{aligned}
$$

$$
\text { (lower bound if } w_{1}>0, w_{2}<0 \text {) }
$$

Anytime Algorithms via Heuristic Search

- We used a wide spectrum of heuristic search ideas to yield anytime algorithms with anytime bounds.
- Tasks: MAP, m-best, Partition function, Summation, Marginal Maps, Influence diagrams
- Search methods: Best-first, BnB , recursive BFs, Breadth-rotating for anytime AND/OR, Weighted heuristic, Dynamic vs static heuristic, look-ahead, parallel and distributed processing

MBE Heuristic for AO Search (MAP)

```
OR
AND
OR
AND
OR
AND
OR
AND
```

$f\left(T^{\prime}\right)=w(A, 0)+w(B, 1)+w(C, 0)+w(D, 0)$

$$
+h(D, 0)+h(F)=12 \leq f^{*}\left(T^{\prime}\right)
$$

L = lower bound

AND/OR Search for Marginal MAP

constrained
pseudo tree

[Marinescu, Dechter and Ihler, 2014]

Anytime Solvers for Marginal MAP

[Marinsecu, Lee, Dechter, Ihler, AAAI-2017, JAIR 2019]

- Weighted Best-First search:
- Weighted Restarting AOBF (WAOBF)
- Weighted Restarting RBFAOO (WRBFAOO)
- Weighted Repairing AOBF (WRAOBF)

Weighted A* search [Pohl 1970]
non-admissible heuristic
Evaluation function:

$$
f(n)=g(n)+w \cdot h(n)
$$

Guaranteed w-optimal solution, cost $\boldsymbol{C} \leq \boldsymbol{w} \cdot \mathbf{C}^{*}$

- Interleaving Best-first and depth-first search:
- Look-ahead (LAOBF),
- alternating (AAOBF)

Lower bound

- Better guidance for depth-first dives using improved heuristics
- Memory robust best-first search
- using improved lower bounds

Anytime Bounding of Marginal MAP

(UAI'14, IJCAI'15, AAAI'16, AAAI'17, (Marinescu, Lee, Ihler, Dechter)

- Search: LAOBF, AAOBF, BRAOBB, WAOBF,WAOBF-rep
- heuristic: WMB-MM (20)
- memory: 24 GB
- Anytime lower and upper bounds from hard problem instances with i-bound 12 (left) and 18 (right).
- The horizontal axis is the CPU time in log scale and the vertical axis is the
- value of marginal MAP in log scale.

Partition function (Lou thesis)

Students' Theses

- Bozhena Bidyuk. "Exploiting Graph Cutsets for Sampling-Based Approximations in Bayesian Networks", 2006
- Robert Mateescu. "AND/OR Search Spaces for Graphical Models", 2007.
- Radu Marinescu. "AND/OR Search Strategies for Combinatorial Optimization in Graphical Models.", 2008
- Vibhav Gogate. "Sampling Algorithms for Probabilistic Graphical Models with Determinism." , 2009.
- Andrew Gelfand. "Bottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical Models." , 2014.
- Natalia Flerova. "Methods for advancing combinatorial optimization over graphical models", 2015.
- William Lam. "Advancing Heuristics for Search over Graphical Models" 2017.
- Qi Lou. "Anytime Approximate Inference in Graphical Models" Ph. D Thesis 2018.
- Junkyu Lee. "Decomposition Bounds for Influence Diagrams" Ph.D Thesis, 2020.

AO search for MAP winning

 UAI Probabilistic Inference Competitions- 2006
- 2008
- 2011
- 2014

MPE/MAP

(daoopt)

(merlin)

MMAP

Software

- My software page
- daoopt
- https://github.com/lotten/daoopt
(distributed and standalone AOBB solver)
merlin
- https://developer.ibm.com/open/merlin (standalone WMB, AOBB, AOBF, RBFAOO solvers)
open source, BSD license
pyGMs : Python Toolbox for Graphical Models by Alexander Ihler.

Outline

- AND/OR search spaces vs. Probabilistic circuits
- Review AND/OR search spaces for PGM
- AND/OR Multi-valued Decision Diagrams (AOMDD)
- Anytime algorithms via AND/OR heuristic search
- AND/OR Abstraction sampling
- Moving forward: Neurosymbolic, causality

Between Sampling to Searching

Summation queries, partition function

2-config-subtree sampling

4-config-subtree sampling

S1
S2

Z estimate

Stratified sampling

Knuth 1975, Chen 1992 estimate search space size

- Partially enumerate, partially sample
- Subdivide space into parts
- Enumerate over parts, sample within parts
- "Probe": random draw corresponding to multiple states
- Theorem (Rizzo 2007): The variance reduction moving from Importance Sampling (IS) to Stratified IS with k strata's (under some conditions) is

$$
k \cdot \operatorname{var}\left(Z_{J}\right)
$$

Abstraction Function for States

- An abstraction function, a: $\mathrm{T} \rightarrow \boldsymbol{I}^{+}$partitions the nodes in T .
- It is layer-based: Only nodes at the same level have the same abstract state.
- Examples: a heuristic function, Context-based abstraction

Full OR Tree

$$
Z(A=0, B=1, C=1)=0.6 * 0.7 * 0.8
$$

Method 1 - OR Tree

Abstraction Sampling - AND/OR

\square Input: Abstraction function a, (partition the states at each level), a sampling proposal p.
\square Traverse AND/OR search tree breadth-first
\square Compute estimate \hat{Z}

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p, pseudo-tree

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

New Scalable AOAS

New AND/OR abstraction sampling scheme that allows for non-proper abstractions while still ensuring formation of valid probes.

Key Points:
Derforms non-proper abstractions
\square Expands along a depth first traversal of the guiding pseudo tree
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

New Scalable AOAS

New AND/OR abstraction sampling scheme that allows for non-proper abstractions while still ensuring formation of valid probes.

Key Points:

- Performs non-proper abstractions
\square Expands along a depth first traversal of the guiding pseudo tree
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

Key Points:
\square Expands along a depth first traversal of the guiding pseudo tree
\square Perform abstraction at each level
\square Immediately performs recursive pruning of branches that cannot be part of valid configurations

AND/OR Abstraction Sampling

Input: Abstraction function a, (partition the states at each level). Sampling proposal p

$$
\hat{\mathrm{Z}}=\frac{1}{K} \sum_{k=1}^{K} Z^{\prime}{ }_{k}
$$

$$
p(n) \leftarrow \frac{w(n) \cdot g(n) \cdot h(n) \cdot r(n)}{\sum_{m \in A_{i}} w(m) \cdot g(m) \cdot h(m) \cdot r(m)}
$$

Properties

Complexity

$O(n \cdot m)$

where n is the number of variables, and m is the number of abstract states per variable

AOAS is and Unbiased Estimator of the Partition Function

THEOREM 2 (unbiasedness). Given a graphical model $\mathcal{M}=$ $(\mathbf{X}, \mathbf{D}, \mathbf{\Phi})$, algorithm AOAS provides an unbiased estimate for the partition function of \mathcal{M}.

Accuracy/Variance reduction: Stratified Importance Sampling reduce the variance linearly in number of abstract states and the variance between abstract states.

Abstraction Function Comparison

Abstraction Function	Description	Randomized	Refinement Control
randCB	nodes partitioned into abstract states based on assignments to a random subset of their context variables	yes	number of abstract states
relCB	nodes partitioned into abstract states based on equivalent assignments to their most recent context variables	no	number of immediate context variables to consider
simpleHB	nodes partitioned into equal cardinality abstract states after being ordered by their sub-problem heuristic estimates	no	number of abstract states
minVarHB	nodes partitioned into abstract states to minimize the total internal variance of each abstract state w.r.t. node subproblem heuristic estimates	no	number of abstract states

How can we determine which abstraction and what granularity to use?

Results

grid80x80.f10.wrap

Graph Type: MARKOV, $\quad N: 6400, ~ c l i q u e s: ~ 19200, ~ K(\min): ~ 2, ~ K(\max): 2, ~ K(a v g): 2.0, ~ S c o p e ~ S i z e ~(m a x): ~ 2, ~ F x n ~ S i z e ~(m a x): ~ 4 ~$ AOAS
i-bound: 10, w: 29, h: 374, upB: 23580.7

Current Status of AOAS

- AOAS is highly promissing
- Trading off sampling and searching is better over AND/OR space
- Using abstractions yield often superior performance
- A lot more to explore (what abstraction function and what granularity, can we learn the abstraction function)
- But no bounds. Only unbiasedness.

New UAI Competition

- UAI Competition 2022

Solver	20sec	1200sec	3600sec
uai14-pr	61.7	96.8	96.7
ibia-pr	53.6	96.6	97.1
AbstractionSampling	78.9	91.7	93.9
$\underline{\text { lbp-pr }}$	90.3	89.9	90.2

Summary

- AND/OR search spaces vs. Probabilistic circuits
- Review AND/OR search spaces for PGM
- AND/OR Multi-valued Decision Diagrams (AOMDD)
- Anytime algorithms over AND/OR search spaces
- AND/OR Abstraction sampling.
- Moving forward: Neuro-symbolic, causality

Thank You!

For publication see:
http://www.ics.uci.edu/~dechter/publications.html

