Inference and Search for Discrete Graphical Models;
A tutorial and recent work

Rina Dechter
Bren school of ICS, University of California, Irvine

APPRL SITE-VISIT, April 25
Sample Applications for Graphical Models

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
Sample Applications for Graphical Models

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
Outline

- What are graphical models? Queries
- Inference
- Search
- Time vs space, search vs inference
- Bounding inference (Variational: BP, GBP, weighted mini-bucket, cost-shifting)
- Bounding Search (Sampling)
- Anytime algorithms
- Optimization: Tailoring solvers to instance
- Recent algorithmic development
- Summary
Graphical Models

A graphical model \((X,D,F)\):
- \(X = \{X_1, \ldots, X_n\}\) variables
- \(D = \{D_1, \ldots, D_n\}\) domains
- \(F = \{f_1, \ldots, f_r\}\) functions
 (constraints, CPTS, CNFs ...)

Operators:
- combination: Sum, product, join
- Elimination: projection, sum, max/min

Tasks:
- Belief updating: \(\Sigma_{x,y} \prod_j P_j\)
- MPE: \(\max_x \prod_j P_j\)
- CSP: \(\prod_x \times_j C_j\)
- Max-CSP: \(\min_x \Sigma_j F_j\)

All these tasks are NP-hard
- exploit problem structure
- identify special cases
- approximate
Queries

- **Optimization Queries**: MAP/MPE queries:
 \[x_{AB}^* = \arg \min_{x_A, x_B} \sum_{x_\alpha} \varphi_{\alpha} \quad x_{AB}^* = \arg \max_{x_A, x_B} \prod_{x_\alpha} \varphi_{\alpha} \]

- **Likelihood queries**: (counting, partition function, marginal, probability of evidence)
 \[Z = \sum_{x_A, x_B} \prod_{x_\alpha} \varphi_{\alpha} \]

- **Marginal MAP**:
 - Marginalize (sum) away variables A, then find optimal configuration of variables B
 \[\mathbf{x}_B^* = \arg \max_{\mathbf{x}_B} \sum_{\mathbf{x}_A} \prod_{\alpha} \psi(\mathbf{x}_\alpha) \]

Also satisfiability and expected utility
Tree-solving is Easy

Belief updating
(sum-prod)

MPE (max-prod)

Dynamic Programming, Inference

CSP – consistency
(projection-join)

Message-passing

Trees are processed in linear time and memory

Message-passing
Inference vs conditioning-search

Inference

\[\text{exp}(w^*) \text{ time/space} \]

Search

\[\text{Exp}(n) \text{ time} \]
\[O(n) \text{ space} \]

Search+inference:

\[\text{Space: } \text{exp}(w) \]
\[\text{Time: } \text{exp}(w+c(w)) \]
\[w: \text{ user controlled} \]
Inference vs conditioning-search

Inference

\[\text{Exp}(w^*) \text{ time/space} \]

Search

\[\text{Exp}(w^*) \text{ time} \]
\[O(w^*) \text{ space} \]

Search+inference:

- **Space:** \(\text{Exp}(q) \)
- **Time:** \(\text{Exp}(q+c(q)) \)

\(q \): user controlled
Inference
Query 1: Belief updating: $P(X|\text{evidence})=?$

$P(a|e=0) \propto P(a,e=0) =$

$$
\sum_{e=0,d,c,b} P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)
$$

$P(a) \sum_{e=0} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a)P(d|b,a)P(e|b,c)$

Variable Elimination

$h^B(a,d,c,e)$
Query 2: Finding MPE by Bucket Elimination

Algorithm BE-mpe (Dechter 1996, Bertele and Briochi, 1977)

\[
MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)
\]

\[
\max_X \prod
\]

bucket B: \quad P(b \mid a) \quad P(d \mid b,a) \quad P(e \mid b,c)

bucket C: \quad P(c \mid a) \quad h_B\rightarrow_C (a, d, c, e)

bucket D: \quad h_C\rightarrow_D (a, d, e)

bucket E: \quad e=0 \quad h_D\rightarrow_E (a, e)

bucket A: \quad P(a) \quad h_E\rightarrow_A (a)

\[W^* = 4\] "induced width" (max clique size)

\text{OPT}
Generating the MPE-tuple

1. $a' = \arg\max_a P(a) \cdot h^E(a)$

2. $e' = 0$

3. $d' = \arg\max_d h^C(a', d, e')$

4. $c' = \arg\max_c P(c | a') \times h^B(a', d', c, e')$

5. $b' = \arg\max_b P(b | a') \times P(d' | b, a') \times P(e' | b, c')$

Return (a', b', c', d', e')
Generating the MPE-tuple

1. $a' = \arg \max_a P(a) \cdot h^E(a)$

2. $e' = 0$

3. $c' = \arg \max_{c'} P(c | a')$

4. $d' = \arg \max_{d'} P(d | b, a')$

5. $b' = \arg \max_b P(b | a') \times \prod_b P(d' | b, a') \times P(e' | b, c')$

Time and space exponential in the induced-width / treewidth

$O(n^{k \uparrow w* + 1})$

Return (a', b', c', d', e')
Exact Inference solvers at UCI

- BE (Bucket Elimination)
- BEEM BE with External Memory, (UAI 2010)
- IGVO (Iterative Greedy Variable Ordering, AAAI 2011)
Search
OR Search Tree
AND/OR vs. OR Spaces

Time $O(nk^h)$
Space $O(n)$
height is bounded by $(\log n) w^*$
AND/OR Tree DFS Algorithm (Belief Updating)

Evidence: $E=0$

Result: $P(D=1,E=0)$

OR node: Marginalization by summation

AND node: product

Value of node = updated belief for sub-problem below
AND/OR Tree Search for Optimization

Goal: \(\min_X \sum_{i=1}^{9} f_i(X) \)

AND node = Combination operator (summation)

OR node = Marginalization operator (minimization)
AND/OR Search Graph

Constraint Satisfaction – Counting Solutions

context minimal graph

pseudo tree
All Four Search Spaces

<table>
<thead>
<tr>
<th></th>
<th>AND/OR graph</th>
<th>OR graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$O(n , k^{w^*})$</td>
<td>$O(n , k^{p,w^*})$</td>
</tr>
<tr>
<td>Time</td>
<td>$O(n , k^{w^*})$</td>
<td>$O(n , k^{p,w^*})$</td>
</tr>
</tbody>
</table>

Computes any query:
- MAP/MPE
- Likelihood ($p(\text{evidence})$)
- Marginal MAP

Any query is best computed
Over the c-minimal AO space
The impact of the pseudo-tree

- **Optimization**
 - Choose pseudo-tree with a minimal search graph
 - But determinism is unpredictable
 - And pruning by BnB is even more unpredictable

Min-Fill
(Kjaerulff90)
The Effect of Constraint Propagation

Domains are \{1,2,3,4\}

CONSTRAINTS ONLY

FORWARD CHECKING

MAINTAINING ARC CONSISTENCY
Search + Inference
W-Cutset conditioning + inference.

- Inference may require too much memory
- Condition on some of the variables

Time exp in cycle-cutset
Memory-linear

Graph Coloring problem

A=yellow
B=red

A=green
B=red
B=blue

B=blue
B=yellow
Search+Inference:
Trading Space for Time

- **AO(j):** searches depth-first, cache i-context
 - $j = \text{the max scope-size of a cache table.}$

 - **Space:** $O(n)$
 - **Time:** $O(nk^{w*} \log n)$

 - **Space:** $O(nk^{j})$
 - **Time:** $O(nk^{j} + mj)$

 - **Space:** $O(nk^{w*})$
 - **Time:** $O(nk^{w*} + 1)$
Search solvers at UCI

- **MAP solvers (AND/OR Branch and Bound):**
 - AOBB, AOBF(i-bound using MBE), (Marinescu, 2009)
 - BRAOBB(i-bound, MPLP,JGLP), (Otten 2013)
 - Distributed/parallel AOBB (Otten 2013)

- **Likelihood solvers:**
 - VEC(i): Variable elimination and conditioning (Gogate, 2009).
 - Aolib (AND/OR search for likelihood, (Mateescu 2007)

- **Marginal-MAP (new)**
 - AOBB-JG, AOBB-MM: AND/OR search+ weighted mini-bucket and cost-shifting, (Submitted to UAI 2014, Marinescu, Dechter and Ihler)
Approximate Inference
Loopy Belief Propagation

- Belief propagation is exact for poly-trees
- Loopy BP - applying BP iteratively to cyclic networks

No guarantees for convergence
Works well for many coding networks
Iterative Join-graphs Propagation (IJGP: kask, (Dechter and Mateescue, 2003), (GBP: yedidya et. Al., 2002....)

i-Bounded join-graph

\[JG(3) \]

Join-tree = Tree-Decomposition

more accuracy

less complexity
Mini-Bucket Elimination

\[\max_B \Pi \]

Bucket B

\[P(E|B,C) \]

\[P(B|A) P(D|A,B) \]

Bucket C

\[P(C|A) h^B (C,E) \]

Bucket D

\[h^B (A,D) \]

Bucket E

\[E = 0 h^C (A,E) \]

Bucket A

\[P(A) h^E (A) h^D (A) \]

\[W=2 \]

Node duplication, renaming

\[P(A) \]

\[P(B|A) \]

\[P(C|A) \]

\[P(E|B,C) \]

\[P(D|A,B) \]

\[MPE^* \text{ is an upper bound on } MPE --U \]

\[\text{Generating a solution yields a lower bound} --L \]
Mini-bucket and mini-clustering

- **Complexity**: $O(r \exp(i))$ time and $O(\exp(i))$ space.
- As i increases, both accuracy and complexity increase.
- Applicable to all queries.
- Weighted mini-bucket for optimization

Pairwise Model

- $B_2 : \{\psi_{23}\}, \{\psi_{12}\}$
- $B_3 : \{\psi_{34}, m_{2\to3}(y_3)\}$
- $B_4 : \{\psi_{45}, m_{3\to4}(y_4)\}, \{\psi_{14}\}$
- $B_5 : \{\psi_{15}, m_{4\to5}(y_5)\}$
- $B_1 : \{m_{2\to1}(y_1), m_{4\to1}(y_1), m_{5\to1}(y_1)\}$
Tightening Bounds via cost-shifting

- Decompose graph into smaller subproblems
- Solve each independently; optimistic bound
- Exact if all copies agree
Decomposition view

- Decompose graph into smaller subproblems
- Solve each independently; optimistic bound
- Exact if all copies agree
- Enforce lost equality constraints via Lagrange multipliers

\[
\max_x \sum_{ij} E_{ij}(x_i, x_j) \leq \min_{\lambda} \sum_{ij} \max_x E_{ij}(x_i, x_j) + \lambda_j(x_i) + \lambda_i(x_j)
\]

\[\forall i \sum_j \lambda_{ij}(x_i) = 0\]
Update the original factors (FGLP)

- Tighten all factors over x_i simultaneously
- Compute **max-marginals**
 \[
 \forall \alpha, \quad \gamma_\alpha(x_i) = \max_{x_\alpha \setminus x_i} f_\alpha
 \]
- & update:
 \[
 \forall \alpha, \quad f_\alpha(x_\alpha) \leftarrow f_\alpha(x_\alpha) - \gamma_\alpha(x_i) + \frac{1}{|F_i|} \sum_\beta \gamma_\beta(x_i)
 \]
Join-graph based cost-shifting

(Ihler, Flerova, Dechter, Otten, UAI 2012)

Join Graph

$\max_B \Pi$

$\max_B \Pi$

Bucket B

$P(E|B,C)$

$P(C|A) h^B (C,E)$

$h^B (A,D)$

$h^B (A,E)$

$h^E (A) h^D (A)$

$E = 0$

$h^A (A)$

$P(A)$

$P(D|A,B)$ $P(B|A)$
Bounded Inference solvers at UCI

- Bounding schemes:
 - MB(i-bound),
 - weighted-MB(i) (Ihler, 2012)
 - FGLP (Ihler, 2012)
 - JGLP(i-bound) (Ihler 2012)

- Bounding schemes provide heuristic for AND/OR search
Approximate Search: Sampling stochastic local search
Sampling and Local Search at UCI

- Likelihood queries:
 - W-cutset sampling (Gibbs and importance)
 - SampleSearch (Importance sampling)
 - AND/OR sampling (Importance sampling)
 - Hybrid of all (Importance sampling)

- MAP/MPE
 - GLS+ (Hutter et. al., 2005)
 - STLS (Stochastic tree local search, Milchgrub and Dechter, submitted)
Outline

- What are graphical models? Queries
- Inference
- Search; via AND/OR search
- Time vs space, search vs inference
- Bounding inference (BP, GBP, mini-bucket variational)
- Bounding Search (Sampling)
- Anytime search algorithms for MAP
- Optimization: Tayloring solver to problem
- UCI Algorithm Library
- Conclusions
MAP by AND/OR Branch-and-Bound

Decomposition of independent subproblems

Prune based on current best solution and heuristic estimate (mini-bucket heuristic).

Cache table for F (independent of A)

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

[Marinescu & Dechter, AIJ'09]
AOBB + Central Enhancements

\[\min_{\lambda} \sum_{(ij)} \max_{X} f_{ij}(X_i, X_j) + \lambda_{ij}(X_i), \lambda_{ji}(X_j) \]

Cost-shifting (MPLP) Re-parametrization
Tighter bounds by iteratively solving linear programming relaxations and message passing on join graph.

Breadth-First Subproblem Rotation
Improved anytime performance through interleaved processing of independent subproblems.

Enhanced Variable Ordering Schemes
Highly efficient, stochastic minfill / mindegree implementations for lower-width orderings.

+ SLS (Hutter et. Al 2005)

(Ihler, Flerova, Dechter, Otten, 2012, Otten and Dechter 2011, Kask, Gelfand, Otten, Dechter 2010)
This year’s advancements
A New Algorithm for Marginal MAP

- *(Submitted to UAI-2014) Improving Marginal Map for Graphical Models”*
- Radu Marinescu, Rina Dechter, Alex Ihler.

- **Problem:** \(\mathbf{x}^*_B = \arg \max_{\mathbf{x}_B} \sum \prod_{\mathbf{x}_A} \psi(\mathbf{x}_\alpha) \)

Marginalize away variables A, then find optimal configuration of variables B

Figure 2: AND/OR search spaces for marginal MAP

Improving Marginal Map for Graphical Heuristics generated by weighted mini-bucket and moment-matching heuristics.
- **Branch and Bound Search of AND/OR search**

Figure 5: Number of instances solved (top) and number of wins (bottom) by benchmark.
Weighted AND/OR Search

Paper submitted to ECAI-2014: “Evaluating Weighted DFS Branch and Bound over Graphical Models” Natalia Flerova, Radu Marinescu, Rina Dechter

Empirically evaluation proposed algorithms wAOBB and wBRAOBB against Weighted Best-First search (wAOBB) and Breadth-First AND/OR Branch and Bound (BRAOBB)
A New Tree-based Stochastic Local search for MAP

STLS: Cutest-driven Local Search for MPE” Alon Milchgrub and Rina Dechter, submitted UAI-2014

Problem: \[x^* = \arg\min_{x} \sum_{i} \varphi_i(x_i) + \sum_{i<j \in E} \psi_{i,j}(x_i, x_j) \]

Algorithm STLS:
Input: an instance of the energy minimization problem
Output: an assignment to the problem approximating its minimum

1. Initialize the variables according to the current initialization scheme (see 3.2)
2. Find the set of variables \(T \) which are not a part of any cycle using the algorithm described in [15].
3. Repeat until stagnation is declared, once a set number of iterations in which no variable has changed its value have passed (or time bound has passed):
 (a) Find a cycle-cutset \(C \) for \(V \setminus T \).
 (b) Update the values of the variables:
 - Given the values of the cycle-cutset \(C \) inducing a forest \(F = V \setminus C \), use BP to find the optimal assignment on \(F \).
 - Given the values of the tree variables \(T \), use some local search algorithm (i.e. HOPFIELD MODEL, GLS+[6], etc.) in order to update the values \(C \) (optional implementation).

If this last feature is utilized the two update stages are performed alternately until convergence or until the set number of iterations has passed.
Optimization: Tailoring solver to the problem instance
Optimization

- **The problem**: determine how much time will take a solver $A(par)$ to solve a problem instance c

- **Approaches**:
 - Worst-case analysis based on the graph-parameters (tree-width), time space tradeoff for exact schemes
 - Learning: over a benchmark class
 - Stratified Sampling: of problem instance for a solver to estimate search space.
Worst-Case Analysis

- **Optimization**
 - Choose pseudo-tree with minimal search graphs
 - But determinism is unpredictable
- And pruning by BnB is unpredictable

Min-Fill (Kjaerulff90)

Hypergraph Partitioning (h-Metis)
Learning a Regression Model for Complexity Estimation (Otten and Dechter, 2012)

- Number of nodes $N(n)$ as linear function of features $\varphi_j(n)$:

$$ \log N(n) = \sum_j \lambda_j \varphi_j(n) $$

related: [Leyton-Brown, Nudelman, Shoham 2009]
Subproblem Features $\varphi_j(n)$

- Use both static and dynamic characteristics:
 - Structural
 - Subproblem bounds
 - Limited AOBB probe.

- Prediction performance, learning per problem instance:

<table>
<thead>
<tr>
<th>Problem</th>
<th>MSE</th>
<th>PCC</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedreg10, p=1440, fixed=6</td>
<td>0.828</td>
<td>0.825</td>
<td>0.468</td>
</tr>
<tr>
<td>pedreg41, p=1106, fixed=10</td>
<td>0.842</td>
<td>0.833</td>
<td>0.312</td>
</tr>
<tr>
<td>largebam3-11.59, p=396, fixed=9</td>
<td>0.797</td>
<td>0.789</td>
<td>0.199</td>
</tr>
<tr>
<td>pblock5, p=111, fixed=3</td>
<td>0.841</td>
<td>0.831</td>
<td>0.159</td>
</tr>
<tr>
<td>7.26-52, p=240, fixed=3</td>
<td>0.797</td>
<td>0.789</td>
<td>0.199</td>
</tr>
</tbody>
</table>

- Dynamic:
 - Problem solution cost, derived from solution.
 - Problem solution cost, provided by the “upper and lower bound, excluding the heuristic.
 - Probability of determinism (zero probability of pseudo tree leaf.

- Static:
 - Average depth of terminal search nodes within probe.
 - Average node depth within probe (denoted d).
 - Average branching degree, defined as $\sqrt{5000}$.

- 34: Max. subproblem variable context size minus mini bucket i-bound.
Predicting Depth-First Branch and Bound Search Trees (Levi, Lars and Dechter, IJCAI 2013, CP-2014 submission)

UCI Library: Summary

- **Exact/anytime:**
 - **Likelihood:** BE, BEEM, VEC(w), AOlPe(c-bound)
 - **MAP:** VE, BEEM (external memory/multi-core), AOBb(i), BRAOBb(i), DAOOPT(Distributed AOBb).
 - Marginal Map (currently developed)

- **Approximation/anytime, for all queries:**
 - BP, IJGP(i-bound)
 - IJGP-Importance Sampling(i-bound)
 - IJGP-SampleSearch(i-bound)
 - MBE (mini-bucket), Weighted-mini-bucket, reparameterized MB
 - STLS (currently developed, for MAP)

- **Supporting schemes:** Variable-ordering (IGVO)
Summary

- What are graphical models? Queries
- Inference
- Search
- Time vs space, search vs inference
- Bounding inference (Variational: BP, GBP, weighted mini-bucket, cost-shifting)
- Bounding Search (Sampling)
- Anytime algorithms
- Optimization: Tailoring solvers to instance
- Recent algorithmic development
- Summary

Exact algorithms

Approximations

Anytime

New work
For publication see:
http://www.ics.uci.edu/~dechter/publications.html