Probabilistic Reasoning Meets Heuristic Search

Rina Dechter

Collaborators:
Radu marinescu,
Alex Ihler,
Junkyu Lee

Probabilistic Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Maximization (MAP): compute the most probable configuration

$$
\mathbf{x}^{*}=\arg \max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\substack{ \\\mathbf{N}^{\prime}}} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

Phenylalanine

Probabilistic Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Summation \& marginalization "partition function"
$p\left(x_{i}\right)=\frac{1}{Z} \sum_{\mathbf{x} \backslash x_{i}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad$ and $\quad Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$

e.g., [Plath et al. 2009]

Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Mixed inference (marginal MAP, MEU, ...)

$$
f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{M}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

Influence diagrams \& optimal decision-making
(the "oil wildcatter" problem)

e.g., [Raiffa 1968; Shachter 1986]

Graphical models

A graphical model consists of:

$X=\left\{X_{1}, \ldots, X_{n}\right\}$-- variables
$D=\left\{D_{1}, \ldots, D_{n}\right\}$-- domains
$F=\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}$ - functions or "factors"

Operators:

combination operator
(sum, product, join, ...)
elimination operator
(projection, sum, max, min, ...)

Types of queries:

- All these tasks are NP-hard
- exploit problem structure
- identify special cases
- approximate

Why Marginal MAP?

- Often, Marginal MAP is the "right" task:
- We have a model describing a large system
- We care about predicting the state of some part

- Example: decision making - Complexity: NPpp complete
- Sum over random variables
- Not necessarily easy on trees
- Max over decision variables (specify action policies)

Example for MMAP Applications

- Haplotype in Family pedigrees
- Coding networks

- Probabilistic planning

- Diagnosis

6 people, 3 markers

Marginal map

- Graphical Model: $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}\rangle$

$$
\begin{array}{lc}
\text {-variables } & \mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\} \\
\text {-domains } & \mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\} \\
\text {-functions } & \mathbf{F}=\left\{f_{1}, \ldots, f_{r}\right\}
\end{array}
$$

$$
P(\mathbf{X})=\frac{1}{Z} \prod_{j} f_{j}
$$

$$
\begin{aligned}
& \mathbf{X}_{M}=\{A, B, C, D\} \\
& \mathbf{X}_{S}=\{E, F, G, H\}
\end{aligned}
$$

Why is it harder? intuitively

Finding Marginals by Bucket elimination
Algorithm BE-bel (Dechter 1996)

$$
P(A \mid E=0)=\alpha \sum_{E=0, D, C, B} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A, B) \cdot P(E \mid B, C)
$$

Time and space exponential in the

 induced-width / treewidth$$
O\left(n k^{w *+1}\right)
$$

$$
P(a \mid e=0)
$$

HMAMiSMA

Let's apply Bucket-elimination: Complexity is exponential in the induced-width

MAP* is the marginal MAP value

Why is MMAP harder?

Complexity of Bucket Elimination

Bucket Elimination is time and space

$$
O\left(r \exp \left(w^{*}(d)\right)\right)
$$

$w^{*}(d)$ - the induced width of graph along ordering d
$r=$ number of functions
The effect of the ordering:

"Moral" graph

$w^{*}\left(d_{1}\right)=4$

$w^{*}\left(d_{2}\right)=2$

Finding the smallest induced width is hard!

Why is MMAP harder?

Brute-Force Search

-Enumerate all full MAP assignments -Evaluate each full MAP assignment
-Return the one with maximum cost

Evaluating a MAP assignment is hard!

Harder relative to optimization because induced-width is higher and evaluation of a configuration is higher
Harder relative to summation: higher induced-width

Outline

- Graphical models, marginal map and planning
- Heuristic search meets probabilistic reasoning:
- AND/OR search spaces
- Decomposition bounds
- MMAP AND/OR search with WMB heuristics
- Exact search
- Anytime search
- Marginal Map for planning
- Challenges and future plans

AND/OR Search Spaces for Graphical Models

Potential search spaces $F^{F=\min _{x} \sum_{\alpha_{x}} f_{x}\left(x_{0}\right)}$

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Full OR search tree
126 nodes

OR

AND
OR
AND
OR
AND
OR
(A)

Full AND/OR search tree
54 AND nodes

28 nodes

Context minimal AND/OR search graph
18 AND nodes
Any query is best computed
Over the c-minimal AO search space

Potential search spaces ${ }^{F^{\prime}=\min _{x} \sum_{e_{e}} f_{x}\left(x_{a}\right)}(\mathbb{A} \cdot[\mathrm{A}]$

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

A	B	f_{1}	A	C	f_{2}	A	E	f_{3}	A	F	f_{4}	B	C	f_{5}	B	D	f_{6}	B	E	f_{7}	C	D	f_{8}	E	F	f_{9}
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

[BC]D
(F) ${ }^{(A E]}$

Full OR search tree

A

Context minimal OR search graph

126 nodes

Any query is best computed

The Impact of the Pseudo-Tree

(CKHABEJLNODPMFG)

good one?

In more detail:
Arc-weights and cost of a solution tree

In more detail:
Arc-weights and cost of a solution tree

In more detail:
Value of a Node (e.g., Probability of Evidence)

In more detail:
 Value of a Node (e.g., Probability of Evidence)

AND/OR search for Marginal MAP

[Marinescu, Dechter and Ihler, 2014] Dechter, ISI 4/18

$$
\begin{aligned}
& X_{M}=\{A, B, C, D\} \\
& X_{S}=\{E, F, G, H\}
\end{aligned}
$$

Node types
OR (MAP): max
OR (SUM): sum
AND: multiplication

AND/OR Search for Marginal MAP

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ computes a lower bound on the best extension of partial configuration \hat{x}_{p} and can be used to guide heuristic search.
We focus on:

1. Branch-and-Bound Use heuristic function $\tilde{f}\left(\hat{x}_{p}\right)$ to prune the depth-first search tree Linear space
2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}\left(\hat{x}_{p}\right)$ Needs lots of memory

Outline

- Background: Marginal Map and planning
- Heuristic search meets probabilistic reasoning:
- AND/OR search
- Decomposition heuristics
- Heuristic search schemes for Marginal Map:
- Exact and anytime schemes
- Anytime solvers
- Applying Marginal Map to planning
- Challenges and future plans

Decomposition-bound heuristics: Mini-bucket

 Tightening by Cost-shifting Weighted min-bucket
Mini-Bucket Approximation

For optimization
Split a bucket into mini-buckets $->$ bound complexity
bucket $(X)=$

$$
\begin{aligned}
& \{\underbrace{f_{1}, f_{2}, \ldots f_{r}, f_{r+1}, \ldots f_{n}}\} \\
& \left\langle\lambda_{X}(\cdot)=\max _{x} \prod_{i=1}^{n} f_{i}(x, \ldots)\right.
\end{aligned}
$$

$$
\left\{f_{1}, \ldots f_{r}\right\} \quad\left\{f_{r+1}, \ldots f_{n}\right\}
$$

$$
\lambda_{X, 1}(\cdot)=\max _{x} \prod_{i=1}^{r} f_{i}(x, \ldots) \quad \lambda_{X, 2}(\cdot)=\max _{x} \prod_{i=r+1}^{n} f_{i}(x, \ldots)
$$

$$
\lambda_{X}(\cdot) \leq \lambda_{X, 1}(\cdot) \lambda_{X, 2}(\cdot)
$$

Exponential complexity decrease: $O\left(e^{n}\right) \longrightarrow O\left(e^{r}\right)+O\left(e^{n-r}\right)$

|Mini-Bucket Elimination

$\lambda_{B \rightarrow C}(a, c)=\max _{b} f(a, b) f(b, c)$
$\lambda_{B \rightarrow D}(d, e)=\max _{b} f(b, d) f(b, e)$
$\lambda_{C \rightarrow E}(a, e)=\max \ldots$

[^0]
Mini-Bucket Decoding

For optimization
mini-buckets

$$
\left\{\begin{array}{l}
\mathbf{b}^{*}=\arg \max _{b} f\left(a^{*}, b\right) \cdot f\left(b, c^{*}\right) \\
\cdot f\left(b, d^{*}\right) \cdot f\left(b, e^{*}\right) \\
\mathbf{c}^{*}=\arg \max _{c} f\left(c, a^{*}\right) \cdot f\left(c, e^{*}\right) \cdot \lambda_{B \rightarrow C}\left(a^{*}, c\right) \\
\mathbf{d}^{*}=\arg \max _{d} f\left(a^{*}, d\right) \cdot \lambda_{B \rightarrow D}\left(d, e^{*}\right) \\
\mathbf{e}^{*}=\arg \max _{e} \lambda_{C \rightarrow E}\left(a^{*}, e\right) \cdot \lambda_{D \rightarrow E}\left(a^{*}, e\right) \\
\mathbf{a}^{*}=\arg \max _{a} f(a) \cdot \lambda_{E \rightarrow A}(a)
\end{array}\right.
$$

Greedy configuration = lower bound

Properties of Mini-Bucket Eliminaton

(For optimization)

- Bounding from above and below

- Complexity: O(rexp(i)) time and O(exp(i)) space.
- Accuracy: determined by Upper/Lower bound.
- As i increases, both accuracy and complexity increase.
- Possible use of mini-bucket approximations:
- As anytime algorithms
- As heuristics in search

Consistent solutions (greedy search)

Tightening the Bound

(Reparameterization, or cost-shifting)

A	B	$f(A, B)$
b	b	$6+3$
b	g	$0-1$
g	b	$0+3$
g	g	$6-1$

A	B	C	$f(A, B, C)$
b	b	b	12
b	b	g	6
b	g	b	0
b	g	g	6
g	b	b	6
g	b	g	0
g	g	b	6
g	g	g	12

Modify the individual functions

- but -
keep the sum or product of functions unchanged

Tightening the Bound

$\log f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \sum_{\alpha} \theta_{\alpha}\left(\mathbf{x}_{\alpha}\right) \leq \min _{\left\{\lambda_{i \rightarrow \alpha}\right\}} \sum_{\alpha} \max _{\mathbf{x}_{\alpha}}\left[\theta_{\alpha}\left(\mathbf{x}_{\alpha}\right)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by re-parameterization
- Enforces lost equality constraints using Lagrange multipliers

Tightening the bound

$\log f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \sum_{\alpha} \theta_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad \min _{\left\{\lambda_{i \rightarrow \alpha}\right\}} \sum_{\alpha} \max _{\mathbf{x}_{\alpha}}\left[\theta_{\alpha}\left(\mathbf{x}_{\alpha}\right)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]$

- Many names for the same class of bounds
- Dual decomposition
[Komodakis et al. 2007]
- TRW, MPLP
[Wainwright et al. 2005; Globerson \& Jaakkola 2007]
- Soft arc consistency
- Max-sum diffusion
[Cooper \& Schiex 2004]
[Warner 2007]

Mini-Bucket with Moment-Matching

[Ihler et al. 2012]

- Downward pass as cost shifting
- Can also do cost shifting within mini-buckets:
"Join graph" message passing
- "Moment-matching" version: One message exchange within each bucket, during downward sweep
- Optimal bound defined by cliques ("regions") and cost-shifting f'n scopes ("coordinates")

Join graph:
B

$\mathrm{U}=$ upper bound

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Types of Queries

Max-Inference	$f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Sum-Inference	$Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Mixed-Inference	$f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathbf{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
$\frac{\square}{\frac{\square}{2}}$	
$\frac{\square}{\square}$	

- Pure-mini-bucket is extremely weak for summation

Mini-Bucket for Summation ${ }_{F(x)=f_{f}(x) f_{2}}^{\substack{\text { Lu a ather } 2011)}}$

- Generalize technique to sum via Holder's inequality:

$$
\sum_{x} f_{1}(x) \cdot f_{2}(x) \leq\left[\sum_{x} f_{1}(x)^{\frac{1}{w_{1}}}\right]^{w_{1}} \cdot\left[\sum_{x} f_{2}(x)^{\frac{1}{w_{2}}}\right]^{w_{2}}
$$

$$
w_{1}+w_{2}=1
$$

- Define the weighted (or powered) sum:

$$
\sum_{x_{1}}^{w_{1}} f\left(x_{1}\right)=\left[\sum_{x_{1}} f\left(x_{1}\right)^{\frac{1}{w_{1}}}\right]^{w_{1}}
$$

- "Temperature" interpolates between sum \& max:
- Different weights do not commute:

$$
\sum_{x_{1}}^{w_{1}} \sum_{x_{2}}^{w_{2}} f\left(x_{1}, x_{2}\right) \neq \sum_{x_{2}}^{w_{2}} \sum_{x_{1}}^{w_{1}} f\left(x_{1}, x_{2}\right)
$$

WMB for Marginal MAP

|MMAP: Quality of Upper Bounds

Average relative error wrt tightest upper bound. 10 iterations for WMB$J G(i)$.

Outline

- Graphical models, marginal map and planning
- Heuristic search meets probabilistic reasoning:
- AND/OR search spaces
- Decomposition bounds
- MMAP AND/OR search with WMB heuristics
- Exact search
- Anytime search
- Marginal Map for planning
- Challenges and future plans

Exact search

AND/OR Search for Marginal MAP

constrained
pseudo tree

[Marinescu, Dechter and Ihler, 2014] Dechter, ISI 4/18

Exact Solvers: Best or Depth-First Search?

Depth-First search

The MAP search space

Best-First search

Results: Exact AND/OR solvers

Benchmarks:
Grids (128)
Pedigrees (88)
Promedas (100)

AOBF

RBFAOO - recursive
BRAOBB
Yuan, Park BBTDi, BBBTD
Time-bound 2 hours

Results: Exact AND/OR solvers

Benchmarks:
Grids (128)
Pedigrees (88)
Promedas (100)

AOBF
RBFA
BRAO
Yuan,
Time-

- AND/OR search+ MB-heuristic are superior
- to OR search using "unordered heuristic" [Park and Darwiche 2003, Yuan and Hansen 2009] when the constrained induced-width is not bounded.
- Best-first schemes are better because less summations evaluation

* Anytime search yielding bounds

Ideas:

1. Weighted Heuristics
2. Alternate Best and Depth search

To yield upper and lower bound in an anytime way

Anytime AND/OR solvers

- Weighted Heuristic: [Lee et. al. AAAI-2016]
- Weighted Restarting AOBF (WAOBF)
- Weighted Restarting RBFAOO (WRBFAOO)
- Weighted Repairing AOBF (WRAOBF)
$f(n)=g(n)+w \cdot h(n)$
Guaranteed w-optimal solution, cost $C \leq w \cdot C^{*}$
- Interleaving Best and depth-first search: (Marinescu et. al AAAI-2017)
- Look-ahead (LAOBF),
- alternating (AAOBF)

Lower bound

Goal: anytime bounds
And anytime solution

Dechter, ISI 4/18

LAOBF (best-first AND/OR search with depth-first lookaheads)

cutoff parameter: perform depth-first dive at every θ number of node expansions. best partial solution tree: T_{b}

AAOBF (alternating best- and depth-first)

Depth-first greedy expansion
Best-first re-direct T_{b}

Depth-first re-direct T_{l}
Best-first expansion \& update
Depth-first selection
Best-first selection

- Expand(n) and Update(n)

$$
n \in T_{l}
$$

- depth-first greedy search

$$
\max w(n, m) q(m)
$$

- redirect T_{l} from explicated search graph with updated q and I

$$
\min \frac{l(n)}{w(n, m) q(m)}
$$

- select T_{b}

Expand and Update a tip node

- Search: LAOBF, AAOBF, BRAOBB, WAOBF,WAOBF-rep
- heuristic: WMB-MM (20)
- memory: 24 GB
- Anytime lower and upper bounds from hard problem instances with i-bound 12 (left) and 18 (right).
- The horizontal axis is the CPU time in log scale and the vertical axis is the
- value of marginal MAP in log scale.

Outline

- Graphical models, marginal map and planning
- Heuristic search meets probabilistic reasoning:
- AND/OR search spaces
- Decomposition bounds
- MMAP AND/OR search with WMB heuristics
- Exact search
- Anytime search
- Marginal Map for planning
- Challenges and future plans

Compiling PPDDL into 2TDBN

[Slippery Gripper Domain Example

[Lee, Marinescu, and Dechter. ISAIM 2016].
[Lee 2014, (master thesis)]

Express it in the UAI format

pickup		f(pickup)	
0		1	
1		1	
pickup	gd	\mathbf{e}_{1}	$\operatorname{Pr}\left(\mathrm{e}_{1}\right)$
0	0	noop	1
0	0	hb	0
0	0	null	0
0	1	noop	1
0	1	hb	0
0	1	null	0
1	0	noop	0
1	0	hb	0.5
1	0	null	0.5
1	1	noop	0
1	1	hb	0.95
1	1	null	005

e_{1}	+hb		f(+hb)
noop	0		1
noop	1		0
hb)	0		0
hb	1		1
null	0		1
null	1		0
+hb	hb	hb'	f(hb')
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

PPDDL vs. FDR(SAS+) translation

instance blocks, horizon	ppddl to dbn $\mathrm{n}, \mathrm{a}, w_{c}, h_{c}$	$i_{\text {best }}$	braobb-m time (sec)	$\operatorname{pr}(\mathrm{G})$	sas+ to dbn $\mathrm{n}, \mathrm{a}, w_{c}, h_{c}$	$i_{\text {best }} \quad \begin{aligned} & \text { braobb-mmap } \\ & \text { time (sec) }\end{aligned} \quad \operatorname{pr}(\mathrm{G})$		
2, 5	299, 40, 48.76	10	1.56	0.703125	406, 5, 22, 64	2	1.65	0.703125
2, 8	473, 64, 72, 112	10	2990.73	0.91626	646, 8, 24, 76	14	18.51 .33	0.91626
2,11	647, 88, 96, 149	16	oot	0.966007	886, 11, 24, غ6	6	oot	0.943176
2, 14	821, 112, 120, 159	2	oot	0.91626	1126, 14. 28,100	8	oot	0.91626
2,17	995, 136, 144, 199	10	oot	0.91626	1366, 17, 28, 108	10	Dot	0.91626
2, 20	1169, 160, 163, 237	2	oot	0.870117	1606, 20, 25, 103	2	oot	0.870117
3, 5	741, 90, 132, 182	6	2.53	0.079102	833, 5, 4^, 8.5	4	0.96	0.079102
3, 8	1176, 144, 159, 251	6	5767.69	0.494385	1328, 8, 45, 125	4	4382.65	0.494385
3,11	1611, 198, 213, 328	10	oot	0.494385	1823, 11, 45, 132	2	O) 0	0.494385
3,14	2046, 252, 267, 401	10	oot	0.454834	2318, 14. 45,145	2	ont	0.494385
3,17	2481, 306, 326, 474	2	oot	0.395508	2813, 17. 44, 183	4	oot	0.494385
3,20	2916, 360, 381), 545	2	oot	0.395508	3308, 20, 44, 178	6	Ocit	0.494385
4, 8	2185, 256, 379, 477	10	108.7	0.177979	2266, 8, 6 ? , 164.	6	55.94	0.177979
4,9	2455, 288, 415, 520	12	5717.1	0.222473	2548, 9, 68, 188	2	2291.27	0.222473
4, 10	2725, 320, 397, 556	2	oot	0.222473	2830, 10, 68, 179	2	OCit	0.222473
4,11	2995, 352, 491, 624	2	oot	0.222473	3112, 11, 68, 214	2	ont	0.222473
4, 13	3535, 416, 541, 716	2	oot	0.222473	3676, 13, 68, 222	2	oot	0.222473
4, 15	4075, 480, 672, 841	10	oot	0.222473	4240, 15 82, 263	2	OCit	0.222473

- Translation from FDR(SAS+)
- 1.3 ~ 2.6 times speed up
- constrained induced width of problem is much less

New Generation Algorithms (Approximate Summation)

[Lou, Dechter, Ihler, AAAI-2018: "Anytime Anyspace AND/OR Best-first Search for Bounding Marginal MAP"]
[Marinescu, Ihler, Dechter: (under review): "Stochastic Anytime Search for Bounding Marginal MAP"]
(314,3,317,56,248)
$(375,3,378,64,302)$ ($\mathrm{n}, \mathrm{k}, \mathrm{c}, \mathrm{w}^{*}, \mathrm{~h}$)

$(1134,3,1044,173,908)$

Algorithms: UBFS
ANYLDFS
AnySBFS

Conclusion

- Reasoning with graphical models using heuristic AND/OR search guided by decomposition-based heuristics
- Applied this approach to MMAP producing anytime upper and lower-bounds
- Empirical evaluation including some panning instances.
- Challenge for planning
- Avoid generate the full multi-horizon model explicitly
- Avoid generating a grounded model
- Avoid the UAI format, by working directly with a generative planning generative model like PPDDL or RRDDL
- Move to influence diagrams

Thank you

Alex Ihler
Kalev Kask
Irina Rish
Reasoning with Probabilistic and Deterministic Graphical Models Exat Aignithem

Bozhena Bidyuk
Robert Mateescu
Radu Marinescu
Vibhav Gogate
Emma Rollon
Lars Otten
Natalia Flerova
Andrew Gelfand
William Lam
Junkyu Lee

2 blocks

Dechter, ISI 4/18

6 blocks

Dechter, ISI 4/18

bw7_4_4_8: amytime upper and lower bounds vs time

bw7_4_4_9: amytime upper and lower bounds vs time

[^0]: Dechter, ISI 4/18

