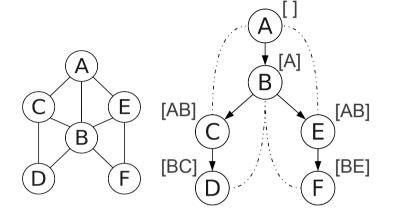
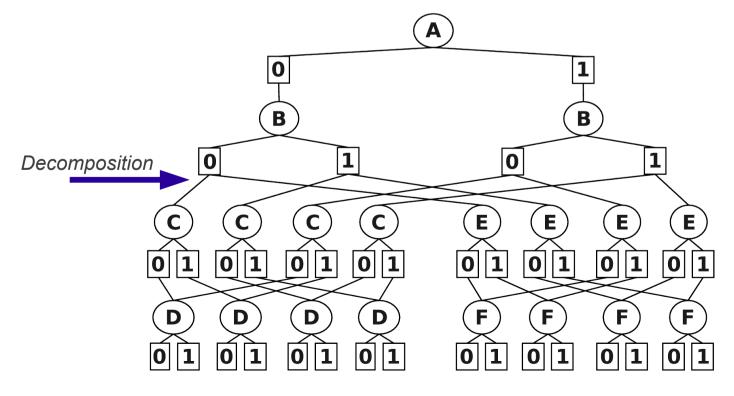
Anytime AND/OR Depth-first Search for Combinatorial Optimization

Lars Otten and Rina Dechter

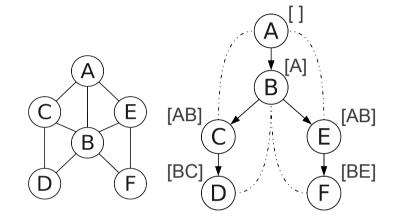
Dept. of Computer Science University of California, Irvine

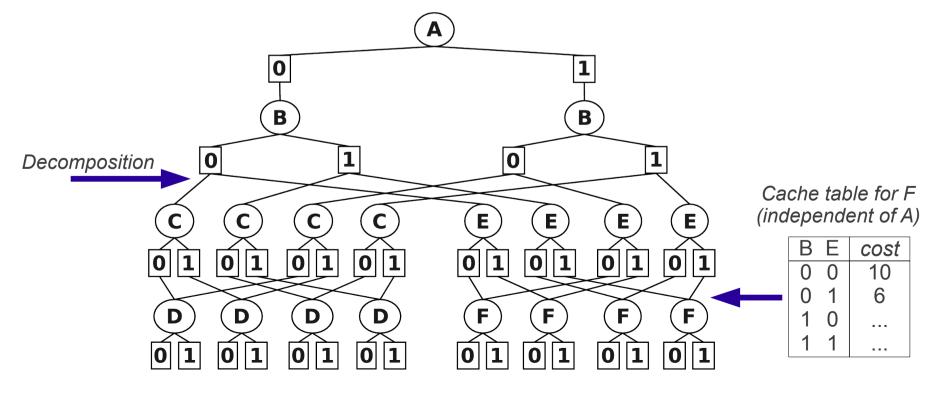


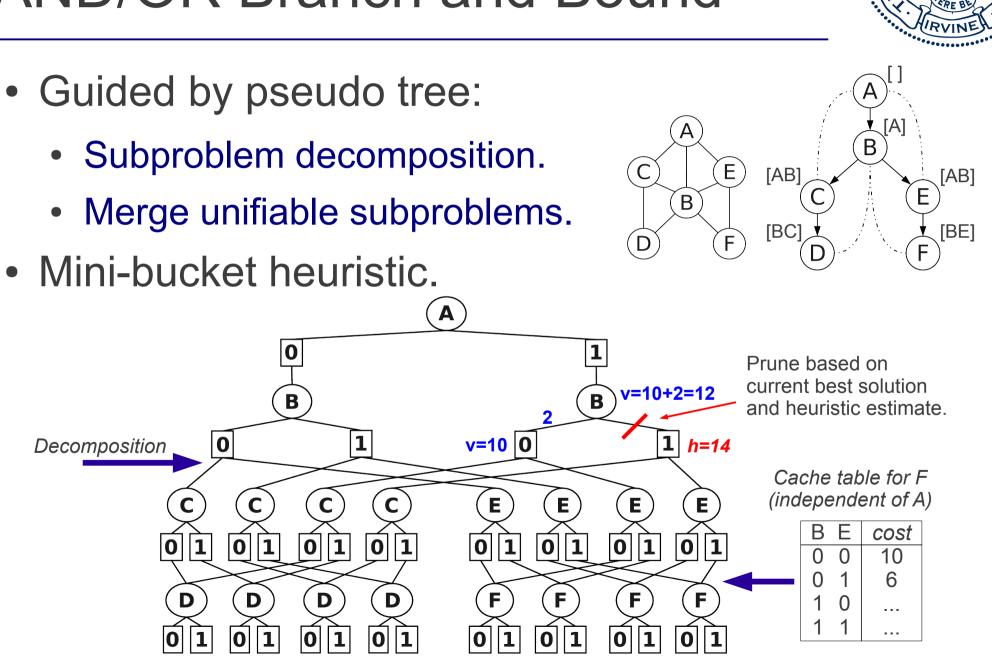
Outline

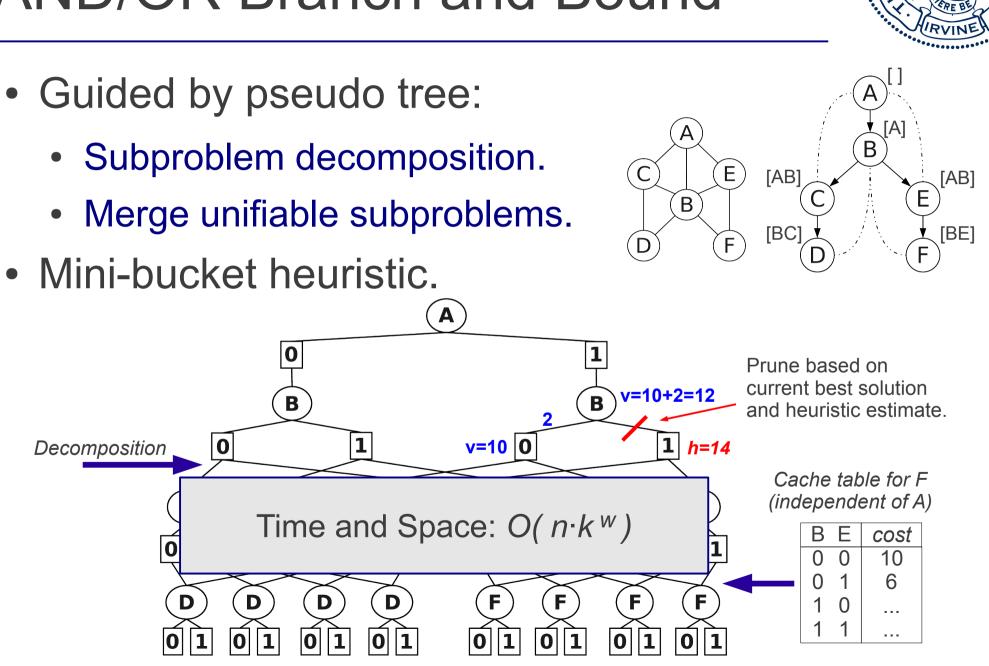


- AND/OR Search Spaces.
 - AND/OR Branch and Bound (AOBB).
- Conflict: Decomposition vs. Anytime.
 - Empirical evidence & analysis.
- Breadth-Rotating AOBB.
 - Example & analysis.
- Experimental Results.
 - Substantial improvements.

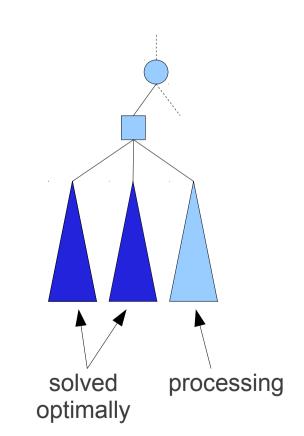

- Guided by pseudo tree:
 - Subproblem decomposition.


2つ




- Guided by pseudo tree:
 - Subproblem decomposition.
 - Merge unifiable subproblems.

Z



Anytime Behavior of AOBB

- Finding/proving optimal solution hard!
- Often easier:
 - Find any feasible solution quickly.
 - Improve with time, until optimum is found.
- Branch and Bound is anytime.
 - Depth-first to any solution and improve.
- Usage as approximation scheme:
 - AOBB competitive in UAI'10 evaluation.
 - But some cases: no solution within time bound.

Anytime vs. Decomposition

- AT IN CONTRACT OF CONT
- Depth-first traversal of AND/OR space:
 - Subproblems successively solved to optimality.
- Breaks anytime behavior.
- First overall solution:
 - Is delayed until last subproblem starts processing.
 - Contains optimal solutions to all but last subproblem.

Remedy I: Subproblem Order

rder

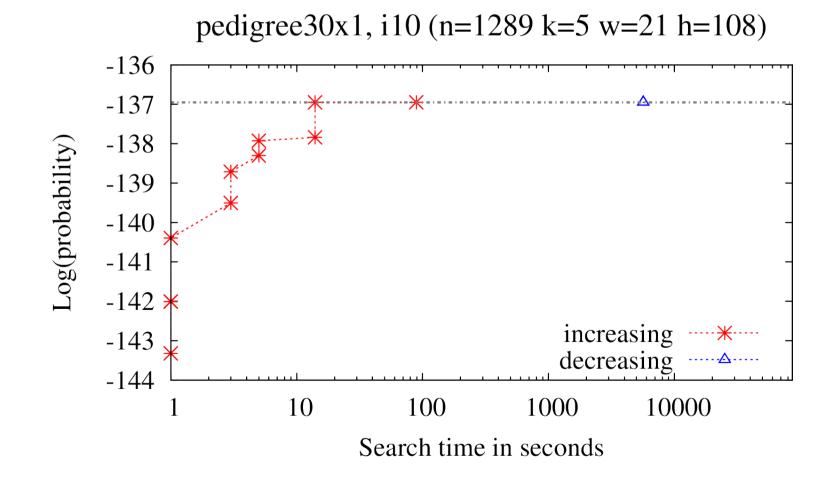
easy to hard

w=5

w=20

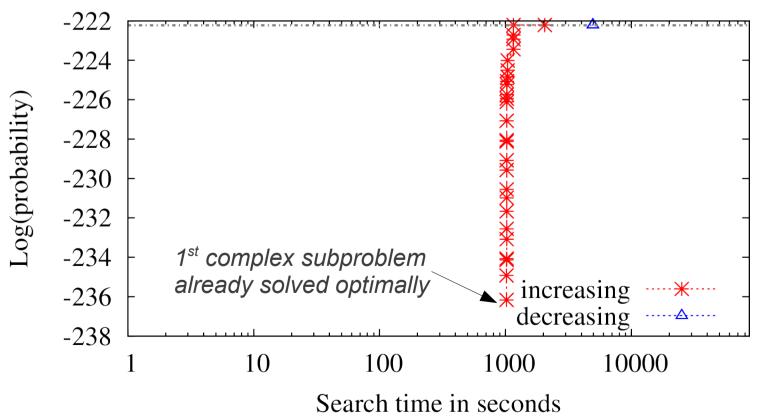
w=4

- One complex and several easy subproblems:
 - Solve easy ones optimally (fast).
 - Combine with anytime solutions from complex subproblem.
- Suggests ordering subproblems by increasing hardness:
 - Heuristic: subproblem induced width *w* .


- AOBB has time O($n \cdot k^w$).

• However, fails for multiple complex subproblems.

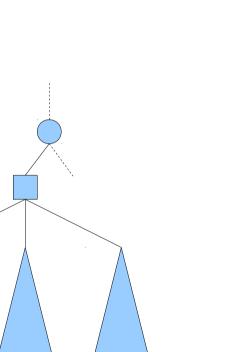
Remedy I: Subproblem Order

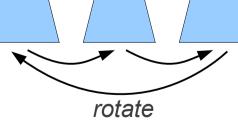

- 1 large and several smaller components.
 - Increasing order yields good performance.

Remedy I: Subproblem Order

- 2 large and several smaller components.
 - Even increasing order fails.

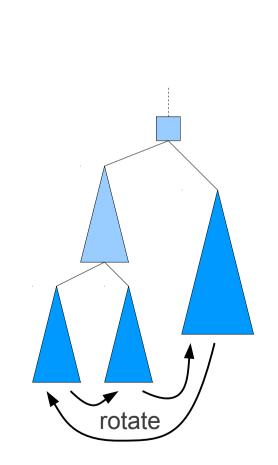
pedigree34x2, i15 (n=2320 k=5 w=31 h=102)

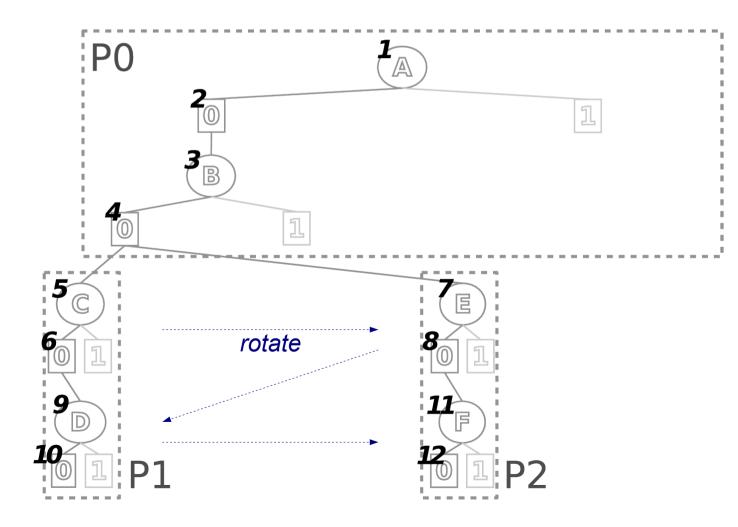


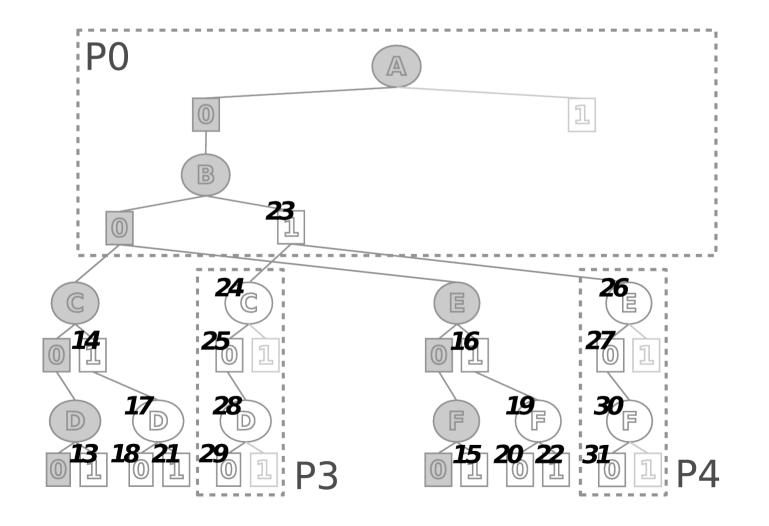

- Upon decomposition:
 - Greedily find solution for each subproblem.
 - Use mini-bucket heuristic for guidance.
 - Then solve each subproblem optimally, depth-first as before.
- Relies very much on heuristic:
 - Might fail due to dead end.
- Mixed performance in experiments.

• Construct all branches of solution tree "simultaneously":

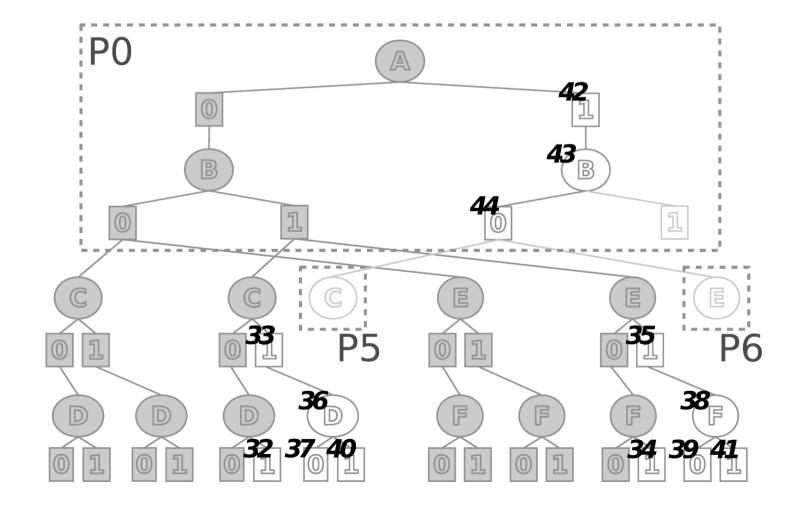
- Take turns in processing subproblems.
 - Limit number of operations per visit.
- Solve each depth-first as before.


Breadth-Rotating AOBB


- High-level pseudo code:
 - 1. Move breadth-first to next open subproblem *P*.
 - 2. Process *P* depth-first, until either:
 - P is solved optimally,
 - P decomposes into child subproblems,
 - a predefined threshold of operations is reached.
 - Rotation skips subproblems with current child subproblems.

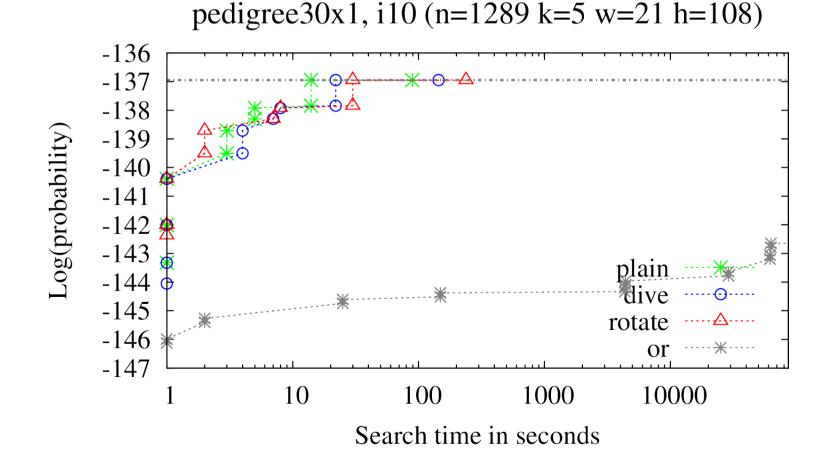


• Example problem with threshold z = 2.

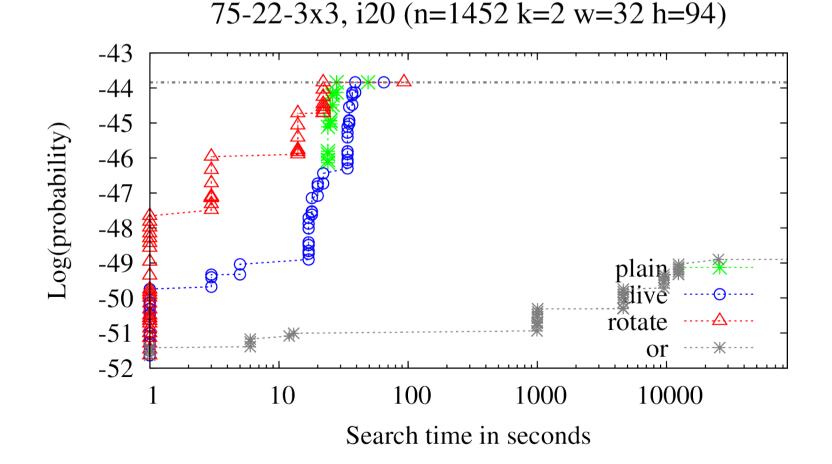


• Example problem with threshold z = 2.

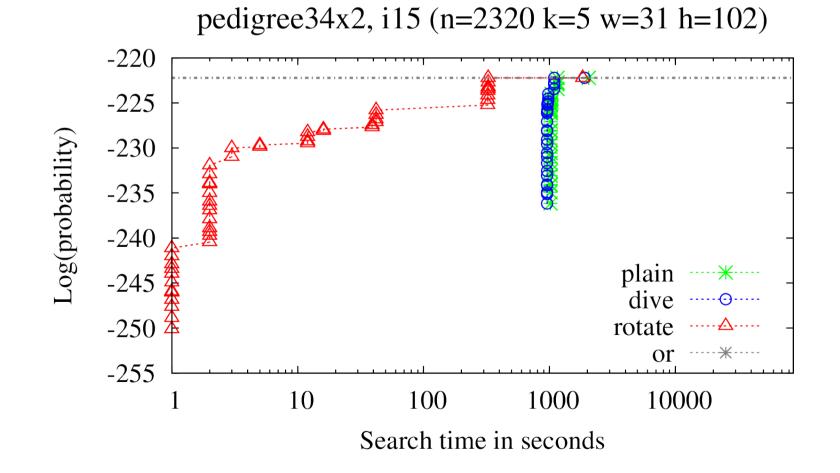
• Example problem with threshold z = 2.


- *Theorem:* BRAOBB maintains favorable asymptotic complexity of depth-first search.
 - Time: graph search $O(n \cdot k^w)$, tree search $O(n \cdot k^h)$.
 - Space: graph search $O(n \cdot k^w)$, tree search O(n).
- Comparison with AOBB:
 - Anytime performance does not depend on subproblem order.
 - Overall performance (optimality proof) can increase or decrease.
 - Pruning impacted by node exploration.

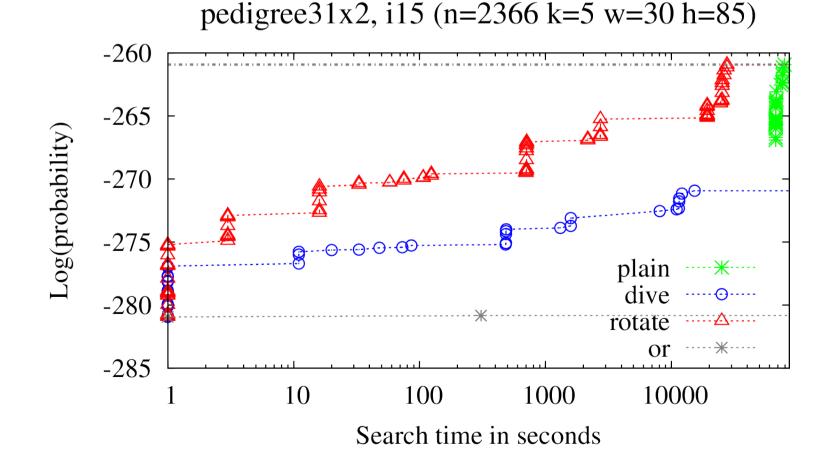
- Run and record anytime profiles (24h timeout):
 - Plain AOBB (increasing subproblem order).
 - AOBB with greedy dive.
 - Breadth-rotating AOBB.
 - OR graph search (no decomposition).
- Enforce decomposable problems:
 - Create network copies and connect at root.
 - 57 pedigree, 150 grid, 24 mastermind.
 - Combined over 60.000 CPU hours.
- UAI'10: Two very hard instances.



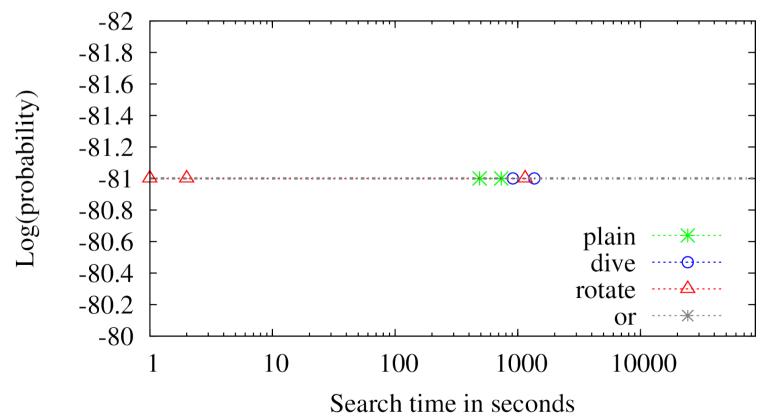
- "Sanity check": **1** large subproblem
 - AND/OR schemes similarly good, OR search slow.



- Grid network with three large subproblems.
 - rotate outperforms dive, plain very late.



- Pedigree with two large subproblems.
 - Dive fails due to dead end, behaves like plain.



- Pedigree with two large subproblems.
 - rotate outperforms dive, plain very late.

- Mastermind with three complex subproblems.
 - rotate finds solution much sooner.

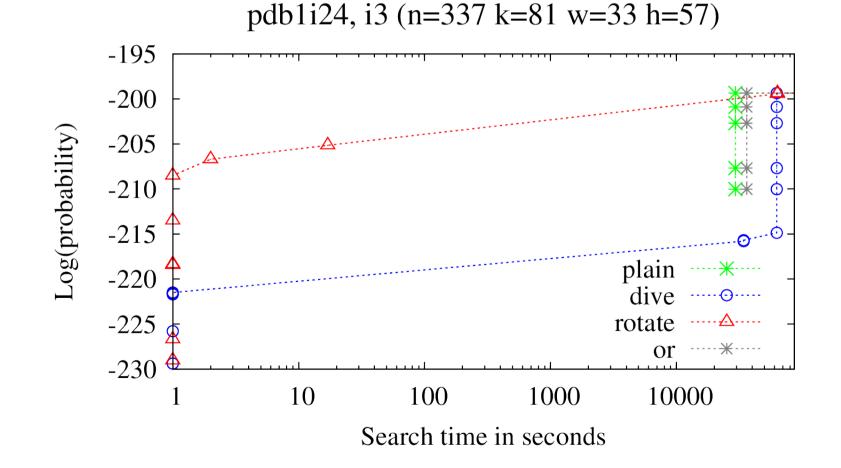
mm-10-08-03-0012x3, i10 (n=7818 k=2 w=47 h=82)

- Summary table, entries give #instances:
 - Any solution / optimal solution / optimality proven

	Time bound								
	1 sec	5 sec	10 sec	1 min	5 min	1 hour	24 hours		
	Pedigree networks (171 total)								
plain	52 / 19 / 6	70/36/17	75 / 42 / 24	87 / 56 / 48	101 / 76 / 68	111 / 90 / 86	129 / 117 / 108		
dive	76/16/5	86 / 29 / 13	94 / 38 / 20	105 / 53 / 48	116 / 69 / 64	127 / 89 / 86	135 / 114 / 105		
rotate	153 / 26 / 2	157 / 40 / 15	160 / 47 / 24	162 / 59 / 48	164 / 74 / 60	165 / 98 / 84	167 / 127 / 102		
or	73/6/1	76/7/5	77 / 10 / 5	79/10/9	82 / 12 / 11	87 / 16 / 15	90 / 22 / 21		
Grid networks (150 total)									
plain	38 / 10 / 0	48 / 19 / 0	58/32/4	84 / 62 / 52	101 / 82 / 76	128 / 120 / 113	149 / 148 / 147		
dive	47/6/0	52/12/0	55 / 24 / 1	82 / 54 / 37	97 / 78 / 71	121 / 111 / 104	147 / 147 / 146		
rotate	122 / 16 / 0	128 / 27 / 0	129 / 35 / 1	136 / 69 / 38	143 / 86 / 73	146 / 126 / 110	149 / 149 / 147		
or	45/0/0	45/1/0	46 / 1 / 0	53/2/0	57/4/2	64 / 10 / 9	74 / 21 / 21		
Mastermind networks (24 total)									
plain	8/8/1	8/8/3	8/8/3	10/10/4	13 / 13 / 7	17 / 17 / 12	24 / 24 / 24		
dive	8/8/1	8 / 8 / 3	8/8/3	11/11/5	12/12/6	21 / 21 / 19	24 / 24 / 24		
rotate	18 / 18 / 1	18 / 18 / 3	18 / 18 / 3	18 / 18 / 3	21 / 21 / 4	24 / 24 / 19	24 / 24 / 24		
or	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0		

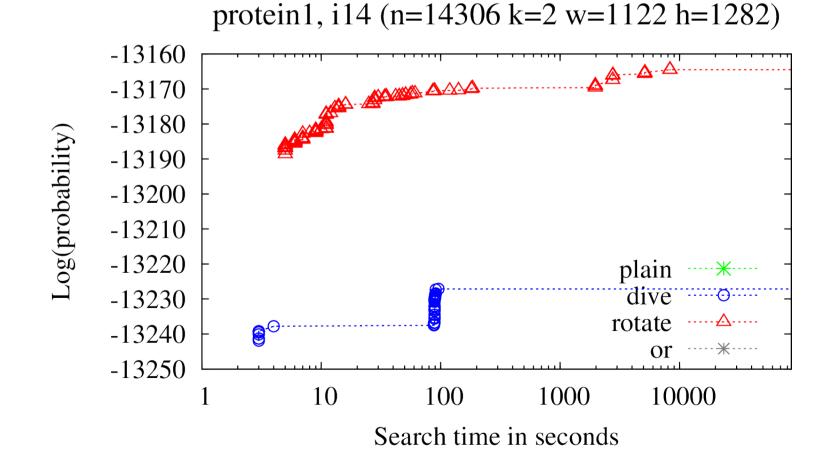
- Summary table, entries give #instances:
 - Any solution / optimal solution / optimality proven

	Time bound								
	1 sec	5 sec	10 sec	1 min	5 min	1 hour	24 hours		
	Pedigree networks (171 total)								
plain	52 / 19 / 6	70 / 36 / 17	75 / 42 / 24	87 / 56 / 48	101 / 76 / 68	111 / 90 / 86	129 / 117 / 108		
dive	76/16/5	86 / 29 / 13	94 / 38 / 20	105 / 53 / 48	116 / 69 / 64	127 / 89 / 86	135 / 114 / 105		
rotate	153 / 26 / 2	157 / 40 / 15	160 / 47 / 24	162 / 59 / 48	164 / 74 / 60	165 / 98 / 84	167 / 127 / 102		
or	73/6/1	76/7/5	77 / 10 / 5	79/10/9	82/12/11	87 / 16 / 15	90 / 22 / 21		
First solutions quickly. rid networks (150 total)									
plain	38/10/0	48/19/0	58/32/4	84 / 62 / 52	101 / 82 / 76	128 / 120 / 113	149 / 148 / 147		
dive	47/6/0	52/12/0	55/24/1	82/54/37	97 / 78 / 71	121 / 111 / 104	147 / 147 / 146		
rotate	122 / 16 / 0	128 / 27 / 0	129 / 35 / 1	136 / 69 / 38	143 / 86 / 73	146 / 126 / 110	149 / 149 / 147		
or	45/0/0	45/1/0	46 / 1 / 0	53 / 2 / 0	57 / 4 / 2	64 / 10 / 9	74 / 21 / 21		
	Mastermind networks (24 total)								
plain	8/8/1	8/8/3	8/8/3	10/10/4	13 / 13 / 7	17 / 17 / 12	24 / 24 / 24		
dive	8/8/1	8/8/3	8/8/3	11/11/5	12/12/6	21 / 21 / 19	24 / 24 / 24		
rotate	18/18/1	18 / 18 / 3	18 / 18 / 3	18 / 18 / 3	21 / 21 / 4	24 / 24 / 19	24 / 24 / 24		
or	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0		



- Summary table, entries give #instances:
 - Any solution / optimal solution / optimality proven

	Time bound								
	1 sec	5 sec	10 sec	1 min	5 min	1 hour	24 hours		
	Pedigree networks (171 total)								
plain	52 / 19 / 6	70/36/17	75 / 42 / 24	87 / 56 / 48	101 / 76 / 68	111/90/ 86	129 / 117 / 108		
dive	76 / 16 / 5	86 / 29 / 13	94 / 38 / 20	105 / 53 / 48	116 / 69 / 64	127 / 89 / 86	135 / 114 / 105		
rotate	153 / 26 / 2	157 / 40 / 15	160 / 47 / 24	162 / 59 / 48	164 / 74 / 60	165 / 98 / 84	167 / 127 / 102		
or	73/6/1	76/7/5	77 / 10 / 5	Faster to c	optimality,	87 / 16 / 15	90 / 22 / 21		
Grid ne a bit slower to prove.									
plain	38 / 10 / 0	48 / 19 / 0	58/32/4	84/62/52	101/82/76	128 / 120 / 113	149 / 148 / 147		
dive	47/6/0	52/12/0	55 / 24 / 1	82 / 54 / 37	97 / 78 / 71	121 / 111 / 104	147 / 147 / 146		
rotate	122 / 16 / 0	128 / 27 / 0	129 / 35 / 1	136 / 69 / 38	143 / 86 / 7 3	146 / 126 / 110	149 / 149 / 147		
or	45/0/0	45/1/0	46 / 1 / 0	53/2/0	57/4/2	64 / 10 / 9	74 / 21 / 21		
	Mastermind networks (24 total)								
plain	8/8/1	8/8/3	8/8/3	10/10/4	13/13/7	17 / 17 / 12	24 / 24 / 24		
dive	8/8/1	8 / 8 / 3	8/8/ 3	11/11/5	12/12/6	21 / 21 / 19	24 / 24 / 24		
rotate	18 / 18 / 1	18 / 18 / 3	18 / 18 / 3	18 / 18 / 3	21 / 21 / 4	24 / 24 / 19	24 / 24 / 24		
or	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0		



- UAI'10: protein sidechain prediction.
 - Very hard due to large domains.

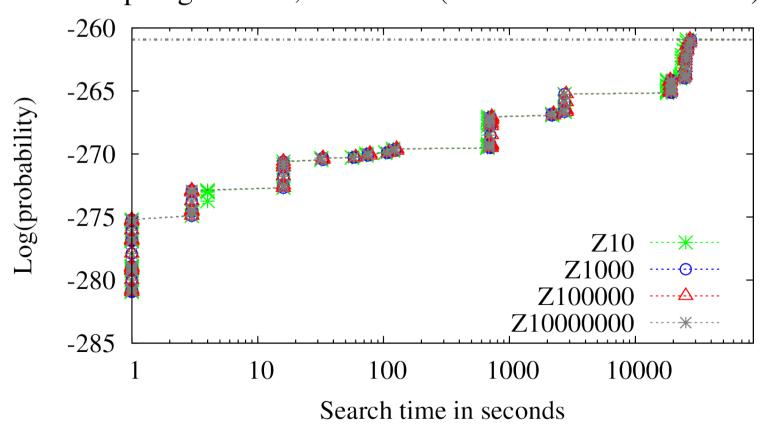
- UAI'10: protein folding.
 - Very complex, induced width >1000.

Experiments Summary

- Plain AOBB:
 - Fails for more than one complex subproblem.
- AOBB with greedy dive:
 - Quick initial solution possible, if heuristic allows.
 - Slow to improve afterwards.
- Breadth-rotating AOBB:
 - Consistently good anytime performance.
 - Immediate initial solution on 293/345 instances.
 - Subsequent rapid improvements.
 - Useful as approximation scheme.

Conclusion

- Anytime behavior of depth-first BaB is compromised over AND/OR search spaces.
 - Suitable subproblem ordering and other remedies only partially viable.
- Introduced Breadth-rotating AOBB:
 - Rotate over subproblems, breadth-first.
 - Each explored depth-first.
 - Maintains asymptotic complexity.
- Greatly improved anytime performance.



Thank you! Questions?

Impact of rotation threshold z

- BRAOBB: little change with different z.
 - Other rotation criteria trigger first.

pedigree31x2, i15-rotate (n=2366 k=5 w=30 h=85)