
Anytime AND/OR Depth-first Search
for Combinatorial Optimization

Lars Otten and Rina Dechter

Dept. of Computer Science
University of California, Irvine

Outline

● AND/OR Search Spaces.
● AND/OR Branch and Bound (AOBB).

● Conflict: Decomposition vs. Anytime.
● Empirical evidence & analysis.

● Breadth-Rotating AOBB.
● Example & analysis.

● Experimental Results.
● Substantial improvements.

AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.

[BE]

[AB]

[BC]

[AB]

[A]

[]

Decomposition

AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.

[BE]

[AB]

[BC]

[AB]

[A]

[]

Decomposition

Cache table for F
(independent of A)

B
0
0
1
1

E
0
1
0
1

cost
10
6
...
...

AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.

● Mini-bucket heuristic.
[BE]

[AB]

[BC]

[AB]

[A]

[]

Decomposition

Cache table for F
(independent of A)

Prune based on
current best solution
and heuristic estimate.

v=10+2=12

h=14v=10

2

B
0
0
1
1

E
0
1
0
1

cost
10
6
...
...

AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.

● Mini-bucket heuristic.
[BE]

[AB]

[BC]

[AB]

[A]

[]

Decomposition

Cache table for F
(independent of A)

Time and Space: O(n·k w)

Prune based on
current best solution
and heuristic estimate.

v=10+2=12

h=14v=10

2

B
0
0
1
1

E
0
1
0
1

cost
10
6
...
...

Anytime Behavior of AOBB

● Finding/proving optimal solution hard!
● Often easier:

● Find any feasible solution quickly.
● Improve with time, until optimum is found.

● Branch and Bound is anytime.
● Depth-first to any solution and improve.

● Usage as approximation scheme:
● AOBB competitive in UAI'10 evaluation.

– But some cases: no solution within time bound.

Anytime vs. Decomposition

● Depth-first traversal of AND/OR space:
● Subproblems successively solved to optimality.

● Breaks anytime behavior.
● First overall solution:

● Is delayed until last subproblem
starts processing.

● Contains optimal solutions to
all but last subproblem.

solved
optimally

processing

Remedy I: Subproblem Order

● One complex and several easy subproblems:
● Solve easy ones optimally (fast).
● Combine with anytime solutions

from complex subproblem.

● Suggests ordering subproblems
by increasing hardness:
● Heuristic: subproblem

induced width w .
– AOBB has time O(n·k w) .

● However, fails for multiple
complex subproblems.

w=4
w=5

w=20

easy to hard

Remedy I: Subproblem Order

● 1 large and several smaller components.
● Increasing order yields good performance.

Remedy I: Subproblem Order

● 2 large and several smaller components.
● Even increasing order fails.

1st complex subproblem
already solved optimally

Remedy II: Subproblem Dive

● Upon decomposition:
● Greedily find solution for each subproblem.

– Use mini-bucket heuristic for guidance.
● Then solve each subproblem optimally,

depth-first as before.

● Relies very much on heuristic:
● Might fail due to dead end.

● Mixed performance in experiments.

Breadth-Rotating AOBB

● Construct all branches of
solution tree “simultaneously”:
● Take turns in processing

subproblems.
– Limit number of operations

per visit.
● Solve each depth-first as

before.

rotate

Breadth-Rotating AOBB

● High-level pseudo code:

● Rotation skips subproblems
with current child subproblems.

1. Move breadth-first to next open
subproblem P .

2. Process P depth-first, until either:
● P is solved optimally,
● P decomposes into child subproblems,
● a predefined threshold of operations

is reached.

rotate

Breadth-Rotating AOBB

● Example problem with threshold z = 2 .

rotate

Breadth-Rotating AOBB

● Example problem with threshold z = 2 .

Breadth-Rotating AOBB

● Example problem with threshold z = 2 .

BRAOBB Analysis

● Theorem: BRAOBB maintains favorable
asymptotic complexity of depth-first search.
● Time: graph search O(n·kw), tree search O(n·kh).
● Space: graph search O(n·kw), tree search O(n).

● Comparison with AOBB:
● Anytime performance does not depend on

subproblem order.
● Overall performance (optimality proof) can increase

or decrease.
– Pruning impacted by node exploration.

Experimental Evaluation

● Run and record anytime profiles (24h timeout):
● Plain AOBB (increasing subproblem order).
● AOBB with greedy dive.
● Breadth-rotating AOBB.
● OR graph search (no decomposition).

● Enforce decomposable problems:
● Create network copies and connect at root.
● 57 pedigree, 150 grid, 24 mastermind.

– Combined over 60.000 CPU hours.

● UAI'10: Two very hard instances.

Experimental Evaluation

● “Sanity check”: 1 large subproblem
● AND/OR schemes similarly good, OR search slow.

Experimental Evaluation

● Grid network with three large subproblems.
● rotate outperforms dive, plain very late.

Experimental Evaluation

● Pedigree with two large subproblems.
● Dive fails due to dead end, behaves like plain.

Experimental Evaluation

● Pedigree with two large subproblems.
● rotate outperforms dive, plain very late.

Experimental Evaluation

● Mastermind with three complex subproblems.
● rotate finds solution much sooner.

Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven

Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven

First solutions quickly.

Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven

Faster to optimality,
a bit slower to prove.

Experimental Evaluation

● UAI'10: protein sidechain prediction.
● Very hard due to large domains.

Experimental Evaluation

● UAI'10: protein folding.
● Very complex, induced width >1000.

Experiments Summary

● Plain AOBB:
● Fails for more than one complex subproblem.

● AOBB with greedy dive:
● Quick initial solution possible, if heuristic allows.
● Slow to improve afterwards.

● Breadth-rotating AOBB:
● Consistently good anytime performance.

– Immediate initial solution on 293/345 instances.
– Subsequent rapid improvements.

● Useful as approximation scheme.

Conclusion

● Anytime behavior of depth-first BaB is
compromised over AND/OR search spaces.
● Suitable subproblem ordering and other remedies

only partially viable.

● Introduced Breadth-rotating AOBB:
● Rotate over subproblems, breadth-first.
● Each explored depth-first.
● Maintains asymptotic complexity.

● Greatly improved anytime performance.

Thank you!

Questions?

Impact of rotation threshold z

● BRAOBB: little change with different z .
● Other rotation criteria trigger first.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

