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Outline

● AND/OR Search Spaces.
● AND/OR Branch and Bound (AOBB).

● Conflict: Decomposition vs. Anytime.
● Empirical evidence & analysis.

● Breadth-Rotating AOBB.
● Example & analysis.

● Experimental Results.
● Substantial improvements.



AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
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AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.
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AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.

● Mini-bucket heuristic.
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AND/OR Branch and Bound

● Guided by pseudo tree:
● Subproblem decomposition.
● Merge unifiable subproblems.

● Mini-bucket heuristic.
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Time and Space: O( n·k w )

Prune based on
current best solution
and heuristic estimate.
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Anytime Behavior of AOBB

● Finding/proving optimal solution hard!
● Often easier:

● Find any feasible solution quickly.
● Improve with time, until optimum is found.

● Branch and Bound is anytime.
● Depth-first to any solution and improve.

● Usage as approximation scheme:
● AOBB competitive in UAI'10 evaluation.

– But some cases: no solution within time bound.



Anytime vs. Decomposition

● Depth-first traversal of AND/OR space:
● Subproblems successively solved to optimality.

● Breaks anytime behavior.
● First overall solution:

● Is delayed until last subproblem
starts processing.

● Contains optimal solutions to
all but last subproblem.

solved
optimally

processing



Remedy I: Subproblem Order

● One complex and several easy subproblems:
● Solve easy ones optimally (fast).
● Combine with anytime solutions

from complex subproblem.

● Suggests ordering subproblems
by increasing hardness:
● Heuristic: subproblem

induced width w .
– AOBB has time O( n·k w ) .

● However, fails for multiple
complex subproblems.

w=4
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Remedy I: Subproblem Order

● 1 large and several smaller components.
● Increasing order yields good performance.



Remedy I: Subproblem Order

● 2 large and several smaller components.
● Even increasing order fails.

1st complex subproblem
already solved optimally



Remedy II: Subproblem Dive

● Upon decomposition:
● Greedily find solution for each subproblem.

– Use mini-bucket heuristic for guidance.
● Then solve each subproblem optimally,

depth-first as before.

● Relies very much on heuristic:
● Might fail due to dead end.

● Mixed performance in experiments.



Breadth-Rotating AOBB

● Construct all branches of
solution tree “simultaneously”:
● Take turns in processing

subproblems.
– Limit number of operations

per visit.
● Solve each depth-first as

before.

rotate



Breadth-Rotating AOBB

● High-level pseudo code:

● Rotation skips subproblems
with current child subproblems.

1. Move breadth-first to next open
subproblem P .

2. Process P depth-first, until either:
● P is solved optimally,
● P decomposes into child subproblems,
● a predefined threshold of operations

is reached.

rotate



Breadth-Rotating AOBB

● Example problem with threshold z = 2 .

rotate



Breadth-Rotating AOBB

● Example problem with threshold z = 2 .

 



Breadth-Rotating AOBB

● Example problem with threshold z = 2 .



BRAOBB Analysis

● Theorem: BRAOBB maintains favorable 
asymptotic complexity of depth-first search.
● Time: graph search O(n·kw ), tree search O( n·kh ).
● Space: graph search O(n·kw ), tree search O( n ).

● Comparison with AOBB:
● Anytime performance does not depend on 

subproblem order.
● Overall performance (optimality proof) can increase 

or decrease.
– Pruning impacted by node exploration.



Experimental Evaluation

● Run and record anytime profiles (24h timeout):
● Plain AOBB (increasing subproblem order).
● AOBB with greedy dive.
● Breadth-rotating AOBB.
● OR graph search (no decomposition).

● Enforce decomposable problems:
● Create network copies and connect at root.
● 57 pedigree, 150 grid, 24 mastermind.

– Combined over 60.000 CPU hours.

● UAI'10: Two very hard instances.



Experimental Evaluation

● “Sanity check”: 1 large subproblem
● AND/OR schemes similarly good, OR search slow.



Experimental Evaluation

● Grid network with three large subproblems.
● rotate outperforms dive, plain very late.



Experimental Evaluation

● Pedigree with two large subproblems.
● Dive fails due to dead end, behaves like plain.



Experimental Evaluation

● Pedigree with two large subproblems.
● rotate outperforms dive, plain very late.



Experimental Evaluation

● Mastermind with three complex subproblems.
● rotate finds solution much sooner.



Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven



Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven

First solutions quickly.



Experimental Evaluation

● Summary table, entries give #instances:
● Any solution / optimal solution / optimality proven

Faster to optimality,
a bit slower to prove.



Experimental Evaluation

● UAI'10: protein sidechain prediction.
● Very hard due to large domains.



Experimental Evaluation

● UAI'10: protein folding.
● Very complex, induced width >1000.



Experiments Summary

● Plain AOBB:
● Fails for more than one complex subproblem.

● AOBB with greedy dive:
● Quick initial solution possible, if heuristic allows.
● Slow to improve afterwards.

● Breadth-rotating AOBB:
● Consistently good anytime performance.

– Immediate initial solution on 293/345 instances.
– Subsequent rapid improvements.

● Useful as approximation scheme.



Conclusion

● Anytime behavior of depth-first BaB is 
compromised over AND/OR search spaces.
● Suitable subproblem ordering and other remedies 

only partially viable.

● Introduced Breadth-rotating AOBB:
● Rotate over subproblems, breadth-first.
● Each explored depth-first.
● Maintains asymptotic complexity.

● Greatly improved anytime performance.



Thank you!

Questions?



Impact of rotation threshold z

● BRAOBB: little change with different z .
● Other rotation criteria trigger first.
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