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Problems

Problem solving in AI is about representation and automated solution
of a wide variety of problems

diagnosis, planning, scheduling, logistics, control
games: sokoban, mastermind, 15-puzzle, n-queens, chess
robot navigation, traveling salesman, map coloring, . . .
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Models

Common structure of certain classes of problems can be abstracted and
expressed in terms of mathematical model; e.g.,

• Constraint Satisfaction Problems (CSP) are models of the form
〈X, D, C〉 where X, D, and C are sets of variables, domains, and
constraints

• A solution to a CSP assigns to each variable a value from its domain
such that all constraints satisfied

Key point:

– Many problems can be formulated as CSPs
– If we know how to solve CSPs, we know to solve those problems
– Same for other models . . .
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Example: Linear Equations Model

• John's age is three times Peter's age

• In 10 years, John's age will be twice Peter's age

• How old are John and Peter now?

Formulate problem as 2-linear equations with 2 unknowns:

J = 3P

J + 10 = 2(P + 10)

Solve model using general method; e.g. variable elimination

3P + 10 = 2P + 20

Then

P = 20− 10 = 10

J = 3P = 30
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Problem Solving in AI

• define models of interest

• develop effective methods for solving them

In this tutorial:

-- We'll cover a wide range of models, including State Models, SAT, CSPs,
Bayesian Networks, Markov Decision Processes (MDPs), . . .

-- Focus on key principles underlying current solution methods:

– Search Space
– Pruning
– Learning
– Decomposition
– Compilation
– Variable Elimination
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Plan for the tutorial

• Introduction (Hector)

– Models based on States
– Models based on Variables
– Overview of Techniques

• Solving models with Search and Inference

– State-based Models (Hector)
– Variable-based [Factored or Graphical] Models (Rina)

• Solving models with Pure Inference and No Search (Adnan)

• Hybrid Methods (Rina)

• Wrap up
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More about Tutorial

• assumes basic course in AI

• focuses on principles; not exhaustive (e.g., no approx. methods)

• conceptual but also technical

Please ask questions along the way . . .
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Part 1: Introduction
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Principles of AI Problem Solving: Introduction

• Contents

– Models based on States
– Models based on Variables
– Overview of Techniques

• Format; Style

– general, high-level view of field
– emphasize intuitions and coherence
– raise questions that will be addressed in detail later on
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Models

• Models define what is to be solved

• Algorithms define how to solve models

E.g, we understand what
√

43 is without necessarily knowing how to
compute value

Same with models: they define the solutions we are looking for, without
commitment about their computation
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State Models

• Basic State Model characterized by

– finite and discrete state space S
– an initial state s0 ∈ S
– a set G ⊆ S of goal states
– actions A(s) ⊆ A applicable in each state s ∈ S
– a state transition function f(s, a) for s ∈ S and a ∈ A(s)
– action costs c(a, s) > 0

• A solution is a sequence of applicable actions ai, i = 0, . . . , n, that
maps the initial state s0 into a goal state s ∈ SG; i.e.,

si+1 = f(ai, si) and ai ∈ A(si) for i = 0, . . . , n and sn+1 ∈ SG

• Optimal solutions minimize total cost
∑i=n

i=0 c(ai, si)
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Problems mapping naturally into State Models

• Grid Navigation

• 15-puzzle

• Rubik

• Route Finding in Map

• TSP (Traveling Salesman Problem)

• Jug Puzzles (e.g., 4 & 3 liter jars, have 2 liters in 4 lit. jar)

• ...

This is the model underlying Classical Planning . . .
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Languages

State-Models often represented implicitly in terms of (planning) lan-
guages

E.g.: Strips is a simple language for representing the Basic State Models

• A problem in Strips is a tuple 〈A,O, I, G〉:

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• Operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A
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Strips: From Language to Model
Strips problem P = 〈A,O, I, G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State
Model S(P )

Later on we'll see how Strips descriptions can play a computational role
as well . . .
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Model with Incomplete Information and Non-Determinsm

• finite and discrete state space S

• a set of possible initial states S0 ⊆ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F s.t. F (a, s) is a set of states,
a ∈ A(s)

• action costs c(a, s) > 0

-- A solution is a sequence of actions that lead to SG for any possible
initial state and transition

-- An optimal solution miminizes the sum of action costs

-- Planning over this class of models called Conformant Planning
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Model with Non-determinism and Full Feedback

• finite and discrete state space S

• a set of possible initial states S0 ⊆ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F . . .

• action costs c(a, s) > 0

• states fully observable

-- Solutions become functions mapping states into actions (closed-loop
control policies)

-- This is because dynamics is Markovian and past history of system is
not relevant

-- Optimal solutions minimize cost in worst case (min-max state policies)
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Stochastic Model with Full Feedback
(Markov Decision Process - MDP)

• finite and discrete state space S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• transition probabilities Pa(s′|s) for s and a ∈ A(s)

• action costs c(a, s) > 0

• states fully observable

-- Solutions like before are functions mapping states into actions (closed-
loop control policies)

-- Optimal solutions minimize expected cost

-- This model underlies Probabilistic Planning; although variations possible
(e..g, partial observability, achieving goal with certain probability,
discounted formulations, . . . ).
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Example: Navigation Problems

Consider robot that has to reach target G when

• initial state is known and actions are deterministic

• initial state is unknown and actions are deterministic

• states are fully observable and actions are stochastic

• states are partially observable and actions are stochastic . . .

G

-- How do these problems map into the models considered?

-- What is the form of the solutions?
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Models based on Variables: Factored or Graphical Models

• Constraint Satisfaction Problems (CSP)

• Satisfiability (SAT)

• Bayesian Networks

• Influence Diagrams, . . .

Several tasks associated with these models . . .
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Constrain Satisfaction Problems (CSPs)

• CSPs are triplets 〈Variables,Domains,Constraints〉

• A solution assigns values to the variables from their corresponding
domains satisfying all constraints

• A CSP is consistent if it has one or more solutions

E.g., first CSP below is consistent; second is not

〈{X, Y }, {DX, DY = [1..10]}, {X + Y > 10, X − Y > 7}〉

〈{A,B, C}, {DA, DB, DC = [a, b]}, {A 6= B,B 6= C,A 6= C}〉
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Problems that Map into CSPs

• Scheduling

• Planning

• Resource allocation

• Map coloring

• N-queens

• ...
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Satisfiability (SAT)

• SAT is special type of CSP where variables x, y, . . . are boolean and
constraints are clauses

x ∨ ¬y ∨ z . . .

• A set of clauses denotes a formula in Conjunctive Normal Form (CNF):
a conjunction of disjunctions of literals

• Current SAT solvers are very powerful, and used in Planning and
Verification

• Any CSP can be mapped into SAT and vice versa, and solving techniques
have a lot in common
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The Graph Underlying Graphical Models

• SAT and CSP are both NP-Complete, yet complexity bounded by
treewidth of interaction graph

• The interaction graph of a problem is an undirected graph where

– the vertices are the variables, and
– two variables are connected iff if they appear in same con-

straint/clause

• The treewidth measures how 'tree-like' is the interaction graph

– treewidth = 1 implies linear complexity, while
– bounded treewidth implies polynomial complexity
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Bayesian Networks (BNs)
BNs are graphical models that express a joint probability distribution
over a set of variables X1, . . . , Xn by means of

• a directed acyclic graph over the variables

• conditional probability tables P (Xi|pa(Xi)) of each variable Xi given
its parents pa(Xi) in the graph

The joint distribution is the product of the tables:

P (X1, . . . , Xn) =
∏

i=1,n

P (Xi|pa(Xi))

BNs and CSPs are similar; they specify joint probability and joint consis-
tency through local factors that define the interaction graph
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Models and Tasks: SAT and CSPs

• Consistency is basic task in SAT and CSPs: find a satisfying assignment
o that no one exists

Yet other tasks common:

• Optimization: find best satisfying assigment according to some function
(COP)

• Enumeration: find number of satisfying assignments (Model Counting);
find all solutions, . . .

All tasks are NP-hard; Consistency and (Bounded) Optimization are
NP-Complete while Enumeration is #P.
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Models and Tasks: Bayesian Networks

• Enumeration: find probability given evidence: P (X = x|Y = y, Z = z, ...)
(Bel)

• Optimization: find most probable instantiation given evidence (MPE)

• Other: find most probable instantiation of subset of variables given
evidence (MAP)

All tasks are NP-hard; (Bounded) MPE is NP-Complete, and Bel is #P
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Map

• Introduction

– Models based on States
– Models based on Variables
� Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Search

• Basic tasks can be formulated as search problem in suitable problem
space

• Problem or Search space is a Directed Graph given by

– root node n0 of the search
– set of terminal nodes; either dead-ends or goals
– branching rule generating children n′ of non-terminal nodes n
– costs c(n, n′) ≥ 0

• A solution is a directed path that connects the root node with a goal
node. It is optimal if it minimizes the sum of the edge costs.
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Direct Problem Space for Basic State Models

The nodes correspond to the states and

• root node is initial state s0

• goal nodes are the goal states

• dead ends are states s s.t no action applies in s

• branching rule: s → s′ if s′ = f(a, s) for some a applicable in s

• cost is then c(s, s′) = c(a, s)

In spite of direct mapping from Basic State Model to Search Graph, it's
good to keep in mind that first is a description of the problem, while
second is the structure explored for finding a solution

When the State Model is described in Strips, this is the so-called pro-
gression space, as alternative spaces are possible . . .

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 29



Alternative Problem Spaces from Strips Encodings

• regression space: branch by applying actions backward from goal til
finding conditions that hold in initial state

• plan space: branch by refining partial plan, removing its flaws

In certain cases, these alternative branching schemas/problem spaces
more suitable (e.g., plan space seems best for optimal temporal planning)

Strips problems with fixed planning horizon can also be mapped into SAT,
which works very well when optimal parallel plans are sought
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Problem Space for Non-Deterministic State models

Conformant Planning can be formulated as Search Problem over belief
space, where nodes are belief states, i.e., sets of states deemed possible

• root node is set of possible initial states

• goal nodes are sets of goal states

• edge n → n′ if for some action, n′ is the set of states that may follow
the states in n

• . . .

-- This is most common formulation for Conformant Planning currently

-- Belief states represented often by propositional formula in suitable
'compiled' form (e.g., OBDDs, d-DNNF, . . . ; more about this later on)
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Problem Space for Graphical Models: OR Space

Consistency and Optimization Problems for SAT, CSP, and Bayesian Net-
works are formulated as search problems over suitable Search Graph.

In the standard formulations, the nodes are partial assignments:

• root node is empty assignment

• dead-ends are partial assignments that violate a constraint

• 'goal' nodes are complete assignments

• children n′ of node n obtained by picking up unassigned variable in
n, and assigning it a value

• costs c(n, n′) uniform in consistency problems, and dependent on local
functions in COP and BNets.

-- Choice of branching variable affects size of Search Tree and critical
for performance
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Problem Space for Graphical Models: AND/OR Space

• Solution to enumeration problems, like model counting over CNFs and
belief updating over BNets, do not correspond to solution paths in
graph but can be computed from it

• We will also see an alternative formulation of all these tasks in terms
of AND/OR Graphs rather than (OR) Graphs that exploit decomposition

• This AND/OR space is (almost) explicit in some algorithms (e.g., Re-
cursive Conditioning) and implicit in others (e.g., non-chronological
backtracking).
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Map

• Introduction

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
� Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Pruning in Depth-First Search

• Search graph can be solved by Depth-First Search (DFS) and variations

• More effective DFS obtained by pruning nodes that cannot lead to
acceptable solutions; e.g.,

Consistency: prune node n if it can only lead to dead-ends

State Models/Optimization: prune node n if it can only lead to
solutions with cost > than given Bound

• By playing with Bound one can get Bounded DFS, IDA*, DFS Branch &
Bound

• Key issue: how to predict when paths up to node n

– can only lead to dead-ends? [consistency]
– can only lead to solutions with cost > Bound? [optimization]
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Pruning (2)

• Pruning criterion has to be sound and cost-effective

• Two ideas: lower bounds (LBs) and constraint propagation (CP)

– LBs: prune n if f(n) > Bound where f(n) is LB of cost of best
solution that extends n

– CP: prune value x from variable X domain, if X = x proved
inconsistent with constraints and commitments in n; prune node n
itself if some domain becomes empty

• LBs and CP mechanisms can both be obtained as inference in relaxed
model; e.g.

– in Strips: forget `deletes' and assume (relaxed) actions can be done
in parallel (`simple reachability heuristic')

– in CSPs: e.g., solve each constraint in isolation ('arc consistency')

We will say more about LBs and CP mechanisms . . .
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Learning during Search (State Models)

• Results of (partial) search can be used to improve pruning in rest of
the search

• E.g., if node shown not to lead to solution found again in the search,
it can be pruned right away

• However one can do better; e.g., in IDA*, for example, right after
all sons n′ of node n return without a solution (for given Bound),
heuristic value h(n) can be increased to:

h(n) := minn′:n→n′ c(n, n′) + h(n′)

• Resulting algorithm known as IDA* + Transposition Tables

• Exactly same update rule used in Learning Real Time A* (LRTA*)

• Actually updates can be done without search at all and they eventually
yield h∗! This is what Value Iteration does, which also applies to MDPs
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Learning during Search (Factored Models)

• For consistency tasks (SAT, CSP), one can actually do even better

• Rather than updating the value of a node, update the theory itself!

• Use structure for identifying and ruling out cause of the inconsistency

• This is the idea of no-good learning in SAT and CSPs

• Learned information

– applies to other nodes as well
– results in non-chronological backtracking
– enables further inferences and pruning

• It is a key idea in current SAT solvers
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Decomposition

• Consider solving a SAT problem T made up of two independent sub-
problems T ′ and T ′′ with n variables each, none in common

• By decomposing the problem in two as

SAT (T ) = SAT (T ′) & SAT (T ′′)

worst case complexity is reduced from 2n ∗ 2n to 2n + 2n

• Interestingly, if T ′ and T ′′ overlap over single variable X, T can still
be decomposed by conditioning on X as

SAT (T ) =
∨
x

SAT (T ′
X=x) & SAT (T ′′

X=x)

where TX=x means T with variable X replaced by value x.

• This idea can be applied recursively, even if T ′ and T ′′ overlap over
set of variables
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Decomposition and AND/OR Search Graph

• Decomposition by recursive conditioning maps search over OR-graph
into search over AND/OR graph

T´ T´x́=0x=0 T´ T´x́=1x=1

T

x=1x=0

• By suitable choice of decompositions and caching, worst-case complex-
ity can be reduced from O(Exp(n)) to O(Exp(w∗)), where w∗ ≤ n is
theory treewidth (e.g., linear for trees)

• Similar decomposition methods can be used (and are used!) for enu-
meration tasks like Model Counting (MC) and Belief Update but with
different agregation operators; e.g.,

MC(T ) =
∑

x

MC(T ′
X=x) ∗ MC(T ′′

X=x)
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From Decomposition to Knowledge Compilation (1)

• Suitable 'trace' of AND/OR Search can be used to perform a large class
of intractable boolean operations in time linear in size of 'trace'

• Indeed, just map AND/OR Graph for P into logically equivalent AND/OR
formula F (T ) by simple transformation:

=⇒

T´ T´x́=0x=0 T´ T´x́=1x=1

T

x=1x=0

x

F(T´    )
x=0

F(T´    )
x=1

−x

F(T´´    )
x=0

F(T´´    )
x=1

F(T)

• AND/OR formula F (T ) is in Deterministic Decomposable Negation Nor-
mal Form (d-DNNF): disjuncts are exclusive, conjuncts share no vari-
ables, and negations affect vars only; closely related to OBDDs
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Map

• Introduction

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
� Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Variable Elimination

• Gaussian Elimination used to solve n linear equations Tn with n un-
knowns X1, . . . , Xn

– Eliminate Xn obtaining n− 1 equations Tn−1 with n− 1 unknowns
– Iterate til obtaining 1 equation T1 with 1 unknown (X1)
– Solve T1 for X1 and plug result into T2

– Solve T2 for X2 and plug result x2 for X2 into T3, etc

• Method can be be generalized to graphical models; only change is way
for eliminating variables; e.g.,

– in CNF, Xi eliminated by resolving upon Xi

– in CSPs, Xi eliminated by join and project DB operations
– in Belief Update (BNets), Xi eliminated by sum and products, . . .
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Variable Elimination, Inference, and AND/OR Search

• Variable Elimination solves problems by inference and no search

• Yet same complexity bounds (O(Exp(w∗))) as Decomposition Methods
with Caching that search over AND/OR graphs, and furthermore . . .

• Variable Elimination can be understood as bottom up search of same
AND/OR graph!

Few powerful ideas that span a large terrain and have a lot of connections
and ramifications. This is what the tutorial is about . . .
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Map

• Introduction (Hector)

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

� State-based Models (Hector)
– Variable-based [Factored or Graphical] Models (Rina)

• Solving models with Pure Inference and No Search (Adnan)

• Hybrid Methods (Rina)
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Part 2: Search and Inference
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Techniques for Solving State Models: Focus

• Models

– Basic State Models: Complete Knowledge, Deterministic Actions
– Markov Decision Processes: Stochastic Actions and Full Feedback

• Techniques

– Problem Space: Branching Schemes
– Pruning: Admissible heuristics or LBs h(s) ≤ h∗(s)
– Learning: Improving h(s) while Searching

• Language

– We assume Models specified in a Strips-like language
– This takes us into what is called Planning in AI
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State Models Reminder

• Basic State Model characterized by

– finite and discrete state space S
– an initial state s0 ∈ S
– a set G ⊆ S of goal states
– actions A(s) ⊆ A applicable in each state s ∈ S
– a state transition function f(s, a) for s ∈ S and a ∈ A(s)
– action costs c(a, s) > 0

• A solution is a sequence of applicable actions that map initial state s0

into goal state

• Optimal solutions minimize total cost . . .
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Strips Reminder

• A problem in Strips is a tuple 〈A,O, I, G〉:

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• Operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A
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Strips: From Language to Model

Strips problem P = 〈A,O, I, G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State
Model S(P )
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Pruning: Getting Lower Bounds for Strips Problems

Admissible Heuristics (LBs) for Strips obtained by solving relaxed models

• ignore delete-lists

• ignore certain atoms

• decompose goals sets into smaller subsets

– e.g., assume cost of achieving set given by cost of achieving most
costly pair in the set . . .

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 51



Lower Bounds for Strips: Reachability Graph
Ignore deletes and apply all actions in parallel:

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Prec(a) ⊆ Pi}

Pi+1 = {p ∈ Add(a) | a ∈ Ai}

Define then admissible heuristic

h1
G(s) def= min i such that G ⊆ Pi

Need No-op(p) action for each p: Prec = Add = {p}
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Planning Graph = Reachability Graph + Mutexes

• Better relaxation: assume no deletes and that all actions can be done
in parallel except certain incompatible action pairs

• This relaxation not tractable but good LB approximation exists, in
particular for parallel planning (where only diff is that deletes are not
ignored)

– action pair mutex at i if incompatible or preconditions mutex at i
– atom pair mutex at i + 1 if all supporting action pairs mutex at i

• Mutex x, y at i implies that no valid plan can have both x and y at i
but not the converse

• Define then more informed admissible heuristic h2
G(s) as:

h2
G(s) def= min i such that G ⊆ Pi & not mutex at i
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• Graph and resulting heuristic h2
G(s) computed for one state s only, but

valid for any goal G . . .
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How to use Strips Heuristics? Problem Spaces in Planning

• Option 1: Progression Space: search forward from s0

– recompute graph and h2
G(s) for every s; this is costly

• Option 2: Regression Space: search backward from Goal (Graphplan)

– no need to recompute graph which encodes h2
G′(s) for all goals G′!

but high branching factor when lots of parallel actions

• Option 3: Action Space: non-directional search

– Branch by picking an action a and time point i and trying the two
possibilities: a in the plan at i ; a not in the plan at i

– At each node n recompute planning graph from s0 respecting
commitments in n, and prune n if Goals pushed beyond horizon
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Current State of the Art in Planning

No single best Problem Space or Pruning Criterion for all types of
planning tasks:

• Sequential (Classical) Planning: Heuristic Search in Progression Space
currently best with both admissible and non-admissible h's

• Optimal Parallel Planning: SAT formulation fed to state-of-the-art
solvers (Siege) currenty best

• Optimal Temporal Planning: Search in Plan Space (POCL) best with
pruning scheme based on Constraint Propagation
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Learning while Searching in State Models

A number of algorithms combine search with state value updates:

• Learning Real time A* (LRTA*)

• IDA* + Memory (Tranposition Tables)

• Real Time Dynamic Programming (RTDP)

• MTD (algorithm for Game Trees better than Alpha-Beta)

• . . .

Other algorithms do updates with no search

• Value Iteration
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Understanding Value Updates: Dynamic Programming

• Solutions to wide range of models can be expressed in terms of solution
of so-called Bellman equation:

V (s) = mina∈A(s) QV (a, s)

where cost-to-go term QV (a, s) depends on model (F (a, s): next states)

c(a, s) + V (s′), s′ ∈ F (a, s) for OR Graphs
c(a, s) + maxs′∈F (a,s) V (s′) for Max AND/OR Graphs
c(a, s) +

∑
s′∈F (a,s) V (s′) for Additive AND/OR Graphs

c(a, s) +
∑

s′∈F (a,s) Pa(s′|s)V (s′) for MDPs
maxs′∈F (a,s) V (s′) for Game Trees

• The greedy policy πV is optimal when V = V ∗ solves Bellman

πV (s) = argmina∈A(s) QV (a, s)

• Question: how to get V ∗?
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Updates with No Search: Value Iteration

• Value Iteration finds V ∗ by successive approximations

• Starting with an arbitrary V , uses Bellman equation to update V ; e.g.
for Basic State Models (OR Graphs)

V (s) := mina∈A(s) [c(a, s) + V (sa)]

• As long as all states updated sufficiently often (and certain general
conditions hold), left and right hand sides converge, and V = V ∗

• VI is simple and general but also exhaustive

• Can the updates be restricted to subset of states preserving optimality?

• Yes: like in Heuristic Search, use Lower Bounds and Initial State

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 59



Focusing Value Iteration using LBs and Initial State

• Say that a state s is

– inconsistent if V (s) < mina∈A(s) QV (a, s), and
– greedy if reachable from s0 using greedy policy πV

• Then starting with an admissible, follow loop:

– Find an inconsistent greedy state s and Update it

• Loops delivers greedy policy that is optimal even if some states not
updated or visited at all!

• Unlike DP method, both LBs (V ≤ V ∗) and Initial State (s0) used
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Learning During Search in State Models

• Convergence of all Learning Algorithms in State Models (LRTA*, MTD,
IDA*+TT, . . . ) can be understood in these terms: update an inconsis-
tent greedy state in all iterations til no more such states

• Speed up obtained by updating multiple such states in every iteration

• This can be done by implementing Find as a DFS over greedy states
with inconsistent states as terminals (Learning in Depth-First Search)

• This is what IDA* + Trans. Tables (Basic State Models) and MTD
(Game Trees) actually do

• Same idea underlies current heuristic-search methods for solving
MDPs: LAO*, RTDP, HDP, . . .
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Bibliography: Techniques for Solving State Models Part
• Heuristics for Strips Planning: [23, 6, 16, 14, 30]; admissible heuristics [13, 9, 12]; heuristics and the planning graph

[6, 13, 24]; Graphplan [4].
• Planners searching in Regression Space [4, 5, 13].
• Planners searching in `Plan Space': [22, 18, 32].
• Planners searching in (non-directional) `Action Space': SAT-formulation and CSP formulations like [19, 28] (and in particular

[10]), and [15].
• Temporal Planning: [21, 25, 17], Optimal Temporal Planning [31], Planning and Scheduling [29].
• Learning while Searching in State Models: IDA* with Transposition Tables [27], LRTA* [20], RTDP [1], MTD for Game Trees

[26]; general LDFS framework [8].
• Value Iteration and Dynamic Programming [2, 3].
• Focusing Value Iteration: General Find-and-Revise procedure [7, 8]
• Learning in DFS [8], Heuristic Search Algorithms for MDPs [1, 11, 7]
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