Principles of AI Problem Solving Tutorial IJCAI-05

Adnan Darwiche (UCLA, Los Angeles)
Rina Dechter (UCI, Irvine)
H. Geffner (UPF, Barcelona)

Problems

Problem solving in Al is about representation and automated solution of a wide variety of problems
diagnosis, planning, scheduling, logistics, control games: sokoban, mastermind, 15-puzzle, n-queens, chess robot navigation, traveling salesman, map coloring, . . .

Models

Common structure of certain classes of problems can be abstracted and expressed in terms of mathematical model; e.g.,

- Constraint Satisfaction Problems (CSP) are models of the form $\langle X, D, C\rangle$ where X, D, and C are sets of variables, domains, and constraints
- A solution to a CSP assigns to each variable a value from its domain such that all constraints satisfied

Key point:

- Many problems can be formulated as CSPs
- If we know how to solve CSPs, we know to solve those problems
- Same for other models . . .

Example: Linear Equations Model

- John's age is three times Peter's age
- In 10 years, John's age will be twice Peter's age
- How old are John and Peter now?

Formulate problem as 2-linear equations with 2 unknowns:

$$
\begin{aligned}
J & =3 P \\
J+10 & =2(P+10)
\end{aligned}
$$

Solve model using general method; e.g. variable elimination

$$
3 P+10=2 P+20
$$

Then

$$
\begin{aligned}
P & =20-10=10 \\
J & =3 P=30
\end{aligned}
$$

Problem Solving in AI

- define models of interest
- develop effective methods for solving them

In this tutorial:
-- We'll cover a wide range of models, including State Models, SAT, CSPs, Bayesian Networks, Markov Decision Processes (MDPs), . . .
-- Focus on key principles underlying current solution methods:

- Search Space
- Pruning
- Learning
- Decomposition
- Compilation
- Variable Elimination

Plan for the tutorial

- Introduction (Hector)
- Models based on States
- Models based on Variables
- Overview of Techniques
- Solving models with Search and Inference
- State-based Models (Hector)
- Variable-based [Factored or Graphical] Models (Rina)
- Solving models with Pure Inference and No Search (Adnan)
- Hybrid Methods (Rina)
- Wrap up

More about Tutorial

- assumes basic course in Al
- focuses on principles; not exhaustive (e.g., no approx. methods)
- conceptual but also technical

Please ask questions along the way

Part 1: Introduction

Principles of AI Problem Solving: Introduction

- Contents
- Models based on States
- Models based on Variables
- Overview of Techniques
- Format; Style
- general, high-level view of field
- emphasize intuitions and coherence
- raise questions that will be addressed in detail later on

Models

- Models define what is to be solved
- Algorithms define how to solve models
E.g, we understand what $\sqrt{43}$ is without necessarily knowing how to compute value

Same with models: they define the solutions we are looking for, without commitment about their computation

State Models

- Basic State Model characterized by
- finite and discrete state space S
- an initial state $s_{0} \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- a state transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s)>0$
- A solution is a sequence of applicable actions $a_{i}, i=0, \ldots, n$, that maps the initial state s_{0} into a goal state $s \in S_{G}$; i.e.,

$$
s_{i+1}=f\left(a_{i}, s_{i}\right) \text { and } a_{i} \in A\left(s_{i}\right) \text { for } i=0, \ldots, n \text { and } s_{n+1} \in S_{G}
$$

- Optimal solutions minimize total cost $\sum_{i=0}^{i=n} c\left(a_{i}, s_{i}\right)$

Problems mapping naturally into State Models

- Grid Navigation
- 15-puzzle
- Rubik
- Route Finding in Map
- TSP (Traveling Salesman Problem)
- Jug Puzzles (e.g., 4 \& 3 liter jars, have 2 liters in 4 lit. jar)
- :

This is the model underlying Classical Planning . . .

Languages

State-Models often represented implicitly in terms of (planning) languages
E.g.: Strips is a simple language for representing the Basic State Models

- A problem in Strips is a tuple $\langle A, O, I, G\rangle$:
- A stands for set of all atoms (boolean vars)
- O stands for set of all operators (actions)
- $I \subseteq A$ stands for initial situation
- $G \subseteq A$ stands for goal situation
- Operators $o \in O$ represented by three lists
-- the Add list $\operatorname{Add}(o) \subseteq A$
-- the Delete list $\operatorname{Del}(o) \subseteq A$
-- the Precondition list $\operatorname{Pre}(o) \subseteq A$

Strips: From Language to Model

Strips problem $P=\langle A, O, I, G\rangle$ determines state model $\mathcal{S}(P)$ where

- the states $s \in S$ are collections of atoms
- the initial state s_{0} is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are s.t. $\operatorname{Prec}(a) \subseteq s$
- the next state is $s^{\prime}=s-\operatorname{Del}(a)+\operatorname{Add}(a)$
- action costs $c(a, s)$ are all 1

The (optimal) solution of problem P is the (optimal) solution of State Model $\mathcal{S}(P)$

Later on we'll see how Strips descriptions can play a computational role as well...

Model with Incomplete Information and Non-Determinsm

- finite and discrete state space S
- a set of possible initial states $S_{0} \subseteq S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function F s.t. $F(a, s)$ is a set of states, $a \in A(s)$
- action costs $c(a, s)>0$
-- A solution is a sequence of actions that lead to S_{G} for any possible initial state and transition
-- An optimal solution miminizes the sum of action costs
-- Planning over this class of models called Conformant Planning

Model with Non-determinism and Full Feedback

- finite and discrete state space S
- a set of possible initial states $S_{0} \subseteq S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function F...
- action costs $c(a, s)>0$
- states fully observable
-- Solutions become functions mapping states into actions (closed-loop control policies)
-- This is because dynamics is Markovian and past history of system is not relevant
-- Optimal solutions minimize cost in worst case (min-max state policies)

Stochastic Model with Full Feedback (Markov Decision Process - MDP)

- finite and discrete state space S
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for s and $a \in A(s)$
- action costs $c(a, s)>0$
- states fully observable
-- Solutions like before are functions mapping states into actions (closedloop control policies)
-- Optimal solutions minimize expected cost
-- This model underlies Probabilistic Planning; although variations possible (e..g, partial observability, achieving goal with certain probability, discounted formulations, . . .).

Example: Navigation Problems

Consider robot that has to reach target G when

- initial state is known and actions are deterministic
- initial state is unknown and actions are deterministic
- states are fully observable and actions are stochastic
- states are partially observable and actions are stochastic . . .

-- How do these problems map into the models considered?
-- What is the form of the solutions?

Models based on Variables: Factored or Graphical Models

- Constraint Satisfaction Problems (CSP)
- Satisfiability (SAT)
- Bayesian Networks
- Influence Diagrams, . . .

Several tasks associated with these models . . .

Constrain Satisfaction Problems (CSPs)

- CSPs are triplets 〈Variables,Domains,Constraints〉
- A solution assigns values to the variables from their corresponding domains satisfying all constraints
- A CSP is consistent if it has one or more solutions
E.g., first CSP below is consistent; second is not

$$
\begin{gathered}
\left\langle\{X, Y\},\left\{D_{X}, D_{Y}=[1 . .10]\right\},\{X+Y>10, X-Y>7\}\right\rangle \\
\left\langle\{A, B, C\},\left\{D_{A}, D_{B}, D_{C}=[a, b]\right\},\{A \neq B, B \neq C, A \neq C\}\right\rangle
\end{gathered}
$$

Problems that Map into CSPs

- Scheduling
- Planning
- Resource allocation
- Map coloring
- N -queens
- :

Satisfiability (SAT)

- SAT is special type of CSP where variables x, y, \ldots are boolean and constraints are clauses

$$
x \vee \neg y \vee z \ldots
$$

- A set of clauses denotes a formula in Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals
- Current SAT solvers are very powerful, and used in Planning and Verification
- Any CSP can be mapped into SAT and vice versa, and solving techniques have a lot in common

The Graph Underlying Graphical Models

- SAT and CSP are both NP-Complete, yet complexity bounded by treewidth of interaction graph
- The interaction graph of a problem is an undirected graph where
- the vertices are the variables, and
- two variables are connected iff if they appear in same constraint/clause
- The treewidth measures how 'tree-like' is the interaction graph
- treewidth $=1$ implies linear complexity, while
- bounded treewidth implies polynomial complexity

Bayesian Networks (BNs)

BNs are graphical models that express a joint probability distribution over a set of variables X_{1}, \ldots, X_{n} by means of

- a directed acyclic graph over the variables
- conditional probability tables $P\left(X_{i} \mid p a\left(X_{i}\right)\right)$ of each variable X_{i} given its parents $p a\left(X_{i}\right)$ in the graph

The joint distribution is the product of the tables:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1, n} P\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

BNs and CSPs are similar; they specify joint probability and joint consistency through local factors that define the interaction graph

Models and Tasks: SAT and CSPs

- Consistency is basic task in SAT and CSPs: find a satisfying assignment o that no one exists

Yet other tasks common:

- Optimization: find best satisfying assigment according to some function (COP)
- Enumeration: find number of satisfying assignments (Model Counting); find all solutions, . . .

All tasks are NP-hard; Consistency and (Bounded) Optimization are NP-Complete while Enumeration is \#P.

Models and Tasks: Bayesian Networks

- Enumeration: find probability given evidence: $P(X=x \mid Y=y, Z=z, \ldots)$ (Bel)
- Optimization: find most probable instantiation given evidence (MPE)
- Other: find most probable instantiation of subset of variables given evidence (MAP)

All tasks are NP-hard; (Bounded) MPE is NP-Complete, and Bel is \#P

Map

- Introduction
- Models based on States
- Models based on Variables
\triangleright Overview of Techniques * Search Space
* Pruning
* Learning
* Decomposition
* Compilation
* Variable Elimination
- Solving models with Search and Inference
- State-based Models
- Variable-based [Factored or Graphical] Models
- Solving models with Pure Inference and No Search
- Hybrid Methods

Search

- Basic tasks can be formulated as search problem in suitable problem space
- Problem or Search space is a Directed Graph given by
- root node n_{0} of the search
- set of terminal nodes; either dead-ends or goals
- branching rule generating children n^{\prime} of non-terminal nodes n
- costs $c\left(n, n^{\prime}\right) \geq 0$
- A solution is a directed path that connects the root node with a goal node. It is optimal if it minimizes the sum of the edge costs.

Direct Problem Space for Basic State Models

The nodes correspond to the states and

- root node is initial state s_{0}
- goal nodes are the goal states
- dead ends are states s s.t no action applies in s
- branching rule: $s \rightarrow s^{\prime}$ if $s^{\prime}=f(a, s)$ for some a applicable in s
- cost is then $c\left(s, s^{\prime}\right)=c(a, s)$

In spite of direct mapping from Basic State Model to Search Graph, it's good to keep in mind that first is a description of the problem, while second is the structure explored for finding a solution

When the State Model is described in Strips, this is the so-called progression space, as alternative spaces are possible ...

Alternative Problem Spaces from Strips Encodings

- regression space: branch by applying actions backward from goal til finding conditions that hold in initial state
- plan space: branch by refining partial plan, removing its flaws

In certain cases, these alternative branching schemas/problem spaces more suitable (e.g., plan space seems best for optimal temporal planning)

Strips problems with fixed planning horizon can also be mapped into SAT, which works very well when optimal parallel plans are sought

Problem Space for Non-Deterministic State models

Conformant Planning can be formulated as Search Problem over belief space, where nodes are belief states, i.e., sets of states deemed possible

- root node is set of possible initial states
- goal nodes are sets of goal states
- edge $n \rightarrow n^{\prime}$ if for some action, n^{\prime} is the set of states that may follow the states in n
-•••
-- This is most common formulation for Conformant Planning currently
-- Belief states represented often by propositional formula in suitable 'compiled' form (e.g., OBDDs, d-DNNF, . . . ; more about this later on)

Problem Space for Graphical Models: OR Space

Consistency and Optimization Problems for SAT, CSP, and Bayesian Networks are formulated as search problems over suitable Search Graph.

In the standard formulations, the nodes are partial assignments:

- root node is empty assignment
- dead-ends are partial assignments that violate a constraint
- 'goal' nodes are complete assignments
- children n^{\prime} of node n obtained by picking up unassigned variable in n, and assigning it a value
- costs $c\left(n, n^{\prime}\right)$ uniform in consistency problems, and dependent on local functions in COP and BNets.
-- Choice of branching variable affects size of Search Tree and critical for performance

Problem Space for Graphical Models: AND/OR Space

- Solution to enumeration problems, like model counting over CNFs and belief updating over BNets, do not correspond to solution paths in graph but can be computed from it
- We will also see an alternative formulation of all these tasks in terms of AND/OR Graphs rather than (OR) Graphs that exploit decomposition
- This AND/OR space is (almost) explicit in some algorithms (e.g., Recursive Conditioning) and implicit in others (e.g., non-chronological backtracking).

Map

- Introduction
- Models based on States
- Models based on Variables
- Overview of Techniques
* Search Space
\triangleright Pruning
* Learning
* Decomposition
* Compilation
* Variable Elimination
- Solving models with Search and Inference
- State-based Models
- Variable-based [Factored or Graphical] Models
- Solving models with Pure Inference and No Search
- Hybrid Methods

Pruning in Depth-First Search

- Search graph can be solved by Depth-First Search (DFS) and variations
- More effective DFS obtained by pruning nodes that cannot lead to acceptable solutions; e.g.,

Consistency: prune node n if it can only lead to dead-ends
State Models/Optimization: prune node n if it can only lead to solutions with cost > than given Bound

- By playing with Bound one can get Bounded DFS, IDA*, DFS Branch \& Bound
- Key issue: how to predict when paths up to node n
- can only lead to dead-ends? [consistency]
- can only lead to solutions with cost > Bound? [optimization]

Pruning (2)

- Pruning criterion has to be sound and cost-effective
- Two ideas: lower bounds (LBs) and constraint propagation (CP)
- LBs: prune n if $f(n)$ > Bound where $f(n)$ is LB of cost of best solution that extends n
- CP: prune value x from variable X domain, if $X=x$ proved inconsistent with constraints and commitments in n; prune node n itself if some domain becomes empty
- LBs and CP mechanisms can both be obtained as inference in relaxed model; e.g.
- in Strips: forget 'deletes' and assume (relaxed) actions can be done in parallel ('simple reachability heuristic')
- in CSPs: e.g., solve each constraint in isolation ('arc consistency')

We will say more about LBs and CP mechanisms . . .

Learning during Search (State Models)

- Results of (partial) search can be used to improve pruning in rest of the search
- E.g., if node shown not to lead to solution found again in the search, it can be pruned right away
- However one can do better; e.g., in IDA*, for example, right after all sons n^{\prime} of node n return without a solution (for given Bound), heuristic value $h(n)$ can be increased to:

$$
h(n):=\min _{n^{\prime}: n \rightarrow n^{\prime}} c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- Resulting algorithm known as IDA* + Transposition Tables
- Exactly same update rule used in Learning Real Time A* (LRTA*)
- Actually updates can be done without search at all and they eventually yield h^{*} ! This is what Value Iteration does, which also applies to MDPs

Learning during Search (Factored Models)

- For consistency tasks (SAT, CSP), one can actually do even better
- Rather than updating the value of a node, update the theory itself!
- Use structure for identifying and ruling out cause of the inconsistency
- This is the idea of no-good learning in SAT and CSPs
- Learned information
- applies to other nodes as well
- results in non-chronological backtracking
- enables further inferences and pruning
- It is a key idea in current SAT solvers

Decomposition

- Consider solving a SAT problem T made up of two independent subproblems T^{\prime} and $T^{\prime \prime}$ with n variables each, none in common
- By decomposing the problem in two as

$$
S A T(T)=S A T\left(T^{\prime}\right) \& S A T\left(T^{\prime \prime}\right)
$$

worst case complexity is reduced from $2^{n} * 2^{n}$ to $2^{n}+2^{n}$

- Interestingly, if T^{\prime} and $T^{\prime \prime}$ overlap over single variable X, T can still be decomposed by conditioning on X as

$$
S A T(T)=\bigvee_{x} S A T\left(T_{X=x}^{\prime}\right) \& S A T\left(T_{X=x}^{\prime \prime}\right)
$$

where $T_{X=x}$ means T with variable X replaced by value x.

- This idea can be applied recursively, even if T^{\prime} and $T^{\prime \prime}$ overlap over set of variables

Decomposition and AND/OR Search Graph

- Decomposition by recursive conditioning maps search over OR-graph into search over AND/OR graph

- By suitable choice of decompositions and caching, worst-case complexity can be reduced from $O(\operatorname{Exp}(n))$ to $O\left(\operatorname{Exp}\left(w^{*}\right)\right)$, where $w^{*} \leq n$ is theory treewidth (e.g., linear for trees)
- Similar decomposition methods can be used (and are used!) for enumeration tasks like Model Counting (MC) and Belief Update but with different agregation operators; e.g.,

$$
M C(T)=\sum_{x} M C\left(T_{X=x}^{\prime}\right) * M C\left(T_{X=x}^{\prime \prime}\right)
$$

From Decomposition to Knowledge Compilation (1)

- Suitable 'trace' of AND/OR Search can be used to perform a large class of intractable boolean operations in time linear in size of 'trace'
- Indeed, just map AND/OR Graph for P into logically equivalent AND/OR formula $F(T)$ by simple transformation:

- AND/OR formula $F(T)$ is in Deterministic Decomposable Negation Normal Form (d-DNNF): disjuncts are exclusive, conjuncts share no variables, and negations affect vars only; closely related to OBDDs

Map

- Introduction
- Models based on States
- Models based on Variables
- Overview of Techniques
* Search Space
* Pruning
* Learning
* Decomposition
* Compilation
\triangleright Variable Elimination
- Solving models with Search and Inference
- State-based Models
- Variable-based [Factored or Graphical] Models
- Solving models with Pure Inference and No Search
- Hybrid Methods

Variable Elimination

- Gaussian Elimination used to solve n linear equations T_{n} with n unknowns X_{1}, \ldots, X_{n}
- Eliminate X_{n} obtaining $n-1$ equations T_{n-1} with $n-1$ unknowns
- Iterate til obtaining 1 equation T_{1} with 1 unknown (X_{1})
- Solve T_{1} for X_{1} and plug result into T_{2}
- Solve T_{2} for X_{2} and plug result x_{2} for X_{2} into T_{3}, etc
- Method can be be generalized to graphical models; only change is way for eliminating variables; e.g.,
- in CNF, X_{i} eliminated by resolving upon X_{i}
- in CSPs, X_{i} eliminated by join and project DB operations
- in Belief Update (BNets), X_{i} eliminated by sum and products, ...

Variable Elimination, Inference, and AND/OR Search

- Variable Elimination solves problems by inference and no search
- Yet same complexity bounds $\left(O\left(\operatorname{Exp}\left(w^{*}\right)\right)\right)$ as Decomposition Methods with Caching that search over AND/OR graphs, and furthermore . . .
- Variable Elimination can be understood as bottom up search of same AND/OR graph!

Few powerful ideas that span a large terrain and have a lot of connections and ramifications. This is what the tutorial is about . . .

Map

- Introduction (Hector)
- Models based on States
- Models based on Variables
- Overview of Techniques
* Search Space
* Pruning
* Learning
* Decomposition
* Compilation
* Variable Elimination
- Solving models with Search and Inference
\triangleright State-based Models (Hector)
- Variable-based [Factored or Graphical] Models (Rina)
- Solving models with Pure Inference and No Search (Adnan)
- Hybrid Methods (Rina)

Part 2: Search and Inference

Techniques for Solving State Models: Focus

- Models
- Basic State Models: Complete Knowledge, Deterministic Actions
- Markov Decision Processes: Stochastic Actions and Full Feedback
- Techniques
- Problem Space: Branching Schemes
- Pruning: Admissible heuristics or LBs $h(s) \leq h^{*}(s)$
- Learning: Improving $h(s)$ while Searching
- Language
- We assume Models specified in a Strips-like language
- This takes us into what is called Planning in Al

State Models Reminder

- Basic State Model characterized by
- finite and discrete state space S
- an initial state $s_{0} \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- a state transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s)>0$
- A solution is a sequence of applicable actions that map initial state s_{0} into goal state
- Optimal solutions minimize total cost . . .

Strips Reminder

- A problem in Strips is a tuple $\langle A, O, I, G\rangle$:
- A stands for set of all atoms (boolean vars)
- O stands for set of all operators (actions)
- $I \subseteq A$ stands for initial situation
- $G \subseteq A$ stands for goal situation
- Operators $o \in O$ represented by three lists
-- the Add list $\operatorname{Add}(o) \subseteq A$
-- the Delete list $\operatorname{Del}(o) \subseteq A$
-- the Precondition list $\operatorname{Pre}(o) \subseteq A$

Strips: From Language to Model

Strips problem $P=\langle A, O, I, G\rangle$ determines state model $\mathcal{S}(P)$ where

- the states $s \in S$ are collections of atoms
- the initial state s_{0} is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are s.t. $\operatorname{Prec}(a) \subseteq s$
- the next state is $s^{\prime}=s-\operatorname{Del}(a)+\operatorname{Add}(a)$
- action costs $c(a, s)$ are all 1

The (optimal) solution of problem P is the (optimal) solution of State Model $\mathcal{S}(P)$

Pruning: Getting Lower Bounds for Strips Problems

Admissible Heuristics (LBs) for Strips obtained by solving relaxed models

- ignore delete-lists
- ignore certain atoms
- decompose goals sets into smaller subsets
- e.g., assume cost of achieving set given by cost of achieving most costly pair in the set ...

Lower Bounds for Strips: Reachability Graph

 Ignore deletes and apply all actions in parallel:$$
\begin{aligned}
P_{0} & =\{p \in s\} \\
A_{i} & =\left\{a \in O \mid \operatorname{Prec}(a) \subseteq P_{i}\right\} \\
P_{i+1} & =\left\{p \in \operatorname{Add}(a) \mid a \in A_{i}\right\}
\end{aligned}
$$

Define then admissible heuristic

$$
h_{G}^{1}(s) \stackrel{\text { def }}{=} \min i \text { such that } G \subseteq P_{i}
$$

Need No-op(p) action for each p: Prec $=A d d=\{p\}$

Planning Graph $=$ Reachability Graph + Mutexes

- Better relaxation: assume no deletes and that all actions can be done in parallel except certain incompatible action pairs
- This relaxation not tractable but good LB approximation exists, in particular for parallel planning (where only diff is that deletes are not ignored)
- action pair mutex at i if incompatible or preconditions mutex at i - atom pair mutex at $i+1$ if all supporting action pairs mutex at i
- Mutex x, y at i implies that no valid plan can have both x and y at i but not the converse
- Define then more informed admissible heuristic $h_{G}^{2}(s)$ as:

$$
h_{G}^{2}(s) \stackrel{\text { def }}{=} \min i \text { such that } G \subseteq P_{i} \& \text { not mutex at } i
$$

- Graph and resulting heuristic $h_{G}^{2}(s)$ computed for one state s only, but valid for any goal $G \ldots$

How to use Strips Heuristics? Problem Spaces in Planning

- Option 1: Progression Space: search forward from s_{0}
- recompute graph and $h_{G}^{2}(s)$ for every s; this is costly
- Option 2: Regression Space: search backward from Goal (Graphplan)
- no need to recompute graph which encodes $h_{G^{\prime}}^{2}(s)$ for all goals G^{\prime} ! but high branching factor when lots of parallel actions
- Option 3: Action Space: non-directional search
- Branch by picking an action a and time point i and trying the two possibilities: a in the plan at i; a not in the plan at i
- At each node n recompute planning graph from s_{0} respecting commitments in n, and prune n if Goals pushed beyond horizon

Current State of the Art in Planning

No single best Problem Space or Pruning Criterion for all types of planning tasks:

- Sequential (Classical) Planning: Heuristic Search in Progression Space currently best with both admissible and non-admissible h 's
- Optimal Parallel Planning: SAT formulation fed to state-of-the-art solvers (Siege) currenty best
- Optimal Temporal Planning: Search in Plan Space (POCL) best with pruning scheme based on Constraint Propagation

Learning while Searching in State Models

A number of algorithms combine search with state value updates:

- Learning Real time A^{*} (LRTA*)
- IDA* + Memory (Tranposition Tables)
- Real Time Dynamic Programming (RTDP)
- MTD (algorithm for Game Trees better than Alpha-Beta)

Other algorithms do updates with no search

- Value Iteration

Understanding Value Updates: Dynamic Programming

- Solutions to wide range of models can be expressed in terms of solution of so-called Bellman equation:

$$
V(s)=\min _{a \in A(s)} Q_{V}(a, s)
$$

where cost-to-go term $Q_{V}(a, s)$ depends on model ($F(a, s)$: next states)

$$
\begin{array}{ll}
c(a, s)+V\left(s^{\prime}\right), s^{\prime} \in F(a, s) & \text { for OR Graphs } \\
c(a, s)+\max _{s^{\prime} \in F(a, s)} V\left(s^{\prime}\right) & \text { for Max AND/OR Graphs } \\
c(a, s)+\sum_{s^{\prime} \in F(a, s)} V\left(s^{\prime}\right) & \text { for Additive AND/OR Graphs } \\
c(a, s)+\sum_{s^{\prime} \in F(a, s)} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right) & \text { for MDPs } \\
\max _{s^{\prime} \in F(a, s)} V\left(s^{\prime}\right) & \text { for Game Trees }
\end{array}
$$

- The greedy policy π_{V} is optimal when $V=V^{*}$ solves Bellman

$$
\pi_{V}(s)=\operatorname{argmin}_{a \in A(s)} Q_{V}(a, s)
$$

- Question: how to get V^{*} ?

Updates with No Search: Value Iteration

- Value Iteration finds V^{*} by successive approximations
- Starting with an arbitrary V, uses Bellman equation to update V; e.g. for Basic State Models (OR Graphs)

$$
V(s):=\min _{a \in A(s)}\left[c(a, s)+V\left(s_{a}\right)\right]
$$

- As long as all states updated sufficiently often (and certain general conditions hold), left and right hand sides converge, and $V=V^{*}$
- VI is simple and general but also exhaustive
- Can the updates be restricted to subset of states preserving optimality?
- Yes: like in Heuristic Search, use Lower Bounds and Initial State

Focusing Value Iteration using LBs and Initial State

- Say that a state s is
- inconsistent if $V(s)<\min _{a \in A(s)} Q_{V}(a, s)$, and
- greedy if reachable from s_{0} using greedy policy π_{V}
- Then starting with an admissible, follow loop:
- Find an inconsistent greedy state s and Update it
- Loops delivers greedy policy that is optimal even if some states not updated or visited at all!
- Unlike DP method, both LBs ($V \leq V^{*}$) and Initial State $\left(s_{0}\right)$ used

Learning During Search in State Models

- Convergence of all Learning Algorithms in State Models (LRTA*, MTD, IDA**TT, ...) can be understood in these terms: update an inconsistent greedy state in all iterations til no more such states
- Speed up obtained by updating multiple such states in every iteration
- This can be done by implementing Find as a DFS over greedy states with inconsistent states as terminals (Learning in Depth-First Search)
- This is what IDA* + Trans. Tables (Basic State Models) and MTD (Game Trees) actually do
- Same idea underlies current heuristic-search methods for solving MDPs: LAO*, RTDP, HDP, . . .

Bibliography: Techniques for Solving State Models Part

- Heuristics for Strips Planning: [23, 6, 16, 14, 30]; admissible heuristics [13, 9, 12]; heuristics and the planning graph [6, 13, 24]; Graphplan [4].
- Planners searching in Regression Space [4, 5, 13].
- Planners searching in 'Plan Space': [22, 18, 32].
- Planners searching in (non-directional) 'Action Space': SAT-formulation and CSP formulations like [19, 28] (and in particular [10]), and [15].
- Temporal Planning: [21, 25, 17], Optimal Temporal Planning [31], Planning and Scheduling [29].
- Learning while Searching in State Models: IDA* with Transposition Tables [27], LRTA* [20], RTDP [1], MTD for Game Trees [26]; general LDFS framework [8].
- Value Iteration and Dynamic Programming [2, 3].
- Focusing Value Iteration: General Find-and-Revise procedure [7, 8]
- Learning in DFS [8], Heuristic Search Algorithms for MDPs [1, 11, 7]

References

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming. Artificial Intelligence, 72:81--138, 1995.
[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[3] D. Bertsekas. Dynamic Programming and Optimal Control, Vols 1 and 2. Athena Scientific, 1995.
[4] A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings of IJCAI-95, pages 1636--1642. Morgan Kaufmann, 1995.
[5] B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings of ECP-99, pages 359--371. Springer, 1999.
[6] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1--2):5--33, 2001.
[7] B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncertainty and full feedback. In Proc. IJCAI-03, pages 1233--1238, 2003.
[8] B. Bonet and H. Geffner. Learning in DFS: A unified approach to heuristic search in deterministic, non-deterministic, probabilistic, and game tree settings. 2005.
[9] S. Edelkamp. Planning with pattern databases. In Proc. ECP 2001, 2001.
[10] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow: Exploiting determinism in planning as satisfiability. In Proc. AAAI-98, pages 948--953, 1998.
[11] E. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129:35--62, 2001.
[12] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for optimal planning. In Proc. AAAI-05, 2005. To appear.
[13] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc. of the Fifth International Conference on AI Planning Systems (AIPS-2000), pages 70--82, 2000.
[14] M. Helmert. A planning heuristic based on causal graph analysis. In Proc. ICAPS-04, pages 161--170, 2004.
[15] J. Hoffmann and H. Geffner. Branching matters: Alternative branching in graphplan. In E. Giunchiglia, N. Muscettolla, and D. Nau, editors, Proc. 13th Int. Conf. on Automated Planning and Scheduling (ICAPS-2003), pages 22--31. AAAI Press, 2003.
[16] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14:253--302, 2001.
[17] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space: Theory and practice. In Proc. AIPS-2000, pages 177--186, 2000.
[18] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76(1-2):167--238, 1995.
[19] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In Proceedings of AAAI-96, pages 1194--1201. AAAI Press / MIT Press, 1996.
[20] R. Korf. Real-time heuristic search. Artificial Intelligence, 42:189--211, 1990.
[21] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish, editor, Proc. IJCAI-95, pages 1643-1649. Morgan Kaufmann, 1995.
[22] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of AAAI-91, pages 634--639, Anaheim, CA, 1991. AAAI Press.
[23] D. McDermott. Using regression-match graphs to control search in planning. Artificial Intelligence, 109(1-2):111--159, 1999.
[24] X. Nguyen, S. Kambhampati, and R. Sanchez Nigenda. Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search. Artificial Intelligence, 135(1-2):73--123, 2002.
[25] J. Penberthy and D. Weld. Temporal planning with continous change. In Proc. AAAI-94, pages 1010--1015, 1994.
[26] A. Plaat, J. Schaeffer, W. Pijls, and A.de Bruin. Best-first fixed-depth minimax algorithms. Artificial Intelligence, 87(1-2):255--293, 1996.
[27] A. Reinefeld and T. Marsland. Enhanced iterative-deepening search. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(7):701--710, 1994.
[28] J. Rintanen. A planning algorithm not based on directional search. In Proceedings KR'98, pages 617--624. Morgan Kaufmann, 1998.
[29] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and scheduling. Knowledge Engineering Review, 15(1), 2000.
[30] V. Vidal. A lookahead strategy for heuristic search planning. In Proc. ICAPS-04, pages 150--159, 2004.
[31] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on constraint programming. In D. McGuiness and G. Ferguson, editors, Proceedings of 19th Nat. Conf. on Artificial Intelligence (AAAI-04), pages 570--577. AAAI Press/MIT Press, 2004.
[32] Daniel S. Weld. An introduction to least commitment planning. Al Magazine, 15(4):27--61, 1994.

