

Importance sampling

$$Z = \sum_{x} \exp \left(\sum_{i} w_{i} N_{i}(x) \right)$$
• Unbiased estimate
• Central-limit theorem
• Convergence depend

- Convergence depends on Q

$$= \sum_{x} \exp\left(\sum_{i} w_{i} N_{i}(x)\right) \frac{Q(x)}{Q(x)}$$

$$= \mathbb{E}\left[\frac{\exp\left(\sum_{i} w_{i} N_{i}(x)\right)}{Q(x)}\right]$$

• Given samples $x^{(1)}$, $x^{(2)}$,..., $x^{(N)}$ drawn from Q

$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{\exp\left(\sum_{i} w_{i} N_{i}(x^{(j)})\right)}{Q(x^{(j)})}$$

Lifted Importance sampling

Easy to do: Replace the conditioning step by sampling

Lifted Importance Sampling: Issues

- Until now everything works fine
- □ How to design "Q?"
 - Apply Rules even if they cannot be applied
 - $\blacksquare R(x,y) \lor S(y,z) \lor T(z,u), w$
 - Use singleton rule on R(x,y) even though it is not a singleton
 - □ This yields a tractable lifted AND/OR search tree
 - Put probabilities on the OR to AND edges. Yields a tractable distribution!
- Complexity of generating a sample
 - Linear in the height; logarithmic: max branching factor

SAMPLING-BASED INFERENCE IN PRESENCE OF LOGICAL STRUCTURE

Lifted Importance Sampling: Issues

- □ Issue 2: How to compute the weight? $\approx \frac{1}{N} \sum_{j=1}^{N} \frac{\exp(\sum_{i} w_{i} N_{i}(x^{(j)}))}{Q(x^{(j)})}$
- Once you generate a sample, you need to weigh it to estimate the partition function R(x,y) S(y,z)
- $\square F = R(x,y) \lor S(y,z) \lor T(x,u), w$
 - Think of the sample as a database

Weight	of the	e samp	le

exp	(number	of	groundings	of	F that	are	true*w)
	1	_	9	_	_		

- Naïve algorithm: O(n⁴)
- Database techniques: O(n²)

 R(x,y)
 S(y,z)
 T(z,u)

 R(1,1)
 S(2,1)
 T(2,1)

 R(2,1)
 S(3,2)
 T(3,2)

 R(3,1)
 S(3,4)
 T(2,2)

 R(1,4)
 S(2,4)
 S(2,4)

U

Database Theory

- Complexity of finding the number of groundings is exponential in the treewidth of the following graph
 - A vertex for each logical variable
 - If two logical variables appear in a predicate, they are connected by an edge

$$\square F = R(x,y) \lor S(y,z) \lor T(z,u), w$$

Nothing but a Markov network with three potentials

Too large for many practical applications

Approximate Counting

- □ If treewidth of a formula is too large
 - Use approximate counting methods.
 - SampleSearch (Gogate&Dechter, 2011) or the Wish Algorithm (Ermon et al. 2014) and many more.
 - Belief propagation approaches
 - Problem is structured, better approximations possible
- Many approximations yield asymptotically unbiased estimate instead of unbiased estimates

Gibbs sampling for MLNs

- Input: Ground MLN
 - Start with a random assignment to all propositions
 - Select a proposition A uniformly at random
 - Compute Pr(A | assignment to all others)
 - Resample A from Pr(A | assignment to all others)

Gibbs sampling for MLNs

$$R(x,y) \vee S(y,z), w_1$$

 $S(y,z) \vee T(z,u), w_2$

R(x,y)
R(1,1)
R(2,1)
R(3,1)
R(1,4)

S(y,z)
S(2,1)
S(3,2)
S(3,4)
S(2,4)

T(z,u)
T(2,1)
T(3,2)
T(2,2)
S(2,4)

```
Pick R(1,1) to flip \Pr(R(1,1)=1|all\ others) \propto e^{N_1(database)w_1+N_2(database)w_2} \Pr(R(1,1)=0|all\ others) \propto e^{N_1(database')w_1+N_2(database')w_2} Where database' is same as database except that R(1,1)=0
```

- Database theory described before can be applied here.
- Efficient version of WALKSAT (Selman, Kautz&Cohen, '93) using the same approach

LIFTING THE GIBBS SAMPLING ALGORITHM

- □ Lifted sample
 - Rather than storing the precise groundings of an atom that are true in the sample only store "the number of groundings that are true."
 - Not always possible
- Gibbs sampling is not inherently liftable
 - Blocked Gibbs sampling is more amenable to lifting
- Blocking (Jensen-Kjaerulff-Kong, 1993)
 - Jointly sample a set of atoms (blocks)
 - Tradeoffs: Increasing the block size increases complexity but reduces the error

LIFTED BLOCKED GIBBS SAMPLING

- Time complexity of running exact inference = $O(n^3)$
- Space complexity = $O(n^2)$
- Time complexity of running exact inference = $O(n^2)$
- Space complexity = O(n)
- Higher accuracy (more atoms in a cluster) and (counterintuitively) smaller complexity!

LIFTED BLOCKED GIBBS SAMPLING

Algorithm LBG(MLN M)

- Clustering: Partition atoms in M into mutually exclusive and exhaustive clusters (blocks) such that lifted-search is polynomial within each cluster
- Cluster Graph: Connect clusters if they have atoms that are in Markov Blanket of each other
- Message-passing:
 - Each incoming message is assignment to a subset of the Markov Blanket of atoms in the cluster
 - Message can be represented in a lifted manner

Evidence Problem

- □ Serious problem with inference: "Evidence-problem"
 - 1.75 !Strong(x) v Wins(x,y)

Wins(A,A)	0.56
$\operatorname{Wins}(A,B)$	0.56
Wins(A,C)	0.56
Wins(B,A)	0.56
Wins (B,B)	0.56
Wins(B,C)	0.56
Wins(C,A)	0.56
Wins(C,B)	0.56
Wins (C,C)	0.56

Strong(C)
Wins (A,C)
Wins (B,B)
Wins (B,C)
Wins (C,A)

Wins(A,A)	0.6
Wins(A,B)	0.6
$\mathtt{Wins}(B,A)$	0.63
Wins(C,B)	0.85
${\tt Wins}(C,\!C)$	0.85

Marginals before evidence

Evidence

Marginals after evidence

- Evidence breaks symmetries that are essential for lifting
 - Lifted algorithms ground/shatter => Inference complexity increases
- Reasoning with evidence is critical to almost every application

Our approach

- What is needed?
 - Scalable, practical inference that works out-of-the-box without restricting MLN/Evidence structure
- "Compress" the MLN by clustering related objects
 - "Scales-up" existing inference algorithms
- Control complexity using a parameter (#clusters)
 - #Clusters trades-off inference accuracy with complexity

Clustering

Domain-reduction as a clustering problem

$$\neg R(x, y) \lor \neg S(y, z) \lor T(z, x)$$

Domain of each logical-variable is reduced from "n" to some number much smaller than "n"

Formulate as clustering problem by developing a distance function and minimizing with respect to it.

Evidence-Specific Distance Function

- The MLN representation has an inherent symmetry
 - "Similar" evidence on distinct objects likely translates to similar marginal probabilities
- \square Distance function (X_i, X_k)
 - Sum of the difference between the number of groundings of a formula satisfied by X_i and by X_k
 - Any distance function can be used depending on the application

Experiments

- Clustering algorithms from Weka
 - Kmeans++ (KM)
 - Hierarchical Clustering (HC)
 - Expectation Maximization (EM)
 - Xmeans
- Inference algorithms from Alchemy
 - Lifted Belief Propagation (LBP)
 - Gibbs Sampling (Gibbs)

Results on WebKB

Inverse Compression Ratio (ICR) = #Compressed-Ground-Formulas/#Original-Ground-Formulas

Entity Resolution

