Tractable Islands Revisited

Rina Dechter

Information and Computer Sciences

 UC-Irvine

IRvine

In Search of Tractable islands*

Rina Dechter
University of California
Irvine, California

*Supported in part by NSF grant IRI-9157936, by Air Force Office of Sclentific Research, AFOSR 900136, Toshiba of America and Xerox Palo Alto Frmoarch center

Tractable Islands: Tasks and Methods

Bucket-elimination: Time and space O($\mathbf{n} \boldsymbol{k}^{\boldsymbol{w}}$) (dechter 1999) Cutset-conditioning: is $\mathbf{O}\left(\mathbf{n} \boldsymbol{k}^{\# c}\right.$) time, linear memory, leading to anytime schemes

Graph based	Tasks Tractable Islands	CSP/SAT	Optimization (MAX)	Weighted Counting (Sum)	MMAP (Max-Sum)	MEU (MAX-SUM)
	Trees $(w=1)$	()	()	()	-)	-)
	W-trees	()	()	()	()	-
	Cutsettrees	()	()	()	-)	()
Languagebased	2-SAT	()				
	Horn	()				
	Tight domainsscopes	()				
Mixed	Rowconvexity	()				
	Submodular	?				

Tree-solving is easy

Belief updating (sum-prod)

CSP - consistency (projection-join)

MPE (max-prod)
\#CSP (sum-prod)
Trees are processed in linear time and memory

Traveling to trees via Inference

Traveling to trees by clustering
Distance: $n \exp (w)$

Inference algorithm: Time: exp(tree-width) Space: $\exp ($ tree-width) treewidth $=4-1=3$ treewidth $=$ (maximum cluster size) -1

Traveling to trees via Conditioning

Traveling to trees by conditioning Distance: $\exp ($ cycle-cutset)

Cycle cutset $=\{A, B, C\}$

B

Traveling by Inference and Conditioning

 w-Cutset: Balancing Memory and Time

- Inference may require too much memory
- Condition on some of the variables
-W-cutset. Time exp(w+c_w), memory exp(w)

Bird's-eye View of Exact Algorithms

Inference
$\exp \left(w^{*}\right)$ time/space

Search
Exp(w^{*}) time $\mathrm{O}\left(\mathrm{w}^{*}\right)$ space

Search+inference:
Space: $\exp (q) \quad q$: user
Time: $\exp (q+c(q)) \quad$ controlled

Bird's-eye View of Exact Algorithms

Inference
$\exp \left(w^{*}\right)$ time/space

Search+inference:
Space: $\exp (q) \quad q$: user
Time: $\exp (q+c(q))$
controlled

Bird's-eye View of Approximate Algorithms

Inference

Bounded Inference

Our approach:
 Use tractable islands in Reasoning, rather than in Modeling

Anytime Bounds via Tree Search

- Desiderata, meaningful confidence interval, responsive, complete
- Winning frameworks: search, or sampling guided by heuristics generated via tractable islands.

Anytime Bounds via Graph Search

- Desiderata, meaningful confidence interval, responsive, complete
- Winning frameworks: search, or sampling guided by heuristics generated via tractable islands.

Anytime Bounds via Sampling

Desiderata, meaningful confidence interval, responsive, complete

- Winning frameworks: search, or sampling guided by heuristics generated via tractable islands.

Outline

- Graphical models, The Marginal Map task
- AND/OR search spaces
- Variational bounds as search heuristics
- Combining methods: Heuristic Search for Marginal Map
- Combining methods: Sampling
- Conclusion

Outline

- Graphical models, The Marginal Map task
- AND/OR search spaces
- Variational bounds as search heuristics
- Combining methods: Heuristic Search for Marginal Map
- Combining methods: Sampling
- Conclusion

Graphical Models

```
\[
P(A)
\]
\[
P(B \mid A)
\]
\[
P(C \mid A)
\]
P(D|A,B)
\[
P(F \mid B, C)
\]
P(G|D,F)
```


a) Belief network (directed)

b) Constraint network (undirected)

d) Markov network

Probabilistic Reasoning Problems

- Tasks:

Max-Inference (most likely config.)	$f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
, Sum-Inference	$Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
(data likelihood)	$f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathbf{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Mixed-Inference (optimal prediction)	

- Combinatorial search / counting queries
- Exact reasoning NP-complete (or worse)

Why Marginal MAP?

- Often, Marginal MAP is the "right" task:
- We have a model describing a large system
- We care about predicting the state of some part

- Example: decision making - Complexity: NPpp complete
- Sum over random variables - Not necessarily easy on trees
- Max over decision variables (specify action policies)

Marginal Map

-Graphical Model: $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}\rangle$

$$
\begin{array}{cc}
\text {-variables } & \mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\} \\
\text {-domains } & \mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\} \\
\text {-functions } & \mathbf{F}=\left\{f_{1}, \ldots, f_{r}\right\} \\
P(\mathbf{X})= & \frac{1}{Z} \prod_{j} f_{j}
\end{array}
$$

-Marginal MAP task:

$$
\mathbf{X}=\mathbf{X}_{M} \cup \mathbf{X}_{S}
$$

$$
x_{M}^{*}=\operatorname{argmax}_{X_{M}} \sum_{X_{S}} \prod_{j} f_{j}
$$

primal graph

$$
\begin{aligned}
& \mathbf{X}_{M}=\{A, B, C, D\} \\
& \mathbf{X}_{S}=\{E, F, G, H\}
\end{aligned}
$$

Finding Marginals by Bucket Elimination Algorithm BE-bel (Dechter 1996)

$$
P(A \mid E=0)=\alpha \sum_{E=0, D, C, B} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A, B) \cdot P(E \mid B, C)
$$

$\sum_{b} \prod \longleftarrow$ Elimination operator

Time and space exponential in the induced-width / treewidth

$$
\mathrm{O}\left(\mathrm{n} k^{w *+1}\right)
$$

bucket A:
$P(a \mid e=0)$

Why is MMAP Harder for Inference (BE)?

Let's apply Bucket-elimination: Complexity is exponential in the *constrained* induced-width
$\max _{\mathbf{X}_{M}} \sum_{\mathbf{X}_{S}} P(\mathbf{X})$

$$
P(X)=\prod_{j} f_{j}
$$

$M A P^{*}$ is the marginal MAP value

Why is MMAP Harder for Inference (BE)?

(Park \& Darwiche, 2003)
(Yuan \& Hansen, 2009)

Why is MMAP Harder for Search?

Brute-Force Search

-Enumerate all full MAP assignments
-Evaluate each full MAP assignment
-Return the one with maximum cost

$$
\begin{aligned}
\operatorname{cost}\left(\bar{x}_{M}\right)= & \sum_{\mathbf{x}_{S}} \phi \\
& \# P-\operatorname{complete}
\end{aligned}
$$

Evaluating a MAP assignment is hard!

Harder relative to optimization because induced-width is higher and evaluation of a configuration is higher
Harder relative to summation: higher induced-width
Dechter, TPM 14/19

For anytime behavior we need conditioning
\rightarrow Search

AND/OR Search Spaces for Graphical Models

And, if possible, lets exploit structure in the search space as well.

Potential search spaces peudotree

$$
\begin{gathered}
f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \\
f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathbf{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
\end{gathered}
$$

Context minimal AND/OR search graph

18 AND nodes over any of the search spaces

Cost of a Solution Tree

Value of a Node (e.g., Probability of Evidence)

$P(E \mid A, B)$			
\mathbf{A}	\mathbf{B}	$\mathbf{E}=\mathbf{0}$	$\mathbf{E}=\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$. $\mathbf{4}$.6
$\mathbf{0}$	$\mathbf{1}$.5	.5
$\mathbf{1}$	$\mathbf{0}$.7	.3
$\mathbf{1}$	$\mathbf{1}$.2	.8

Evidence: $\mathrm{E}=0$
OR Evidence: E=0

\mathbf{A}	$\mathbf{C}=\mathbf{0}$	$\mathbf{C}=\mathbf{1}$			
$\mathbf{0}$.2	.8			
$\mathbf{1}$.7	.3	\quad	\mathbf{A}	$\mathbf{P}(\mathbf{A})$
:---:	:---:	:---:			
$\mathbf{0}$.6				
$\mathbf{1}$.4				

$$
P(D=1, E=0)=?
$$

$$
24408 \text { A }
$$

$P(D \mid B, C)$			
B	C	D=0	D=1
0	0	. 2	. 8
0	1	. 1	. 9
1	0	. 3	. 7
1	1	. 5	. 5

Evidence: D=1

Value of node $=$ updated belief for sub-problem below
AND node: product

OR node: Marginalization by summation

Answering Queries: Sum-Product(Eefief upading)

AND/OR w-Cutset

Start from a pseudo-tree, terminate when reaching a cutset, and apply inference

3-cutset
start pseudo tree

1-cutset start pseudo tree

Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

- Random Graphs (50 nodes, 200 edges, average degree $8, w^{*} \approx 23$)

w-cutset time O(exp(w+cutset-size))

AND/OR search for Marginal MAP

constrained

[Marinescu, Dechter and Ihler, 2014.bechter, TPM 14/19

$$
\begin{aligned}
& X_{M}=\{A, B, C, D\} \\
& X_{S}=\{E, F, G, H\}
\end{aligned}
$$

Node types
OR (MAP): max
OR (SUM): sum
AND: multiplication

AND/OR Search for Marginal MAP

For anytime behavior we need conditioning And we need heuristics to guide search

Generating Heuristic Using Relaxed Tractable Models

Mini-Bucket Approximation

For optimization
Split a bucket into mini-buckets —> bound complexity
bucket $(\mathrm{X})=$

$$
\left\{f_{1}, \ldots f_{r}\right\}
$$

$$
\begin{aligned}
& \{\underbrace{\left\{f_{1}, f_{2}, \ldots f_{r}, f_{r+1}, \ldots f_{n}\right.}\} \\
& \left\{\lambda_{X}(\cdot)=\max _{x} \prod_{i=1}^{n} f_{i}(x, \ldots)\right. \\
& \left.f_{r}\right\}
\end{aligned}
$$

$$
\lambda_{X, 1}(\cdot)=\max _{x} \prod_{i=1}^{r} f_{i}(x, \ldots) \quad \lambda_{X, 2}(\cdot)=\max _{x} \prod_{i=r+1}^{n} f_{i}(x, \ldots)
$$

$$
\lambda_{X}(\cdot) \leq \lambda_{X, 1}(\cdot) \lambda_{X, 2}(\cdot)
$$

Exponential complexity decrease: $O\left(e^{n}\right) \longrightarrow O\left(e^{r}\right)+O\left(e^{n-r}\right)$

Mini-Bucket Elimination

Mini-Bucket Decoding

$$
\begin{aligned}
& \mathbf{b}^{*}=\arg \max _{b} f\left(a^{*}, b\right) \cdot f\left(b, c^{*}\right) \\
& \quad \cdot f\left(b, d^{*}\right) \cdot f\left(b, e^{*}\right) \\
& \mathbf{c}^{*}=\arg \max _{c} f\left(c, a^{*}\right) \cdot f\left(c, e^{*}\right) \cdot \lambda_{B \rightarrow C}\left(a^{*}, c\right) \\
& \mathbf{d}^{*}=\arg \max _{d} f\left(a^{*}, d\right) \cdot \lambda_{B \rightarrow D}\left(d, e^{*}\right) \\
& \mathbf{e}^{*}=\arg \max _{e} \lambda_{C \rightarrow E}\left(a^{*}, e\right) \cdot \lambda_{D \rightarrow E}\left(a^{*}, e\right) \\
& \mathbf{a}^{*}=\arg \max _{a} f(a) \cdot \lambda_{E \rightarrow A}(a)
\end{aligned}
$$

Greedy configuration = lower bound

For optimization
mini-buckets

B:

C: $\quad \begin{aligned} & f(c, a) f(c, e) \lambda_{B \rightarrow C}(a, c) \\ & \text { D: } \\ & \qquad \underbrace{f(a, d) \lambda_{B \rightarrow D}(d, e)}_{\downarrow}\end{aligned}$,
E:

A:

Properties of Mini-Bucket Eliminaton

(For optimization)

- Bounding from above and below
Relaxation upper bound by i=2 mini-bucket

$$
i=10
$$

$$
i=20
$$

MAP

Consistent solutions (greedy search)

- Complexity: O(rexp(i)) time and O(exp(i)) space.
- Accuracy: determined by Upper/Lower bound.
- As i increases, both accuracy and complexity increase.
- Possible use of mini-bucket approximations:
- As anytime algorithms
- As heuristics in search
-

Tightening the Bound

$\log f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \sum_{\alpha} \theta_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad \leq \min _{\left\{\lambda_{i \rightarrow \alpha}\right\}} \sum_{\alpha} \max _{\mathbf{x}_{\alpha}}\left[\theta_{\alpha}\left(\mathbf{x}_{\alpha}\right)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by re-parameterization
- Enforces lost equality constraints using Lagrange multipliers

Add factors that "adjust"

Tightening the bound

 each local term, but cancel out in total$\log f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \sum_{\alpha} \theta_{\alpha}\left(\mathbf{x}_{\alpha}\right) \leq \min _{\left\{\lambda_{i \rightarrow \alpha}\right\}} \sum_{\alpha} \max _{\mathbf{x}_{\alpha}}\left[\theta_{\alpha}\left(\mathbf{x}_{\alpha}\right)+\sum_{i \in \alpha} \lambda_{i \rightarrow \alpha}\left(x_{i}\right)\right]$

- Many names for the same class of bounds
- Dual decomposition
- TRW, MPLP
- Soft arc consistency
- Max-sum diffusion
[Komodakis et al. 2007]
[Wainwright et al. 2005; Globerson \& Jaakkola 2007]
[Cooper \& Schiex 2004]
[Warner 2007]

Mini-Bucket with Moment-Matching

[Ihler et al. 2012]

- Downward pass as cost shifting
- Can also do cost shifting within mini-buckets:
"Join graph" message passing
- "Moment-matching" version: One message exchange within each bucket, during downward sweep
- Optimal bound defined by cliques ("regions") and cost-shifting f'n scopes ("coordinates")

Join graph:

$\mathrm{U}=$ upper bound

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation

- Can tighten the bound in various ways
- Cost-shifting (improve consistency between cliques)
- Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Mini-Bucket for Summation

- Generalize technique to sum via Holder's inequality:

$$
\sum_{x} f_{1}(x) \cdot f_{2}(x) \leq\left[\sum_{x} f_{1}(x)^{\frac{1}{w_{1}}}\right]^{w_{1}} \cdot\left[\sum_{x} f_{2}(x)^{\frac{1}{w_{2}}}\right]^{w_{2}}
$$

$$
w_{1}+w_{2}=1
$$

- Define the weighted (or powered) sum:

$$
\sum_{x_{1}}^{w_{1}} f\left(x_{1}\right)=\left[\sum_{x_{1}} f\left(x_{1}\right)^{\frac{1}{w_{1}}}\right]^{w_{1}}
$$

- "Temperature" interpolates between sum \& max:
- Different weights do not commute:

$$
\sum_{x_{1}}^{w_{1}} \sum_{x_{2}}^{w_{2}} f\left(x_{1}, x_{2}\right) \neq \sum_{x_{2}}^{w_{2}} \sum_{x_{1}}^{w_{1}} f\left(x_{1}, x_{2}\right)
$$

$$
\lim _{w \rightarrow 0^{+}} \sum_{x}^{w} f(x)=\max _{x} f(x)
$$

WMB for Marginal MAP

mini-buckets
$\lambda_{B \rightarrow C}(a, c)=\sum_{b}^{w_{1}} f(a, b) f(b, c)$
$\lambda_{B \rightarrow D}(d, e)=\sum_{b}^{w_{2}} f(b, d) f(b, e)$ - $\quad\left(w_{1}+w_{2}=1\right)$
-
$\lambda_{E \rightarrow A}(a)=\max _{e} \lambda_{C \rightarrow E}(a, e) \lambda_{D \rightarrow E}(a, e)$

$$
U=\max _{a} f(a) \lambda_{E \rightarrow A}(a)
$$

\sim^{\sim}

$U=$ upper bound
[Liu and Ihler, 2011; 2013]
[Dechter and Rish, 2003]

Can optimize over cost-shifting and weights (single pass "MM" or iterative message passing)

Outline

- Graphical models, The Marginal Map task
- AND/OR search spaces
- Variational bounds as search heuristics
- Combining methods: Heuristic Search for Marginal Map
- Combining methods: Sampling
- Conclusion

AND/OR Search for Marginal MAP

constrained
pseudo tree

Exact MMAP Solvers: Best or Depth-First Search?

Depth-First search

Best-First search

Best-first search expands less full MAP configurations Less conditional sums

MMAP: Exact AND/OR solvers

Benchmarks:
Grids (128)
Pedigrees (88)
Promedas (100)

AOBF
RBFAOO - recursive
BRAOBB
Yuan, Park BBTDi, BBBTD
Time-bound 2 hours

Grid (Total 75 Instances)

- AND/OR search+ MB-heuristic are superior
- to OR search using "unordered heuristic" [Park and Darwiche 2003, Yuan and Hansen 2009] when the constrained induced-width is not bounded.
- Best-first schemes are better because less summations evaluation

Anytime Solvers for Marginal MAP

- Weighted Heuristic: [Lee et. al. AAAI-2016, JAIR 2019]
- Weighted Restarting AOBF (WAOBF)
- Weighted Restarting RBFAOO (WRBFAOO)
- Weighted Repairing AOBF (WRAOBF)
non-admissible heuristic Evaluation function:
$f(n)=g(n)+w \cdot h(n)$
Guaranteed w-optimal solution, cost $C \leq w \cdot C^{*}$
- Interleaving Best and depth-first search: (Marinescu et. al AAAI-2017)
- Look-ahead (LAOBF),
- alternating (AAOBF)

Exploiting heuristic search ideas

Goal: anytime bounds And anytime solution

Anytime Bounds of Marginal MAP

(UAI'14, IJCAI'15, AAAI'16, AAAI'17, JAIR 2019 (Marinescu, Lee, Ihler, Dechter)

- Search: LAOBF, AAOBF, BRAOBB, WAOBF,WAOBF-rep
- heuristic: WMB-MM (20)
- memory: 24 GB
- Anytime lower and upper bounds from hard problem instances with i-bound 12 (left) and 18 (right).
- The horizontal axis is the CPU time in log scale and the vertical axis is the value of marginal MAP in log scale.

But, limited to tractable condition-summation

Outline

- Graphical models, The Marginal Map task
- AND/OR search spaces
- Variational bounds as search heuristics
- Combining methods: Heuristic Search for Marginal Map
- Combining methods: Sampling
- Conclusion

Choose a Proposal Combine w Search

Building blocks in current algorithms for

 Markov Logic Networks- Probabilistic Theorem Proving: Gogate and Domingos, CACM 2016, - Lifted Importance Sampling: Venugopal and Gogate, NeurIPS 2014.

Artificiale, 2011)]

- Dynamic Importance Sampling (DIS) [Lou, Dechter, and Ihler (NIPS 2017)]
- Abstraction Sampling [Broka, Dechter, Ihler and Kask (UAI, 2018)].
- Finite-sample Bounds for MMAP [Lou, Dechter, and Ihler. (UAI 2018)]

WMB Importance Sampling (WMB-IS) [Liu, fister, Ihler (ICML 2015)]

Choosing a Proposal- WMB-IS

- Can use WMB upper bound to define a proposal $q_{\mathrm{wmb}}(x)$

Probabilistic Lower Bounds For MMAP

[Liu et al. 2015]
Compute a (probabilistic) lower bound on the conditioned sum subproblem

$$
\operatorname{Pr}(\hat{Z}-\Delta(n, \delta) \leq Z) \geq(1-\delta)
$$

WMB based importance sampling scheme:
n - number of samples
δ - confidence value
$Z_{w m b}$ - result of WMB
\hat{Z} - Importance Sampling estimate

$$
\Delta(n, \delta)=\sqrt{\frac{2 v \hat{a} r(w(x)) \log (2 / \delta)}{n}}+\frac{7 Z_{w m b} \log (2 / \delta)}{3(n-1)}
$$

Empirical variance, decreasing as $1 / \mathrm{n}^{1 / 2}$
Upper bound U, decreasing as $1 / \mathrm{n}$

Experiments

- Anytime Algorithms
- State-of-the-art
- LAOBF [Marinescu, Lee, Dechter, Ihler, 2017]
- AAOBF [Marinescu, Lee, Dechter, Ihler, 2017] Hybrid best+depth-first search
- LnDFS [Marinescu, Lee, Dechter, Ihler, 2017]
- UBFS [Qi, Ihler, 2018]
- Proposed schemes
- AnySBFS ($\mathrm{p}=0.5$)
- AnyLDFS
- Benchmarks
- Grid, pedigree, promedas, planning (UCIrvine graphical models repo)
- 10% of variables selected randomly as MAP variables
- Hard (intractable) conditioned summation subproblems
- Parameters: confidence 0.05

MMAP: Combining with Sampling

[Lou, Dechter, Ihler, AAAI-2018: "Anytime Anyspace AND/OR Best-first Search for Bounding Marginal MAP"]
[Lou, Dechter, Ihler, UAI-2018: "Finite Sample Bounds for Marginal MAP", UAI 2018]
[Marinescu, Ihler, Dechter: IJCAI-2018 "Stochastic Anytime Search for Bounding Marginal MAP"]

Average over 150 instances
(Lower is better)

Combining Approaches

Variational methods WMB

For MAP, marginal map and partition function

dynamic importance sampling (DIS)
[Lou et al., NIPS 2017]

Dynamic Importance Sampling

[Lou, Dechter, Ihler, NIPS 2017, AAAI 2019]

- Interleave
- Building search tree (expand Nd nodes)
(For partition function)
- Draw samples given search bound (NI samples)

- Key insight: proposal changes (improves) with each step
- Use weighted average: better samples get more weight
$\widehat{Z}=\frac{\operatorname{HM}(\boldsymbol{U})}{N} \sum_{i=1}^{N} \frac{\widehat{Z}_{i}}{U_{i}}, \quad \operatorname{HM}(\boldsymbol{U})=\left[\frac{1}{N} \sum_{i=1}^{N} \frac{1}{U_{i}}\right]^{-1}$
- Derive corresponding concentration bound on Z

Finite-sample Bounds for DIS

Theorem: Define the deviation term

$$
\Delta=\operatorname{HM}(\boldsymbol{U})\left(\sqrt{\frac{2 \widehat{\operatorname{Var}}\left(\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}\right) \ln (2 / \delta)}{N}}+\frac{7 \ln (2 / \delta)}{3(N-1)}\right)
$$

then, $\operatorname{Pr}[Z \leq \widehat{Z}+\Delta] \geq 1-\delta$ and $\operatorname{Pr}[Z \geq \widehat{Z}-\Delta] \geq 1-\delta$.
$\widehat{\operatorname{Var}}\left(\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}\right)$: empirical variance of $\left\{\widehat{Z}_{i} / U_{i}\right\}_{i=1}^{N}$.

Individual Results

(For partition function)
[Lou, Dechter, Ihler, NIPS 2017]

Outline

- Graphical models, The Marginal Map task
- AND/OR search spaces
- Variational bounds as search heuristics
- Combining methods: Heuristic Search for Marginal Map
- Combining methods: Sampling
- Conclusion

Continuing work and Conclusions

- Exploiting the graph-based tractability coupled with variational improvements can take us far into nontractabile lands when pursuing anytime probabilistic reasoning

Thank You!

For publication see:
http://www.ics.uci.edu/~dechter/publications.html

Alex Ihler Kalev Kask

Reasoning with Probabilistic and Deterministic
Graphical Models
Exact Algorithms

Synthests Lectures on Artificlal
Intelligence And Machine Learning Irina Rish
Bozhena Bidyuk
Robert Mateescu
Radu Marinescu
Vibhav Gogate Emma Rollon

Lars Otten
Natalia Flerova
Andrew Gelfand William Lam
Junkyu Lee Qi Lou

University of California

