Lecture 7

GLMs for Binary Data

Statistics 211 - Statistical Methods II

Presented February 7, 2016
GLMs for binary outcomes

Consider the case of a binary outcome variable Y which takes on the values 0 or 1

- Heart disease (yes/no)
- Voting result (Democrat/Republican)
- Faculty promotion (yes/no)

In this case, the random variable Y follows a Bernoulli distribution with mean μ and variance $\mu(1 - \mu)$

$$E[Y] = \Pr[Y = 1] = \mu$$
$$\text{Var}[Y] = \mu(1 - \mu)$$
GLMs for binary outcomes

- Goal: Model the probability of a success as a function of some explanatory variable X (only assume one covariate for now)

- Thus we will consider a model of the form:

$$g(\mu) = \beta_0 + \beta_1 X$$
GLMs for binary outcomes

Specification of components of the GLM

1. Systematic component (Done)
2. Random component (Done)
3. Link function (Need to decide)
‘Common’ link functions for binary data

Identity link function

- Linear (identity) link function
 - Identity link so that
 \[\mu = \beta_0 + \beta_1 X \]
 - Interpretation: \(\beta_1 \) is the difference in the response probability comparing two populations differing by 1-unit in \(X \)
 - Modeling the risk difference (RD)
 - Potential Problem: Model assumes the outcome is unbounded even though we are modeling a probability (potential sacrifice of model fit over interpretability)
Log link function

- Log link so that

\[\log(\mu) = \beta_0 + \beta_1 X \]

- Interpretation: \(e^{\beta_1} \) is the relative difference in the response probability comparing two populations differing by 1-unit in \(X \)

- Modeling the *risk ratio* (RR)

- Potential Problem: Model assumes the outcome is unbounded even though we are modeling a log-probability with support between \(-\infty\) and 0 (potential sacrifice of model fit over interpretability)
‘Common’ link functions for binary data

Logit link function

- Logit link so that

\[
\text{logit}(\mu) = \log \left(\frac{\mu}{1 - \mu} \right) = \beta_0 + \beta_1 X
\]

- This is the simple logistic regression model

- Interpretation: \(e^{\beta_1}\) is the relative difference in the odds of ‘success’ comparing two populations differing by 1-unit in \(X\)

 - Modeling the *odds ratio* (OR)

- Nice property: The log-odds has support between \(-\infty\) and \(\infty\)
Logit link function

- Probability response curve as a function of X for the logit model

 - Under the simple logistic model, $\mu = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$

 - Note: The function $f(x) = \frac{e^x}{1 + e^x}$ is called the expit

- $\beta_1 > 0$ implies that the probability of a ‘success’ increases with X

- $\beta_1 < 0$ implies that the probability of a ‘success’ decreases with X
‘Common’ link functions for binary data

Logit link function

Example: \(\text{logit}(\mu) = \log \left(\frac{\mu}{1 - \mu} \right) = 1 + 0.2X \)
‘Common’ link functions for binary data

Logit link function

- Example: \[\text{logit}(\mu) = \log \left(\frac{\mu}{1-\mu} \right) = 1 - 0.2X \]
‘Common’ link functions for binary data

Probit link function

- Recall that the cumulative distribution function (CDF) of a random variable X is given by

$$F(x) = \Pr[X \leq x]$$

- The S-shaped probability response curve ($\beta_1 > 0$) for the logistic model corresponds to the CDF for the logistic distribution

- This motivates the use of another class of link functions by taking $\mu(x) = F(x)$ for some CDF
‘Common’ link functions for binary data

Probit link function

- The most popular choice of F is that corresponding to the standard normal distribution

- Denote the CDF corresponding to the standard normal distribution as $\Phi(\cdot)$ so that

$$
\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{\frac{1}{2}x^2} dx
$$
‘Common’ link functions for binary data

Probit link function

- Then we can consider a model of the form

\[\mu = \Phi(\beta_0 + \beta_1 X) \]

or equivalently,

\[\Phi^{-1}(\mu) = \beta_0 + \beta_1 X \]

- The link function \(\Phi^{-1}(\cdot) \) is called the *probit* link
‘Common’ link functions for binary data

Comparison of fitted response probabilities

- Over mid-range values of the linear predictor \(z = \beta_0 + \beta_1 X \) (or \(\mu \)), the linear, probit, and logit models agree

- This is because

\[
\expit(z) \approx \Phi \left(\frac{\sqrt{2\pi} z}{4} \right) \approx \frac{1}{2} + \frac{z}{4}, \quad \text{for } -2 \leq z \leq 2
\]

- The main reason that logits are often preferred to probits is because coefficients from the logistic model are interpretable (odds ratios)

- If prediction of probabilities is the focus, then either model can be considered
Accounting for Overdispersion

> ##
> ##### Plot Pearson residuals vs. fitted values
> ##
> nhat <- fitted(fit)
> plot(nhat, presid^2, xlab="Fitted mean response",
> ylab="Squared Pearson residuals"
> abline(h=1, col="red", lwd=2)
> sfit <- loess(presid^2 ~ nhat)
> lines(sort(sfit$x), sfit$fitted[order(sfit$x)], col="blue", lwd=2)
> abline(h=phihat, lty=2, col="red", lwd=2)

• Again, it looks as though the smoother is consistently above the y=1 line, indicating overdispersion

GLMs for Binary Data

Link Functions

Example - Framingham Study

Logistic model
Probit model
Comparison of logit and probit models

Binomial Regression

‘Common’ link functions for binary data

Logit link function

▶ Compare the response curves for each of the (appropriately scaled) linear predictors:
Example - Modeling the probability of CHD in the Framingham Study

Background on the Framingham study

- 5209 subjects identified in 1948 in a small Massachusetts town
- Biennial exams for blood pressure, serum cholesterol, and relative weight
- 30 year followup data available from course website
- Major endpoints include the occurrence of coronary heart disease (CHD) and deaths from
 - CHD or MI
 - Cerebrovascular accident (CVA or stroke)
 - Cancer
 - Other causes

Scientific goal

- Quantify the prevalence of CHD at the followup exam among males age 30+
Example - Modeling the probability of CHD in the Framingham Study

> framingham <- read.table("http://www.ics.uci.edu/~dgillen/STAT211/Data/Framingham.txt",
header=TRUE)

> framingham[1:5,]
 sex sbp dbp scl chdfate followup age bmi month id
1 1 120 80 267 1 18 55 25.0 8 2642
2 1 130 78 192 1 35 53 28.4 12 4627
3 1 144 90 207 1 109 61 25.1 8 2568
4 1 92 66 231 1 147 48 26.2 11 4192
5 1 162 98 271 1 169 39 28.4 11 3977

> summary(framingham)

 sex sbp dbp scl
 Min. :1.000 Min. : 80.0 Min. :115.0
 1st Qu.:1.000 1st Qu.:116.0 1st Qu.:225.0
 Median :2.000 Median :130.0 Median :255.0
 Mean :1.564 Mean :132.8 Mean :228.3
 3rd Qu.:2.000 3rd Qu.:144.0 3rd Qu.:255.0
 Max. :2.000 Max. :270.0 Max. :568.0
 NA’s : 33.0

 chdfate followup age bmi
 Min. :0.0000 Min. : 18 Min. : 16.20
 1st Qu.:0.0000 1st Qu.: 5136 1st Qu.:22.80
 Median :0.0000 Median : 8908 Median :25.20
 Mean :0.3135 Mean : 8061 Mean :25.63
 3rd Qu.:1.0000 3rd Qu.:11648 3rd Qu.:25.63
 Max. :1.0000 Max. :11688 Max. :57.60
 NA’s : 9.00

 month id
 Min. : 1.000 Min. : 1
 1st Qu.: 3.000 1st Qu.:1176
 Median : 6.000 Median :2350
 Mean : 6.369 Mean :2350
 3rd Qu.:10.000 3rd Qu.:3524

> # Recode sex to something obvious (sex=1 -> female)
> #
> framingham$sex <- framingham$sex - 1
> names(framingham)[1] <- "female"
Fitting GLMs in R is done with the `glm` function

```r
> help( glm )
```

Description

glm() is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Usage

```r
glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart,
    offset, control = glm.control(...), model = TRUE,
    method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)
```

Arguments

- **formula**: a symbolic description of the model to be fit. The details of model specification are given below.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
- **data**: an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which glm is called.
- **weights**: an optional vector of weights to be used in the fitting process.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action**: a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The Ôfactory-freshÔ default is na.omit.

GLMs for Binary Data

Link Functions

- **Logistic model**
- **Probit model**
- **Comparison of logit and probit models**

Binomial Regression

7.18
Logistic model to estimate the association between SBP and the odds of CHD

```r
> ##
> #### Logistic model
> ##
> fit.logit <- glm( chdfate ~ sbp, data=framingham, family=binomial(link="logit") )
>
> fit.logit

Call: glm(formula = chdfate ~ sbp, family = binomial(link = "logit"), data = framingham)

Coefficients:
(Intercept)        sbp
     -3.00881    0.01659

Degrees of Freedom: 4698 Total (i.e. Null); 4697 Residual
Null Deviance:      5844
Residual Deviance:  5696   AIC: 5700
```
Logistic model to estimate the association between SBP and the odds of CHD

> summary(fit.logit)

Call:
glm(formula = chdfate ~ sbp, family = binomial(link = "logit"),
 data = framingham)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.8320 -0.8668 -0.7634 1.3676 1.8368

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.008809 0.189815 -15.85 <2e-16 ***
sbp 0.016593 0.001385 11.98 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5844.1 on 4698 degrees of freedom
Residual deviance: 5695.7 on 4697 degrees of freedom
AIC: 5699.7

Number of Fisher Scoring iterations: 4

Interpretation:
Logistic model to estimate the association between SBP and the odds of CHD

> ### Refit the model, scaling sbp per 10 mmHg
> ###
> fit.logit <- glm(chdfate ~ I(sbp/10), data=framingham,
> family=binomial(link="logit"))

> ###
> ### Use glmCI() function on course webpage to exponential coefficients and form CI’s
> ###
> glmCI(fit.logistic)

| | exp(Est) | ci95.lo | ci95.hi | z value | Pr(>|z|) |
|--------------------|---------|---------|---------|---------|---------|
| (Intercept) | 0.04935042 | 0.03401885 | 0.0715916 | -15.85123 | 1.378551e-56 |
| I(sbp/10) | 1.18049490 | 1.14887319 | 1.2129870 | 11.97785 | 4.642017e-33 |

Interpretation: The odds of CHD are estimated to be 18.1% higher when comparing two populations, one of which has systolic blood pressure 10 mmHg higher than the other (95% CI: 14.9%, 21.3%).
Probit model to estimate the association between SBP and the odds of CHD

```r
> ##
> ###### Probit model
> ##
> fit.probit <- glm( chdfate ~ I(sbp/10), data=framingham,
>                   family=binomial(link="probit") )
> 
> summary( fit.probit )

Call:  
glm(formula = chdfate ~ I(sbp/10), family = binomial(link = "probit"),
     data = framingham)

Deviance Residuals:  
    Min      1Q  Median      3Q     Max  
-1.8426  -0.8680  -0.7618   1.3660   1.8506

Coefficients:  
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.85295   0.11440  -16.20  <2e-16 ***
 I(sbp/10)    0.10209    0.00841  12.14  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 5844.1  on 4698  degrees of freedom
  Residual deviance: 5694.3  on 4697  degrees of freedom
AIC: 5698.3

Number of Fisher Scoring iterations: 4
```
Example - Modeling the probability of CHD in the Framingham Study

Comparison of logit and probit models

- Interpretation of the probit model:
 - Assumes each individual has a latent continuous measure of CHD that follows a standard normal distribution
 - Slope coefficient in the probit model is the expected difference in this latent measure (a standard normal quantile) comparing two populations differing by 10mmHg in SBP
 - Hmmm... Maybe the fitted probabilities differ between the two models.
Comparison of fitted probabilities from the two models

> ##
> ###### Probit model
> ##
> fit.probit <- glm(chdfate ~ I(sbp/10), data=framingham,
family=binomial(link="probit"))
>
> summary(fit.probit)
>
> plot(sort(framingham$sbp), sort(fitted(fit.logit)),
 type="l", col="red", ylab="Estimated probability of CHD",
 xlab="Systolic BP (mmHg)")
> lines(sort(framingham$sbp), sort(fitted(fit.probit)), lty=2)
> table(cut(framingham$sbp, quantile(framingham$sbp, seq(0,1,.2))))

(80,114] (114,124] (124,134] (134,148] (148,270]
 976 964 931 900 925

> sbpgrp <- cut(framingham$sbp, quantile(framingham$sbp, seq(0,1,.2)))
> empirical.p <- table(framingham$chdfate, sbpgrp)[2,] / table(sbpgrp)
> points(unlist(lapply(split(framingham$sbp, sbpgrp), mean)), empirical.p)
Accounting for Overdispersion

> Plot Pearson residuals vs. fitted values

```r
nhat <- fitted( fit )
plot( nhat, presid^2, xlab="Fitted mean response",
     ylab="Squared Pearson residuals" )
abline( h=1, col="red", lwd=2 )
sfit <- loess( presid^2 ~ nhat )
lines( sort(sfit$x), sfit$fitted[order(sfit$x)], col="blue", lwd=2 )
abline(h=phihat, lty=2, col="red", lwd=2)
```

Again, it looks as though the smoother is consistently above the y=1 line, indicating overdispersion.

Comparison of fitted probabilities from the two models

GLMs for Binary Data
Link Functions
Example - Framingham Study
Logistic model
Probit model
Comparison of logit and probit models
Binomial Regression
Comparison of coefficients from the two models

Comparison of coefficients

> The coefficients should roughly match up if we ‘standardize’ them

> ##
> ##### Compare coefficients
> ##
> logitbeta <- fit.logit$coef

> logitbeta

(Intercept) I(sbp/10)
-3.0088090 0.1659338

> probitbeta <- fit.probit$coef

> probitbeta

(Intercept) I(sbp/10)
-1.8529512 0.1020929

> probitbeta / (sqrt(2*pi)/4)

(Intercept) I(sbp/10)
-2.9568823 0.1629168

Note: The coefficients would not be so close if the probability of CHD were near 0 or 1
Binomial Data

- If data are inherently grouped (all categorical predictors) then it can be advantageous to store and analyze the data in a *collapsed* form
 - More efficient use of memory
 - Better for performing goodness-of-fit tests (later)
Lecture 7
Stat 211 - D. Gillen

Accounting for Overdispersion

> ##
> ##### Plot Pearson residuals vs. fitted values
> ##
> nhat <- fitted(fit)
> plot(nhat, presid^2, xlab="Fitted mean response",
> ylab="Squared Pearson residuals")
> abline(h=1, col="red", lwd=2)
> sfit <- loess(presid^2 ~ nhat)
> lines(sort(sfit$x), sfit$fitted[order(sfit$x)], col="blue", lwd=2)
> abline(h=phihat, lty=2, col="red", lwd=2)

10 20 30 40
0 1 2 3 4 5 6

Fitted mean response
Squared Pearson residuals

Again, it looks as though the smoother is consistently above the y=1 line, indicating overdispersion.

GLMs for Binary Data

Link Functions

Example - Framingham Study

Logistic model
Probit model
Comparison of logit and probit models

Binomial Regression

Binary vs. Binomial Regression

Example: Framingham Data

Suppose that we were only interested in categorical exposure covariates:

> ##
> ##### Comparison of Binary vs Binomial Regression
> ##
> sbpgrp <- cut(framingham$sbp, c(0,100,125,150,175,200,225,275))
> agegrp <- cut(framingham$age, c(0,40,50,70))
> bmigrp <- cut(framingham$bmi, c(0,20,25,30,60))
> framgrp <- as.data.frame(cbind(framingham$male, agegrp, bmigrp,
> sbpgrp, framingham$chdfate))
> names(framgrp) <- c("male", "agegrp", "bmigrp", "sbpgrp", "chdfate")

> framgrp[1:5,]
 male agegrp bmigrp sbpgrp chdfate
1 0 3 2 2 1
2 0 3 3 3 1
3 0 3 3 3 1
4 0 2 3 1 1
5 0 1 3 4 1
Binary vs. Binomial Regression

Fit binary regression using `glm()`

- The dataset now contains a total of 4690 observations (1 record per individual)

- One possibility is to keep the data in this fashion and analyze each individual separately representing a Bernoulli outcome (CHD: yes/no)

```r
> dim( framgrp )
[1] 4690 5

> fit.binary <- glm( chdfate ~ male + factor(agegrp) + factor(bmigrp) + factor(sbpgrp), data=framgrp, family=binomial )

> glmCI( fit.binary )

       exp( Est ) ci95.lo   ci95.hi    z value Pr>|z|
(Intercept) 0.1004836 0.05330377 0.1894227 -7.103503 1.216340e-12
male 0.4765312 0.41754381 0.5438518 -10.993856 4.090664e-28
factor(agegrp)2 1.3746793 1.16519485 1.6218258  3.772410 1.616780e-04
factor(agegrp)3 1.6830038 1.41697893 1.9989724  5.930254 3.024668e-09
factor(bmigrp)2 1.8568520 1.27238784 2.7097865  3.209070 1.331651e-03
factor(bmigrp)3 2.3725291 1.62290512 3.4684064  4.459181 8.227335e-06
factor(bmigrp)4 2.9383140 1.95860473 4.4080815  5.208335 1.905422e-07
factor(sbpgrp)2 1.8327248 1.06314550 3.1593797  2.180343 2.923201e-02
factor(sbpgrp)3 2.5992414 1.50735752 4.4820527  3.436095 5.901632e-04
factor(sbpgrp)4 3.1702936 1.80037476 5.5825942  5.582594 2.996706e-08
factor(sbpgrp)5 3.4503162 1.85585038 6.4146776  6.414677 3.914303e-05
factor(sbpgrp)6 7.3262683 3.32039231 16.1650199  4.932126 8.133952e-07
factor(sbpgrp)7 11.9961057 3.22609969 44.6069764  3.707958 2.089374e-04
```
Binary vs. Binomial Regression

Collapse the data for binomial regression

► Now, collapse the data, removing repeated patterns of covariate values
► Keep track of the frequency of each combination of chdfate, sbpgrp, agegrp, bmigrp, and female values

```r
> collapse <- function( data, outcome ){
+   index <- (1:length(names(data)))[ names(data)==outcome ]
+   y <- data[,index]
+   rslt <- aggregate( y, data, FUN=length)
+   rslt <- as.data.frame( cbind( rslt, aggregate(y, data, FUN=sum)[dim(rslt)[2]] ) )
+   names( rslt ) <- c( names(data), "n", paste("n.", outcome, sep="") )
+   rslt}
>
> framgrp <- collapse( framgrp, "chdfate" )
> dim( framgrp )
[1] 129  6
>
> framgrp[1:10,]
  male agegrp bmigrp sbpgrp n n.chdfate
1  0  1  1  1  1  1  0
2  1  1  1  1  15  1
3  0  2  1  1  4  0
4  1  2  1  1  6  0
5  0  3  1  1  1  0
6  1  3  1  1  3  0
7  0  1  2  1  8  1
8  1  1  2  1  37  1
9  0  2  2  1  7  1
10 1  2  2  1  16  1
```
Binary vs. Binomial Regression

Collapse the data for binomial regression

- Now we can use the (frequency) \textit{weights} options in \texttt{glm} to analyze the data

- The effect of using frequency weights is the same as \textit{expanding} the dataset, creating identical records whose multiplicity is specified by \texttt{weights}

- Expanding only takes place at analysis time, behind the scenes

\begin{verbatim}
> fit.binom <- glm(n.chdfate/n ~ male + factor(agegrp) +
> factor(bmigrp) + factor(sbpgrp), data=framgrp,
> weights=n, family=binomial)

> glmCI(fit.binom)

\end{verbatim}

\begin{verbatim}
exp(Est) ci95.lo ci95.hi z value Pr(>|z|)
(Intercept) 0.1004836 0.05330196 0.1894291 -7.103124 1.219676e-12
male1 0.4765312 0.41754372 0.5438519 -10.993840 4.091388e-28
factor(agegrp)2 1.3746793 1.16519446 1.6218264 3.772403 1.616830e-04
factor(agegrp)3 1.6830038 1.41697854 1.9989729 5.930244 3.024845e-09
factor(bmigrp)2 1.8568520 1.27237820 2.7098071 3.209006 1.331949e-03
factor(bmigrp)3 2.3725291 1.62289310 3.4684321 4.459094 8.230675e-06
factor(bmigrp)4 2.9383140 1.95859114 4.4081121 4.4081121 5.208246 1.906337e-07
factor(sbpgrp)2 1.8327249 1.06310984 3.1594858 2.180209 2.924196e-02
factor(sbpgrp)3 2.5992414 1.50730715 4.4822026 3.435885 5.906226e-04
factor(sbpgrp)4 3.1702937 1.8031685 5.5827739 3.996479 6.429152e-05
factor(sbpgrp)5 3.4503163 1.85579585 6.4148663 3.914117 9.073561e-05
factor(sbpgrp)6 7.3262684 3.32031596 16.1653920 4.931982 8.139924e-07
factor(sbpgrp)7 11.9961059 3.22605069 44.6076551 4.6076551 3.707915 2.089728e-04
\end{verbatim}