Statistics 255
Derivation of the distribution of the logrank statistic

Conditional distribution of \(d_{1k} \):

At the \(k \)-th failure time we observe the following \(2 \times 2 \) table:

<table>
<thead>
<tr>
<th>Failure</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 0</td>
<td>(d_{0k})</td>
<td>(y_{0k} - d_{0k})</td>
</tr>
<tr>
<td>Group 1</td>
<td>(d_{1k})</td>
<td>(y_{1k} - d_{1k})</td>
</tr>
<tr>
<td>Total</td>
<td>(d_k)</td>
<td>(y_k - d_k)</td>
</tr>
</tbody>
</table>

- Conditional on \(y_{1k} \) and \(y_{0k} \) we have that \(D_{1k} \sim Bin(y_{1k}, p_{1k}) \) and \(D_{0k} \sim Bin(y_{0k}, p_{0k}) \).
- Consider the conditional distribution of \(D_{1k} \) given the margin total \(D_k = D_{1k} + D_{0k} \).
- Thus,

\[
\Pr[D_{1k} = d_{1k}|D_k = d_k] = \frac{\Pr[D_{1k} = d_{1k}, D_{0k} = d_k - d_{1k}]}{\Pr[D_k = d_k]}
\]

\[
\Pr[D_{1k} = d_{1k}, D_{0k} = d_k - d_{1k}] = \binom{y_{1k}}{d_{1k}} p_{1k}^{d_{1k}} (1 - p_{1k})^{y_{1k} - d_{1k}} \binom{y_{0k}}{d_{0k} - d_{1k}} p_{0k}^{d_{0k} - d_{1k}} (1 - p_{0k})^{y_{0k} - (d_k - d_{1k})}
\]

\[
= \binom{y_{1k}}{d_{1k}} \binom{y_{0k}}{d_{0k} - d_{1k}} (1 - p_{1k})^{y_{1k} - d_{1k}} (1 - p_{0k})^{y_{0k} - (d_k - d_{1k})} \exp \left\{ d_{1k} \log \frac{p_{1k}}{1 - p_{1k}} + d_{0k} \log \frac{p_{0k}}{1 - p_{0k}} - d_{1k} \log \frac{p_{0k}}{1 - p_{0k}} \right\}
\]

\[
= \binom{y_{1k}}{d_{1k}} \binom{y_{0k}}{d_{0k} - d_{1k}} (1 - p_{1k})^{y_{1k}} (1 - p_{0k})^{y_{0k}} \exp \left\{ d_{1k} \log \frac{p_{1k}/(1 - p_{1k})}{p_{0k}/(1 - p_{0k})} + d_{0k} \log \frac{p_{0k}}{1 - p_{0k}} \equiv \psi_k \right\}
\]

\[
= \binom{y_{1k}}{d_{1k}} \binom{y_{0k}}{d_{0k} - d_{1k}} (1 - p_{1k})^{y_{1k}} (1 - p_{0k})^{y_{0k}} \exp \{ d_{1k} \log \psi_k + d_{0k} \log \frac{p_{0k}}{1 - p_{0k}} \}
\]
\[
\Pr[D_{1k}|D_k = D_{1k} + D_{0k}] = \frac{\Pr[D_{1k} = d_{1k}, D_{0k} = d_k - d_{1k}]}{\Pr[D_k = d_k]}
\]

\[
\propto \left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right)\psi_k^{d_{1k}}
\]

\[
\propto \left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right)\psi_k^{d_{1k}}
\]

Now, consider testing \(H_0: p_{1k} = p_{0k}\) vs. \(H_0: p_{1k} \neq p_{0k}\). Then under \(H_0\),

\[
\psi_k = \frac{p_{1k}/(1-p_{1k})}{p_{0k}/(1-p_{0k})} = 1
\]

So that

\[
\Pr[D_{1k}|D_k = D_{1k} + D_{0k}] = c \left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right)
\]

Need to find \(c\) such that

\[
\sum_{d_{1k}=1}^{d_k} c \left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right) = 1
\]

Notice that \(\left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right)\) is the kernel of a hypergeometric distribution with parameters \(y_{1k}, y_{0k}, d_k\). Therefore we have that

\[
c = \frac{1}{\left(\frac{y_{1k} + y_{0k}}{d_k}\right)}
\]

and

\[
\Pr[D_{1k}|D_k = D_{1k} + D_{0k}] = \frac{\left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k - d_{1k}}\right)}{\left(\frac{y_{1k} + y_{0k}}{d_k}\right)}
\]

\[
= \frac{\left(\frac{y_{1k}}{d_{1k}}\right)\left(\frac{y_{0k}}{d_k}\right)}{\left(\frac{y_{1k}}{d_k}\right)}
\]

Therefore \(D_{1k} \sim \text{Hypergeometric}(y_k, y_{1k}, d_k)\).

Mean and variance of the LR statistic:
Claim 1: \(E[U_k] = E[O_k - E_k] = E \left[D_{1k} - \frac{y_{1k}d_k}{y_k} \right] = 0 \)

Proof: Let \(\mathcal{F}(x) \) denote the filtration at time \(x \) so that
\[
\mathcal{F}(x) = \{ D_{0k}, D_{1k}, Y_{0k}, Y_{1k}, w_{0k}, w_{1k}, D_k, \text{for all } k < x \}.
\]

That is, knowing the filtration \(\mathcal{F}(x) \), we know all the failure and censoring that has occurred prior to time \(x \), and the number of individuals at risk at time \(x \) and the total number of deaths. What we don’t know is what group the deaths at time \(x \) occurred in. Then
\[
E[U_k] = E \left\{ E \left[D_{1k} - \frac{y_{1k}d_k}{y_k} \left| \mathcal{F}(k) \right. \right] \right\} = E \left\{ E[D_{1k}\mid \mathcal{F}(k)] - \frac{y_{1k}d_k}{y_k} \right\} = E \left\{ \frac{y_{1k}d_k}{y_k} - \frac{y_{1k}d_k}{y_k} \right\} = E \{ 0 \}.
\]

Thus, by linearity of expectation we have that \(E[T_{L,R}] = 0 \).

Claim 2: Define \(U = \sum_k U_k \), where \(U_k = O_k - E_k = D_{1k} - \frac{y_{1k}d_k}{y_k} \). Then an unbiased estimate of \(\text{Var}[U] \) is given by
\[
\sum_k V_k = \sum_k \frac{y_{1k}y_k(y_k - d_k)d_k}{y_k^2(y_k - 1)}.
\]

Proof: First, the variance of \(U \) is
\[
\text{Var}[U] = \text{Var} \left[\sum_k U_k \right] = \sum_k \text{Var}[U_k] + \sum_{j \neq k} \text{Cov}[U_k, U_j].
\]

Consider an arbitrary \(k \) and \(j \), where WLOG \(j < k \). Then from Claim 1, we know that \(E[U_k] = E[U_j] = 0 \). Therefore,
\[
\text{Cov}[U_k, U_j] = E[U_kU_j] = E \{ E[U_kU_j\mid \mathcal{F}(k)] \} = E \{ U_jE[U_k\mid \mathcal{F}(k)] \} = E \{ 0 \} = 0.
\]
Thus,

\[
\text{Var}[U] = \sum_k \text{Var}[U_k] = \sum_k \text{E}[U_k^2]
\]

\[
= \sum_k \text{E} \left\{ \text{E}[U_k^2 | F(k)] \right\}
\]

\[
= \sum_k \text{E} \left\{ \text{E} \left[\left(D_{1k} - \frac{y_{1k}d_k}{y_k} \right)^2 \bigg| F(k) \right] \right\}
\]

\[
= \sum_k \text{E} \left\{ \text{E} \left[(D_{1k} - \text{E}[D_{1k}|F(k)])^2 \bigg| F(k) \right] \right\}
\]

\[
= \sum_k \text{E} \left\{ \text{Var}[D_{1k}] \right\}
\]

\[
= \sum_k \text{E} \left\{ \frac{y_{1k}y_{0k}(y_k - d_k)d_k}{y_k^2(y_k - 1)} \right\},
\]

so that an unbiased estimate of \text{Var}[U] is given by

\[
\sum_k V_k = \sum_k \frac{y_{1k}y_{0k}(y_k - d_k)d_k}{y_k^2(y_k - 1)}.
\]