Lecture - Discussion

A Flexible Bayesian Survival Model
Statistics 255 - Survival Analysis

Presented March 1, 2016

Dan Gillen
Department of Statistics
University of California, Irvine
Motivating example

Lymphoma and renal transplantation

End stage renal disease (ESRD)

- **Post-transplant lymphoma**
 - immune system is suppressed to avoid rejection of new organ
 - Epstein-Barr virus \rightarrow B cell proliferation \rightarrow lymphoma
Motivating example

Lymphoma and renal transplantation

 - variety of known risk factors
 - little known about timing of onset
 - goal is to provide information to help guide post-transplant monitoring schedules

- United States Renal Data System (USRDS)
 - demographic and clinical information
 - survived > 90 days from start of therapy
 - 89,260 patients placed on transplant waiting list: 01/01/1990 - 12/31/1999

- Kidney recipients censored at 3 years post-transplant
 - ≤ 65 years with successful transplant no longer eligible for Medicare
 - not uniformly included in USRDS database from that date forward
Motivating example

Lymphoma and renal transplantation

- Cox regression analysis
 - transplant ‘exposure’ defined on six 6-month time-intervals

- Adjustment for age
 - four groups; < 25 yrs, 25-44 yrs, 45-59 yrs and ≥ 60 yrs
 - interaction between exposure and age group

- Other confounders
 - gender, race, time on dialysis prior to placement on waiting list
 - common adjustment across age groups
Motivating example

Lymphoma and renal transplantation

- Select published results:

<table>
<thead>
<tr>
<th></th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age < 25 yrs</td>
</tr>
<tr>
<td>Wait List</td>
<td>1.00</td>
</tr>
<tr>
<td>Transplant < 6 mnths</td>
<td>13.82 (3.96, 48.15)</td>
</tr>
<tr>
<td>Transplant 6 to 12 mnths</td>
<td>9.25 (2.49, 34.32)</td>
</tr>
<tr>
<td>Transplant 12 to 18 mnths</td>
<td>7.49 (1.92, 29.18)</td>
</tr>
<tr>
<td>Transplant 18 to 24 mnths</td>
<td>3.29 (0.66, 16.47)</td>
</tr>
<tr>
<td>Transplant 24 to 30 mnths</td>
<td>3.87 (0.86, 17.51)</td>
</tr>
<tr>
<td>Transplant 30 to 36 mnths</td>
<td>3.46 (0.69, 17.44)</td>
</tr>
</tbody>
</table>

Motivating example

Lymphoma and renal transplantation

- Potential issues:
 - discretization of transplant effect
 - arbitrary choice of interval cut-points/lengths
 - accounting for all sources of uncertainty
Bayesian hierarchical model

Issues

► Challenge:
 ► flexible characterization of the model
 ► cannot be completely arbitrary but we do have a large sample size

► Hierarchy can provide structure within which complex models can be accommodated.
 ► requires **complete** specification

► Quantification of uncertainty via the posterior
 ► relatively straightforward; computational tools such as MCMC
 ► useful in high-dimensional problems
Bayesian hierarchical model

Three-stage Bayesian specification

- Stage 1: Likelihood for observed data
- Stage 2: Structural assumptions for likelihood parameters
 - framework which permits ‘flexibility’
- Stage 3: Prior assumptions
Bayesian hierarchical model

<table>
<thead>
<tr>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i and C_i, true survival and censoring times for subject i, $i = 1, \ldots, n$</td>
</tr>
<tr>
<td>$X_i = \min(T_i, C_i)$ observed survival time</td>
</tr>
<tr>
<td>δ_i failure indicator</td>
</tr>
<tr>
<td>Z_i vector of time-invariant adjustment covariates</td>
</tr>
<tr>
<td>measured at time of entry</td>
</tr>
<tr>
<td>$R_i(\cdot)$ time-dependent indicator of transplant status</td>
</tr>
<tr>
<td>T_i^* time of transplantation</td>
</tr>
<tr>
<td>set to ∞ if no transplant during follow-up</td>
</tr>
</tbody>
</table>
Bayesian hierarchical model

Multiplicative hazard model

\[h(t; \mathbf{z}, r(t), t^*) = h_0(t) \exp\{\mathbf{z}^T \gamma + r(t) \beta(t - t^*)\} \]

- \(h_0(\cdot) \) baseline hazard function
- \(\gamma \) vector of log-hazard ratio parameters
 - assumed to satisfy proportional hazards
- \(\beta(\cdot) \) time-varying effect of transplant (possibly!)
- A key challenge is that there are two functions which we would expect to be smooth
 - avoid strong assumptions about their functional form
 - each is defined on their own time scale
Bayesian hierarchical model

Two time scales

- **Study time;** t
 - baseline hazard, $h_0(\cdot)$
 - origin is the time of placement on waiting list

- **Transplant time;** $t - t^*$
 - transplant effect, $\beta(\cdot)$
 - origin is time of transplantation
 - censored at 3 years
Bayesian hierarchical model

Likelihood

- Assuming independent censoring

\[
L^S(h_0(\cdot), \gamma, \beta(\cdot)) = \prod_{i=1}^{n} h(x_i; z_i, r_i(x_i), t_i^\ast) \delta_i \exp \left\{ - \int_0^{x_i} h(s; z_i, r_i(s), t_i^\ast) \, ds \right\}
\]

- Characterization of continuous functions

 - The approach taken here is to consider mixtures of piecewise constant functions
 - For a given knot sequence, consider a piecewise constant specification
 - Allow the number of knots and their positions to be unknown parameters
 - Ultimately, we can average over the uncertainty in the knots to obtain a smooth specification
Bayesian hierarchical model

Details for transplant time

- Let τ_{max}^B = maximum observed time post-transplant
 - 3 years for the PTLD data

- Consider a partition of $(0, \tau_{\text{max}}^B]$ into K^B intervals

 $$(\tau_1^B, \tau_2^B] \cup (\tau_2^B, \tau_3^B] \cup \ldots \cup (\tau_{K^B}^B, \tau_{K^B+1}^B],$$

 where $\tau_1^B = 0$ and $\tau_{K^B+1}^B = \tau_{\text{max}}^B$

- Let $\tau^B = \{\tau_1^B, \ldots, \tau_{K^B}^B, \tau_{K^B+1}^B\}$. Then given (K^B, τ^B) assume

 $$\beta(t - t^*) = \sum_{b=1}^{K^B} 1_{[\tau_b^B < t - t^* \leq \tau_{b+1}^B]} \beta_b,$$

 where β_b is the height of the transplant effect on $(\tau_b^B, \tau_{b+1}^B]$
Details for transplant time

- Could work with individual β_b heights:
 - $\beta(\cdot)$ likely a smooth function of time
 - reasonable to incorporate correlation between components of

\[
\beta = (\beta_1, \ldots, \beta_K)
\]

- permit borrowing of information
Bayesian hierarchical model

Details for transplant time

- First order autoregressive process; $\beta_b | \beta_{b-1}$
 - Gamerman (1991); Arjas & Gasbarra (1994)

- One-dimensional spatial problem

$$\beta | K^B, \tau^B \sim \text{MVN}_{K^B}(\mu_\beta, \sigma_\beta^2 \Sigma_\beta)$$

- Gaussian conditional autoregression

$$\beta_b | \beta_{-b} \sim \text{Normal}(\nu_{\beta b}, \sigma_{\beta b}^2)$$

- Conditional mean

$$\nu_{\beta b} = \mu_\beta \beta_b + \sum_{k \neq b} W_{bk}(\beta_k - \mu_\beta k)$$
Bayesian hierarchical model

Details for transplant time

- Interval-specific influence function of width:

\[\Delta_b^B = \tau_{b+1}^B - \tau_b^B \]

- \(\Delta_0^B = \Delta_{K^B+1}^B = 0 \)

\[W_{b(b-1)} = \frac{(\Delta_{b-1}^B + \Delta_b^B)c_\beta}{\Delta_{b-1}^B + 2\Delta_b^B + \Delta_{b+1}^B} \]

\[W_{b(b+1)} = \frac{(\Delta_b^B + \Delta_{b+1}^B)c_\beta}{\Delta_{b-1}^B + 2\Delta_b^B + \Delta_{b+1}^B} \]

- \(c_\beta \in [0, 1] \) dictates the extent of dependence (and hence smoothing)
Bayesian hierarchical model

Details for transplant time

▶ Conditional variance:

$$\sigma_{\beta b}^2 = \sigma_\beta^2 Q_b$$

where

$$Q_b = \frac{2}{\Delta^B_{b-1} + 2\Delta^B_b + \Delta^B_{b+1}}$$

▶ Correlation matrix: $$\Sigma_\beta = (I - W)^{-1}Q$$

▶ symmetry and positive-definiteness (Besag & Kooperberg, 1995)

$$W_{bk} Q_k = W_{kb} Q_b, \quad \sum_{k=1}^{K^B} W_{bk} \leq 1.$$

▶ at least one strict inequality for the latter
▶ conditions satisfied for all $$c_\beta \in [0, 1]$$
Bayesian hierarchical model

Representation of baseline hazard function

- Analogous specification for $\lambda(\cdot) = \log h_0(\cdot)$

- For fixed K^L and τ^L, we assume the log-baseline hazard function, $\lambda(\cdot) = \log h_0(\cdot)$, to be piecewise constant as follows:

 $$\lambda(t) = \sum_{k=1}^{K^L} 1_{[\tau_k^L < t \leq \tau_{k+1}^L]} \lambda_k,$$

 where $h_{0k} = \exp\{\lambda_k\}$ is the height of the baseline hazard function on the k^{th} study time interval $(\tau_k^L, \tau_{k+1}^L]$

- Similar first-order autoregressive structure for prior distribution on τ^L
Bayesian hierarchical model

Likelihood representation

- Discretization leads to a (computationally) convenient form

\[
\exp \left\{ \sum_{k=1}^{K^L} \left[\lambda_k D_k + \gamma Z_k + W_k(\tau^B, \beta) - \exp\{\lambda_k\} S_k(\tau^L, \gamma, \tau^B, \beta) \right] \right\}
\]

- contributions during \(k^{th}\) interval

- \(D_k\) is the number of events

- \(Z_k = (Z_{1k}, \ldots, Z_{Pk})\) are covariate totals, among subjects that have an event

- \(W_k\) total contributions of subject-specific \(\beta(\cdot)\) functions, among subjects that have an event

- Survival contributions among all subjects

\[
S_k(\tau^L, \gamma, \tau^B, \beta) = \sum_{i: x_i > \tau_k^L} \min(x_i, \tau_{k+1}^L) \int_{\tau_k^L}^{\tau_{k+1}^L} \exp\{z_i \gamma + r_i(s) \beta(s - t_i^*)\} \, ds
\]
Bayesian hierarchical model

Prior distributional assumptions

- Proportional hazards parameters, γ
 - improper flat priors

- Partition, τ
 - time-homogeneous Poisson process with rate α
 - Poisson process determines number of split times, N
 - given K intervals, locations are uniformly distributed on $(0, \tau_{\text{max}}]$

- Second stage overall trend, μ
 - improper flat prior
Prior distributional assumptions

- Second stage overall variability, σ^2

 - Gamma(a, b) for precision

 - baseline choice: Gamma(0.5, 0.01)

 - induced prior for σ has 95% of central mass between 0.06 and 4.54

- exploit conjugacy in the posterior
Bayesian hierarchical model

Posterior distribution

- For fixed \(K^L \) and \(K^B \), let
 \[
 \theta(K^L, K^B) = (\tau^L, \lambda, \mu_\lambda, \sigma_\lambda^2, \gamma, \tau^B, \beta, \mu_\beta, \sigma_\beta^2)
 \]

 - \((4 + P + 2(K^L + K^B))\)-dimensional parameter

- Posterior distribution:
 \[
 \pi(K^L, K^B, \theta(K^L, K^B)) = L^S(\theta; \text{data}) \times \text{MVN}_{K^L} (\lambda | \mu_\lambda, \sigma_\lambda^2 \Sigma_\lambda) \times \text{MVN}_{K^B} (\beta | \mu_\beta, \sigma_\beta^2 \Sigma_\beta) \times \text{Poisson}(N_\lambda | \alpha_\lambda) \times \text{Poisson}(N_\beta | \alpha_\beta) \times \text{Gamma}(\sigma_\lambda^{-1} | a_\lambda, b_\lambda) \times \text{Gamma}(\sigma_\beta^{-1} | a_\beta, b_\beta)
 \]

where \(N_\lambda = K^L - 1 \) and \(N_\beta = K^B - 1 \)
Bayesian hierarchical model

Reversible jump MCMC scheme

- Use Markov Chain Monte Carlo to extract features of the posterior distribution

- MCMC scheme proceeds by updating subsets of the parameter vector, conditional on the remaining components

- Full parameter space: $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \Theta(K^L, K^B)$
 - \mathbb{Z}^+ is the set of positive integers

- Updating components of $\theta(K^L, K^B)$
 - relatively straightforward
 - exploit conjugacies for μ and σ^2 parameters
 - Metropolis-Hastings step for remaining components
Bayesian hierarchical model

Reversible jump MCMC scheme

- Updating K^L or K^B
 - requires change in dimension of parameter space
 - Metropolis-Hastings-Green step

- See Hanuese, Rudser, and Gillen (2008) for details
Application to transplant data

Updated USRDS data

- Additional follow-up/subjects, through 12/31/2010.

- Modifications to previous model:
 - < 25 year olds only
 - whites only
 - additional (linear) adjustment for age

- Interpretation of baseline hazard function $h_0(\cdot)$:
 - white, male, 20-year old with 6 months of prior dialysis
Application to transplant data

Posterior sampling

- Posterior samples:
 - two simultaneous chains; 2 million scans each
 - 25% burnin
Dimension parameters; K_L and K_B

Posterior Median 5; 95% CI (2, 8)

Posterior Median 4; 95% CI (2, 8)
Second-stage parameters; μ_λ, $\log(\sigma_\lambda)$, μ_β, $\log(\sigma_\lambda)$

- Posterior Median -7.49; 95% CI $(-9.21, -6)$
- Posterior Median -1.81; 95% CI $(-4.04, 0.35)$
- Posterior Median 1.95; 95% CI $(0.24, 3.89)$
- Posterior Median -1.3; 95% CI $(-3.97, 0.33)$
Introduction
PTLD following renal transplantation
Limitations of previous work

A Flexible Bayesian Survival model
Bayesian hierarchical model

Application to transplant data

Discussion
Log-hazard ratio associated with transplant
Comparison with maximum partial likelihood (Cox model)

Transplant time, years

Transplant hazard ratio, exp{β(t)}

0 5 10 15 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Lecture - Discussion
Stat 255 - D. Gillen

Introduction
PTLD following renal transplantation
Limitations of previous work
A Flexible Bayesian Survival model
Bayesian hierarchical model
Application to transplant data
Discussion
Application to transplant data

Point estimates

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Maximum PL</th>
<th>Bayesian Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.94 (0.91, 0.97)</td>
<td>0.94 (0.91, 0.98)</td>
</tr>
<tr>
<td>Female</td>
<td>1.19 (0.71, 1.99)</td>
<td>1.17 (0.66, 2.02)</td>
</tr>
<tr>
<td>Duration</td>
<td>1.27 (1.02, 1.59)</td>
<td>1.27 (0.99, 1.56)</td>
</tr>
<tr>
<td>Transplant Wait List</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>< 6 mths</td>
<td>7.71 (3.50, 16.98)</td>
<td>4.74 (1.54, 14.38)</td>
</tr>
<tr>
<td>6 to 12 mths</td>
<td>4.65 (1.89, 11.44)</td>
<td>4.45 (1.57, 13.11)</td>
</tr>
<tr>
<td>12 to 18 mths</td>
<td>1.96 (0.65, 5.89)</td>
<td>2.72 (0.98, 8.03)</td>
</tr>
<tr>
<td>18 to 24 mths</td>
<td>2.54 (0.89, 7.23)</td>
<td>2.49 (0.89, 7.23)</td>
</tr>
<tr>
<td>24 to 30 mths</td>
<td>1.93 (0.57, 6.50)</td>
<td>2.43 (0.85, 7.31)</td>
</tr>
<tr>
<td>30 to 36 mths</td>
<td>2.72 (0.81, 9.19)</td>
<td>2.46 (0.74, 8.26)</td>
</tr>
</tbody>
</table>
Log-hazard ratio associated with transplant by age strata

(a) Less than 25 years
(b) 25 to 44 years
(c) 45 to 59 years
(d) 60 years and older
Application to transplant data

Selected sensitivity analysis results (age < 25)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Full</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^L</td>
<td>6 (3, 10)</td>
<td>6</td>
</tr>
<tr>
<td>K^B</td>
<td>5 (2, 9)</td>
<td>6</td>
</tr>
</tbody>
</table>

Second-stage

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_λ</td>
<td>-6.80 (-9.40, -3.84)</td>
<td>-6.99 (-7.86, -6.21)</td>
</tr>
<tr>
<td>σ_λ</td>
<td>0.85 (0.11, 3.54)</td>
<td>0.16 (0.06, 0.70)</td>
</tr>
<tr>
<td>μ_β</td>
<td>1.15 (-0.76, 2.89)</td>
<td>1.46 (0.19, 2.79)</td>
</tr>
<tr>
<td>σ_β</td>
<td>0.38 (0.09, 1.52)</td>
<td>0.30 (0.10, 0.77)</td>
</tr>
</tbody>
</table>

Transplant

<table>
<thead>
<tr>
<th>Time</th>
<th>Full</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait List</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>< 6 mths</td>
<td>4.74 (1.54, 14.38)</td>
<td>6.52 (3.03, 15.20)</td>
</tr>
<tr>
<td>6 to 12 mths</td>
<td>4.45 (1.57, 13.11)</td>
<td>4.42 (2.11, 9.96)</td>
</tr>
<tr>
<td>12 to 18 mths</td>
<td>2.72 (0.98, 8.03)</td>
<td>2.90 (1.21, 6.87)</td>
</tr>
<tr>
<td>18 to 24 mths</td>
<td>2.49 (0.89, 7.23)</td>
<td>2.87 (1.23, 6.89)</td>
</tr>
<tr>
<td>24 to 30 mths</td>
<td>2.43 (0.85, 7.31)</td>
<td>2.54 (1.01, 6.23)</td>
</tr>
<tr>
<td>30 to 36 mths</td>
<td>2.46 (0.74, 8.26)</td>
<td>2.87 (1.14, 7.06)</td>
</tr>
</tbody>
</table>
Application to transplant data

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Full</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^L</td>
<td>6 (3, 10)</td>
<td>6 (3, 10)</td>
</tr>
<tr>
<td>K^B</td>
<td>5 (2, 9)</td>
<td>5 (2, 9)</td>
</tr>
<tr>
<td>Second-stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_λ</td>
<td>-6.80 (-9.40, -3.84)</td>
<td>-6.80</td>
</tr>
<tr>
<td>σ_λ</td>
<td>0.85 (0.11, 3.54)</td>
<td>0.85</td>
</tr>
<tr>
<td>μ_β</td>
<td>1.15 (-0.76, 2.89)</td>
<td>1.15</td>
</tr>
<tr>
<td>σ_β</td>
<td>0.38 (0.09, 1.52)</td>
<td>0.38</td>
</tr>
<tr>
<td>Transplant Wait List</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>< 6 mths</td>
<td>4.74 (1.54, 14.38)</td>
<td>4.87 (1.68, 12.04)</td>
</tr>
<tr>
<td>6 to 12 mths</td>
<td>4.45 (1.57, 13.11)</td>
<td>4.51 (1.57, 11.60)</td>
</tr>
<tr>
<td>12 to 18 mths</td>
<td>2.72 (0.98, 8.03)</td>
<td>2.57 (0.99, 6.71)</td>
</tr>
<tr>
<td>18 to 24 mths</td>
<td>2.49 (0.89, 7.23)</td>
<td>2.33 (0.93, 5.63)</td>
</tr>
<tr>
<td>24 to 30 mths</td>
<td>2.43 (0.85, 7.31)</td>
<td>2.26 (0.88, 5.38)</td>
</tr>
<tr>
<td>30 to 36 mths</td>
<td>2.46 (0.74, 8.26)</td>
<td>2.32 (0.81, 6.11)</td>
</tr>
</tbody>
</table>
Application to transplant data

Selected sensitivity analysis results (age < 25)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Gamma(0.5, 0.01)</th>
<th>Gamma(0.01, 0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^L</td>
<td>5 (2, 8)</td>
<td>5 (3, 10)</td>
</tr>
<tr>
<td>K^B</td>
<td>4 (2, 8)</td>
<td>4 (2, 8)</td>
</tr>
</tbody>
</table>

Second-stage

<table>
<thead>
<tr>
<th></th>
<th>μ_λ</th>
<th>σ_λ</th>
<th>μ_β</th>
<th>σ_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_λ</td>
<td>-6.80 (-9.40, -3.84)</td>
<td>0.85 (0.11, 3.54)</td>
<td>1.15 (-0.76, 2.89)</td>
<td>0.38 (0.09, 1.52)</td>
</tr>
<tr>
<td>σ_λ</td>
<td>1.12 (0.18, 5.55)</td>
<td>1.14 (-1.82, 4.07)</td>
<td>0.53 (0.13, 4.47)</td>
<td></td>
</tr>
</tbody>
</table>

Transplant

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6 mths</td>
<td>4.74 (1.54, 14.38)</td>
<td>5.03 (1.61, 13.93)</td>
</tr>
<tr>
<td>6 to 12 mths</td>
<td>4.45 (1.57, 13.11)</td>
<td>4.66 (1.60, 12.90)</td>
</tr>
<tr>
<td>12 to 18 mths</td>
<td>2.72 (0.98, 8.03)</td>
<td>2.63 (0.96, 7.18)</td>
</tr>
<tr>
<td>18 to 24 mths</td>
<td>2.49 (0.89, 7.23)</td>
<td>2.41 (0.89, 6.34)</td>
</tr>
<tr>
<td>24 to 30 mths</td>
<td>2.43 (0.85, 7.31)</td>
<td>2.35 (0.83, 6.37)</td>
</tr>
<tr>
<td>30 to 36 mths</td>
<td>2.46 (0.74, 8.26)</td>
<td>2.38 (0.66, 7.31)</td>
</tr>
</tbody>
</table>
Discussion

Final comments

- Random split-times provides a useful tool for flexibly modeling both the baseline hazard function and covariate effects
 - Easily extendable to allow for time-dependent covariates

- Can be a bit computationally intensive
 - M-H-G to account for changing dimension of the parameter space
 - Approx 6 hrs for full analysis (with 2 million scans) on a large dataset ($N = 85,056$)
 - Overall 40% acceptance rate

- Current work is an extension to joint longitudinal-survival modeling