Outline

Topic

- 🗆 Scans
 - 🛛 Hieght's page 32 (2.8)
 - Multipath interference 280 (6.8)
 - 🗆 Availability
 - 🗆 figure 337 (7.10)
 - 🛛 339 (7.13)
 - 🛛 340 (7.14)
 - 🛛 341 (7.15)
 - 🛛 383 (8.2)
 - 🛛 494 (9.21)
 - 🛛 495 (9.22)
 - 🗆 525 (9.35)
- Up to speed
 - 🗆 latitude and longitude
 - 🗆 Geoid
 - Oblate Spheroid
 - 🗆 draw shape
 - 🗆 Datum
 - 🗆 WGS 84
 - 🗆 6378km
 - Different datums will give rise to different lat/long, heights
 - Four heights
 - 🗆 Ellipsoid
 - 🗆 Geoid (sea-level)
 - feature of the earth
 - In the U.S. the Geoid is below the Ellipsoid
 - 🗆 Topography
 - User (height to ellipsoid)
 - 🗆 GPS is beacon-based
 - intersecting spheres
 - 🗆 TOA concept
 - GPS gives time, position, velocity
 - velocity may be integrated or based on doppler shift
 - 🗆 timing error adjustment
 - 🗆 System Time
 - 🗆 Satellite Time
 - 🗆 Receiver Time
 - 3-D fix requires 4 satellites or assumptions
 - Satellite provides two types of data
 - 🗆 Ephemeris data

- Topic 🗆
 - Ephemeris data
 - Where is the satellite, what is it's path
 - 🗆 ranging data
 - Question:
 - What is a single-frequency SPS GPS User?
 - Augmentations
 - Ground-based and Space-based
 - Differential Systems or Sensor-based Systems
 - Differential Systems
 - Concept: Reference station
 - Additional Information
 - Corrections to range measurements
 - Corrections to satellite clock or position data
 - Raw reference stations measurements
 - 🗆 Integrity data (use, don't use)
 - auxiliary data about the reference station
 - How does that additional information arrive
 - 🗆 broadcast radio
 - dedicate wire
 - 🗆 Internet
 - Satellite feed
 - Maybe not real-time
 - Absolute or Relative
 - 🗆 Absolute
 - Flight Path of an airplane at airport
 - 🗆 Ship entering a harbor
 - Relative
 - Plane landing on a carrier
 - Code-based vs carrier based
 - 🗆 local, regional, or wide-area
 - Draw Local DGPS concept
 - Sources of error
 - correlated in time and space?
 - satellite clock error
 - same for all satelite observers
 - ephemeris errors
 - 🗆 Show scan
 - ephemeris error of 5m, user-reference separation of 100km, correction error of 2.5 cm

- Outline

Topic

- ephemeris error of 5m, user-reference separation of 100km, correction
 error of 2.5 cm
- tropospheric effects
 - environmental effects
 - 🗆 basically path based
 - □ 100km -> 2 cm error.
 - weather front -> 40 cm error
- 🗆 ionospheric effects
 - angle of path
- Code based techniques
 - Local Area DGPS
 - First obvious idea transmit different positions
 - D Problems
 - satellite combos
 - algorithmic differences
 - Second idea transmit different ranges
 - 🗆 Regional Area DGPS
 - Multiple reference stations
 - Calculate positions
 - 🗆 Weight based on range.
 - 🗆 Wide-Area DGPS
 - broadcast separate estimates of error components
 - Iots of ground stations combining information centrally then broadcasting analysis
 - - 🗆 WAAS (!)
 - □ EGNOS
 - 🗆 MSAS (Southeast Asia)
 - 🗆 GAGAN (India)
 - Precise Point Positioning (beyone WADGPS) (< 10 cm accuracy)
 - These systems don't use any of the position or clock information from the satellite
 - get that info from seperate feed
 - 🗆 satellite antenna lever arm
 - 🗆 phase wind-up
 - 🗆 solid tides
 - 🗆 dual-frequency receiver
 - 🗆 Starfire
 - 🗆 CORS
 - offline corrections
- Carrier based techniques

- - Changes in doppler shift of carrier wave
 - Sensor augmentation
 - 🗆 Kalman filter
 - Dead Reckoning
 - Deals with Signal loss
 - Dynamic environment between updates
 - 🗆 Two scans
 - Mobile systems
 - 🗆 Mobile-assist
 - 🗆 Mobile-based
 - 🗆 Show scan