Topic

- ☐ Scans
 - ☐ Hieght's page 32 (2.8)
 - ☐ Multipath interference 280 (6.8)
- ☐ Availability
 - ☐ figure 337 (7.10)
 - ☐ 339 (7.13)
 - ☐ 340 (7.14)
 - ☐ 341 (7.15)
- ☐ 383 (8.2)
- ☐ 494 (9.21)
- ☐ 495 (9.22)
- ☐ 525 (9.35)

- ☐ Up to speed
 - ☐ latitude and longitude
 - ☐ Geoid
 - ☐ Oblate Spheroid
 - ☐ draw shape
 - ☐ Datum
 - ☐ WGS 84
 - ☐ 6378km
 - ☐ Different datums will give rise to different lat/long, heights
 - ☐ Four heights
 - ☐ Ellipsoid
 - ☐ Geoid (sea-level)
 - ☐ feature of the earth
 - ☐ In the U.S. the Geoid is below the Ellipsoid
 - ☐ Topography
 - ☐ User (height to ellipsoid)
- ☐ GPS is beacon-based
 - ☐ intersecting spheres
 - ☐ TOA concept
 - ☐ GPS gives time, position, velocity
 - ☐ velocity may be integrated or based on doppler shift
 - ☐ timing error adjustment
 - ☐ System Time
 - ☐ Satellite Time
 - ☐ Receiver Time
 - ☐ 3-D fix requires 4 satellites or assumptions
 - ☐ Satellite provides two types of data
Topic

- □ Ephemeris data
 - □ Where is the satellite, what is its path
 - □ ranging data
- □ Question:
 - □ What is a single-frequency SPS GPS User?
- □ Augmentations
 - □ Ground-based and Space-based
 - □ Differential Systems or Sensor-based Systems
 - □ Differential Systems
 - □ Concept: Reference station
 - □ Additional Information
 - □ Corrections to range measurements
 - □ Corrections to satellite clock or position data
 - □ Raw reference stations measurements
 - □ Integrity data (use, don't use)
 - □ auxiliary data about the reference station
- □ How does that additional information arrive
 - □ broadcast radio
 - □ dedicate wire
 - □ Internet
 - □ Satellite feed
 - □ Maybe not real-time
- □ Absolute or Relative
 - □ Absolute
 - □ Flight Path of an airplane at airport
 - □ Ship entering a harbor
 - □ Relative
 - □ Plane landing on a carrier
- □ code-based vs carrier based
- □ local, regional, or wide-area
- □ Draw Local DGPS concept
- □ Sources of error
 - □ correlated in time and space?
 - □ satellite clock error
 - □ same for all satellite observers
 - □ ephemeris errors
 - □ Show scan
 - □ ephemeris error of 5m, user-reference separation of 100km, correction error of 2.5 cm
Augmentations

Differential Systems

Sources of error
- Ephemeris errors
 - Ephemeris error of 5m, user-reference separation of 100km, correction error of 2.5 cm
- Tropospheric effects
 - Environmental effects
 - Basically path based
- Weather front -> 40 cm error

Ionospheric effects
- Angle of path

Code based techniques
- Local Area DGPS
 - First obvious idea - transmit different positions
 - Problems
 - Satellite combos
 - Algorithmic differences
 - Second idea - transmit different ranges
- Regional Area DGPS
 - Multiple reference stations
 - Calculate positions
 - Weight based on range.
- Wide-Area DGPS
 - Broadcast separate estimates of error components
 - Lots of ground stations combining information centrally then broadcasting analysis
- Space-based systems
 - WAAS (!)
 - EGNOS
 - MSAS (Southeast Asia)
 - GAGAN (India)
- Precise Point Positioning (beyond WADGPS) (< 10 cm accuracy)
 - These systems don't use any of the position or clock information from the satellite
 - Get that info from separate feed
 - Satellite antenna lever arm
 - Phase wind-up
 - Solid tides
- Dual-frequency receiver
- Starfire
- CORS
 - Offline corrections
- Carrier based techniques
Topic

- Changes in doppler shift of carrier wave
- Sensor augmentation
 - Kalman filter
 - Dead Reckoning
 - Deals with Signal loss
 - Dynamic environment between updates
 - Two scans
- Mobile systems
 - Mobile-assist
 - Mobile-based
 - Show scan