Collaborative Filtering: A Machine Learning Perspective

Chapter 6: Dimensionality Reduction

Benjamin Marlin

Presenter: Chaitanya Desai
Topics we’ll cover

- Dimensionality Reduction for rating prediction:
 - Singular Value Decomposition
 - Principal Component Analysis
Rating Prediction

Problem Description:

- We have M distinct items and N distinct users in our corpus
- Let r_{y}^{u} be rating assigned by user u for item y. Thus, we have (M dimensional) rating vectors r^{u} for the N users

Task:

- Given the partially filled rating vector r^{a} of an active user a, we want to estimate \hat{r}_{y}^{a} for all items y that have not yet been rated by a
Singular Value Decomposition

- Given a data matrix D of size $N \times M$, the SVD of D is $D = U \Sigma V^T$ where $U_{N \times N}$ and $V_{M \times M}$ are orthogonal and $\Sigma_{N \times M}$ is diagonal.

- Columns of U are eigenvectors of DD^T and columns of V are eigenvectors of D^TD.

- Σ is diagonal and entries comprise of eigenvalues ordered according to eigenvectors (i.e. columns of U and V).
Low Rank Approximation

- Given the solution to SVD, we know that $\hat{D} = U_k \Sigma_k V_k^T$ is the best rank k approximation to D under the Frobenius norm.

- The Frobenius norm is given by

$$F(D - \hat{D}) = \sum_{n=1}^{N} \sum_{m=1}^{M} (D_{nm} - \hat{D}_{nm})^2$$
Weighted Low Rank Approximation

D contains many missing values
D contains many missing values

SVD on a matrix is undefined if there are missing values
Weighted Low Rank Approximation

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?
Weighted Low Rank Approximation

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?
- Assign 0/1 weights to elements of D
Weighted Low Rank Approximation

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?
- Assign 0/1 weights to elements of D
- Our goal is to find \hat{D} so that the weighted Frobenius norm is minimized

$$F_w(D - \hat{D}) = \sum_{n=1}^{N} \sum_{m=1}^{M} W_{nm} (D_{nm} - \hat{D}_{nm})^2$$
Weighted low rank approximation

- Srebro and Jaakkola in their paper *Weighted Low Rank Approximations* provide 2 approaches to finding \hat{D}
 - Numerical Optimization using Gradient Descent in U and V
 - Expectation Maximization (EM)
Generalized EM

Given a joint distribution \(p(X, Z|\theta) \) over observed variables \(X \) and latent variables \(Z \), governed by parameters \(\theta \), the goal is to maximize the likelihood function \(p(X|\theta) \) with respect to \(\theta \).

1. Choose an initial setting for the parameter \(\theta^{old} \)

2. **E step** Evaluate \(p(Z|X, \theta^{old}) \)

3. **M step** Evaluate \(\theta^{new} \) given by \(\theta^{new} = \arg\max_\theta Q(\theta, \theta^{old}) \)
 where \(Q(\theta, \theta^{old}) = \sum_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta) \)
 represents the expectation of the complete data log-likelihood for some general parameter \(\theta \)

4. If convergence criterion is not satisfied, let

\[
\theta^{old} \leftarrow \theta^{new}
\]

and return to step 2
EM for weighted SVD

- **E step**: Fill in the missing values of D from the low rank reconstruction \hat{D} forming a complete matrix X.

$$X = W \odot D + (1 - W) \odot \hat{D}$$
EM for weighted SVD

- **E step**: Fill in the missing values of D from the low rank reconstruction \hat{D} forming a complete matrix X.

\[
X = W \odot D + (1 - W) \odot \hat{D}
\]

- **M step**: Find low rank approximation using standard SVD on X, which is completely specified.

\[
[U, \Sigma, V^T] = SVD(X)
\]

\[
\hat{D} = U_k \Sigma_k V_k^T
\]
The complete algorithm

Input: R, W, L, K
Output: Σ, V

$\hat{R} \leftarrow 0$

while ($F_W (R - \hat{R})$ not converged) do

$X \leftarrow W \odot R + (1 - W) \odot \hat{R}$

$[U, \Sigma, V^T] = SVD(X)$

$U \leftarrow U_L, \Sigma \leftarrow \Sigma_L, V \leftarrow V_L$

$\hat{R} \leftarrow U \Sigma V^T$

if ($L > K$) then

Reduce L

end if

end while
Given \hat{R}, rating value for user u for item y is simply $\hat{r}_{uy} = \hat{R}_{uy}$
Given \hat{R}, rating value for user u for item y is simply $\hat{r}_{uy} = \hat{R}_{uy}$

Map the new user’s profile into the K dimensional latent space
Rating Prediction using the new concept space

- Given \hat{R}, rating value for user u for item y is simply $\hat{r}_y^u = \hat{R}_{uy}$

- Map the new user’s profile into the K dimensional latent space

- If r is the user’s rating vector in the original space and l is the user’s vector in the latent space, then $r = l\Sigma V^T$ and thus $l = rV\Sigma^{-1}$
Algorithm (rating vector estimation)

Input: r^a, w^a, Σ, V, K
Output: \hat{r}^a

$\hat{r}^a \leftarrow 0$

while ($F_w (r^a - \hat{r}^a)$ not converged) do
 $x \leftarrow w^a \odot r^a + (1 - w^a) \odot \hat{r}^a$
 $l^a \leftarrow x V \Sigma^{-1}$
 $\hat{r}^a \leftarrow l^a \Sigma V^T$
end while
Results of SVD

Data Sets:

- EachMovie:
 - Collected by the Compaq Systems Research Center over an 18 month period beginning in 1997.
 - Base data set contains 72916 users, 1628 movies and 2811983 ratings.
 - Ratings are on a scale from 1 to 6.

- MovieLens
 - Collected by GroupLens research group at the University of Minnesota
 - Contains 6040 users, 3900 movies, and 1000209 ratings collected from users who joined the MovieLens recommendation service in 2000
 - Ratings are on a scale from 1 to 5.
Results of SVD...

- Results reported are $NMAE$

$$NMAE = \frac{MAE}{E[MAE]}$$

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |\hat{r}_{uy} - r_{uy}|$$

- Greater than 1 indicates worse than random
Principal Component Analysis

- The idea is to discover latent structure in the data.
- Let $A = \frac{1}{N-1} D^T D$ be the co-variance matrix of D.
- $A(i, j)$ indicates co-variance between items i and j.
- We are interested in retaining K dimensions of highest variance.
- This is the subspace spanned by the K largest eigenvectors of A.
Rating Prediction with PCA

- Cannot do PCA when D has missing data
- Goldberg, Roeder, Gupta and Perkins propose an algorithm called **Eigentaste** in their paper *Eigentaste: A Constant Time Collaborative Filtering Algorithm*
Eigentaste

Pick a set of items called the *gauge set* that all users must rate
Eigentaste

- Pick a set of items called the *gauge set* that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
Pick a set of items called the *gauge set* that all users must rate.

Map the new data into a lower dimensional latent space and retain only the 1st 2 components.

Cluster users in this 2 dimensional latent space using divisive hierarchical clustering.
Pick a set of items called the *gauge set* that all users must rate

Map the new data into a lower dimensional latent space and retain only the 1st 2 components

Cluster users in this 2 dimensional latent space using divisive hierarchical clustering

Compute mean rating vector μ_c for each cluster c
Eigentaste

- Pick a set of items called the *gauge set* that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering
- Compute mean rating vector μ_c for each cluster c
- For a new user, map the user’s rating profile (r^a) for the gauge set into the 2 dimensional concept space (\hat{r}^a) and determine what cluster the user belongs to.
Eigentaste

- Pick a set of items called the *gauge set* that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering
- Compute mean rating vector μ_c for each cluster c
- For a new user, map the user’s rating profile (\hat{r}^a) for the gauge set into the 2 dimensional concept space (\hat{r}^a) and determine what cluster the user belongs to.
- If an item (\hat{r}^a_y) is not rated, assign it the mean rating vector’s value for that item (i.e. $\hat{r}^a_y = \mu_{cy}$)
Problems with Eigentaste?

- Gauge Set must be the same for all users and all users must rate all gauge items
Problems with Eigentaste?

- Gauge Set must be the same for all users and all users must rate all gauge items
- Rating some items is easier and faster than others (e.g. jokes vs. books)
Problems with Eigentaste?

- Gauge Set must be the same for all users and all users must rate all gauge items
- Rating some items is easier and faster than others (e.g. jokes vs. books)
- Selection of items (items that are good discriminators)