Unranked retrieval - ROC curve

Receiver Operating Characteristic (ROC) curve

Really good precision and recall
Best you can do
Likely impossible in practice

0% 100%
FP/(TP+FP)

100% 0%
(1-Precision)

A system can deliver results at any point on its ROC curve by trading off more results that include more junk versus less results that include less junk. Picking the right point requires deciding how much the application/user can tolerate junk.

PitterPattersonFinder
No results
Very high precision
Very high accuracy for the web corpus
No value for the user

Return everything
Very high recall
No value for the user

Not really good precision and recall
Best you can do
Likely impossible in practice

0% 100%
TP/(TP+FN)
Ranked Retrieval

• Precision and Recall are *set-based measures*
 • They are computed independent of order
 • But, web search return things in lists
 • Lists have order.
• A better metric of user happiness/relevance is warranted
Ranked Retrieval

- Let’s use our existing metrics and extend them to ranked retrieval
- In one system we can get many samples
- We can get the top X results:
 - $X = 10, 20, 30, 40, \text{ etc...}$
 - Each one of those sets has a precision and recall value
 - Each of those sets corresponds to a point on the ROC curve.
Ranked Retrieval

- Each of those sets corresponds to a point on the ROC curve.
Ranked Retrieval

- One option is to average the precision scores at discrete points on the ROC curve.
- But which points?
- We want to evaluate the system, not the corpus.
- So it can’t be based on number of documents returned.
Ranked Retrieval - **11 point precision**

- Evaluate based on precision at defined recall points
- Average the precision at 11 points
- This can be compared across corpora
 - because it isn’t based on corpus size or number of results returned
Ranked Retrieval - **Mean Average Precision**

- Why just 11 points?
- Why not average over all points?
- This is roughly equivalent to measuring the area under the curve.
Ranked Retrieval - **Precision at k**

- Users don’t care about results past a page or two
- So area under the curve is too naive.
- Let’s evaluate precision with k results instead.
- Highly dependent on number or relevant documents
- If k is 20 and relevant docs is 8
 - best score is $\frac{8}{8+12} = 0.4$
Ranked Retrieval - Precision at R

- We know the number of relevant documents, \(r \), so rather than looking at \(k \) results let’s look at the top \(r \) results.
- If \(r \) is 20
 - best score is \(20/(20) = 1.0 \)
 - best score is always 1.0
Ranked Retrieval - **Precision at R**

- It turns out that Precision at R is the break-even point.
- When Precision and Recall are equal.
- Do we care about this point for any rational reason?
Critiques of relevance

- Is the relevance of one document independent of another?
- Is a gold standard possible?
 - Is a gold standard static?
 - Uniform?
 - Binary?
- Perhaps relevance as a ranking is better.
- Relevance versus marginal relevance
 - What does another document add?