
Calculate Cosine Similarity Score

Assignment 06

• Input

• Query

• Posting List

• Output

• List of 10 top ranked documents

Calculate Cosine Similarity Score

Assignment 06

• Remember what this is about

• A query as a vector

• A corpus as a term-document matrix

• Where each document is a column in the matrix

sim(q, d) =
!V (q) · !V (d)
|!V (q)||!V (d)|

Calculate Cosine Similarity Score

Assignment 06

• We are not going to calculate the similarity score of a

query with every document

• That would be inefficient.

• Many scores are zero.

• We are not going to actually create a term-document

matrix

• The posting list has all the information that we need to

calculate the similarity scores

Calculate Cosine Similarity Score

Assignment 06

• We are going to calculate the cosine similarity score, but in a

clever way.

• Here are some constants we will need:

• The number of documents in the posting list (aka corpus).

• Figure this out when creating the corpus (new thing)

• The document frequency of a term

• This should be the number of items in a row of the posting

list. (each term has its own row)

• The term frequency of a term in a document.

• Different for every term document pair.

Calculate Cosine Similarity Score

Assignment 06

• Steps

• Get a query from the user

• Convert it to TF-IDF scores

tfidf(t, q) = WTF (t, q) ∗ log

(
|corpus|

dft,q

)

WTF(t, q)
1 if tft,q = 0
2 then return(0)
3 else return(1 + log(tft,q))

Calculate Cosine Similarity Score

Assignment 06

• “UCI Informatics Professors”

• 3 terms {“UCI”, “Informatics”, “Professors”}

• 3 TF-IDF scores

• Size of the corpus comes from the posting list

• The document frequency of “UCI” comes from the

number of entries in the posting list for “UCI”

• use 1 if your posting list is too small

• The term frequency is 1/3

tfidf(“UCI”, “UCI Informatics Professors”) = 1 + log(1) ∗ log

(
|corpus|

(df“UCI” + 1)

)

Calculate Cosine Similarity Score

Assignment 06

• Steps

• Get a query from the user

• Convert it to TF-IDF scores

• Create a data structure that is indexed by documents

• Which will accumulate scores for the documents

• so like, Scores = new Hashmap<String,Double>()

Calculate Cosine Similarity Score

Assignment 06

• Steps

• Get a query from the user

• Convert it to TF-IDF scores

• Create a data structure that is indexed by documents

• Which will accumulate scores for the documents

• so like, Scores = new Hashmap<String,Double>()

• For each term in the query

• Get the posting list for the term

• For each document that has that term we are going to

update the entry in Scores

Calculate Cosine Similarity Score

Assignment 06

• Steps

• For each term in the query

• Get the posting list for the term

• For each document that has that term we are going to

update the entry in Scores

• Scores[d] += TF-IDF(term,query) * TF-IDF(term, document)

Calculate Cosine Similarity Score

Assignment 06

• At the end of this we will have the data structure Scores

• Which for “UCI Informatics Professors” required looking up 3

posting lists

• Finally the scores must be normalized so we can compare them

against each other.

• Create a new data-structure like Scores called Magnitude

• For each term in the entire posting list

• For each document represented in Scores

• Magnitude[document] += TF-IDF(term, document)^2

Calculate Cosine Similarity Score

Assignment 06

• Now we have Scores and Magnitude

• Now we calculate the highest rankings

• For each document in Scores

• Double x = Scores[document]/sqrt(Magnitude[document])

Calculate Cosine Similarity Score

Assignment 06

• Summary

• Get query from user, transform to TF-IDF

• Pull out a few postings to calculate scores

• Look at every positing to calculate magnitudes

• Calculate final scores

• Output URLs and scores of highest documents

Calculate Cosine Similarity Score

Assignment 06

CosineScore(q)
1 Initialize(Scores[d ∈ D])
2 Initialize(Magnitude[d ∈ D])
3 for each term(t ∈ q)
4 do p← FetchPostingsList(t)
5 dft ← GetCorpusWideStats(p)
6 αt,q ←WeightInQuery(t, q, dft)
7 for each {d, tft,d} ∈ p
8 do Scores[d] + = αt,q · WeightInDocument(t, q, dft)
9 for d ∈ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ∈ Scores

Evaluation in IR
Introduction to Information Retrieval
CS 221
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org
~Sage~
http://www.flickr.com/photos/vickispix/2089649326/

http://www.informationretrieval.org
http://www.informationretrieval.org
http://www.flickr.com/photos/vickispix/2089649326/
http://www.flickr.com/photos/vickispix/2089649326/

Evaluation in IR
Introduction to Information Retrieval
CS 221
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org
~Sage~
http://www.flickr.com/photos/vickispix/2089649326/

http://www.informationretrieval.org
http://www.informationretrieval.org
http://www.flickr.com/photos/vickispix/2089649326/
http://www.flickr.com/photos/vickispix/2089649326/

Outline

Evaluation in IR

• Intro to Evaluation

• Standard Test Collections

• Evaluation of Unranked Retrieval

• Evaluation of Ranked Retrieval

• Assessing relevance

• Broader perspectives

• Result Snippets

Intro to Evaluation

Evaluation in IR

• There are many implementation decisions to be made in

an IR system

• Crawler

• Depth-first or breadth-first?

• Indexer

• Use zones?

• Which zones?

• Use stemming?

• Use multi-word phrases? Which ones?

Intro to Evaluation

Evaluation in IR

• There are many implementation decisions to be made in

an IR system

• Query

• Ranked Results?

• PageRank?

• Which formula do we use in the TF-IDF Matrix?

• Should we use Latent Semantic Indexing?

• How many dimensions should we reduce?

Intro to Evaluation

Evaluation in IR

• There are many implementation decisions to be made in

an IR system

• Results

• How many do we show?

• Do we show summaries?

• Do we group them into categories?

• Do we personalize the rankings?

• Do we display graphically?

Intro to Evaluation

Evaluation in IR

Intro to Evaluation

Evaluation in IR

• How can we evaluate whether we made good decisions

or not?

Intro to Evaluation

Evaluation in IR

• How can we evaluate whether we made good decisions

or not?

• Measure them

Measures for a search engine

Evaluation in IR

• How fast does it index?

• Number of documents per hour

• Average document size

• How fast does it search

• Latency as a function of index size

• Expressiveness of query language

• Ability to express complex information needs

• Speed on complex queries

Measures for a search engine

Evaluation in IR

• We can measure all of these things:

• We can quantify size and speed

• We can make this precise

• What about user happiness?

• What is this?

• Speed of response/size of index are factors

• But fast, useless answers won’t make a user happy

• Need to quantify user happiness also.

Measuring user happiness

Evaluation in IR

• Issue: Who is the user we are trying to make happy?

• It depends.

Measuring stakeholder happiness

Evaluation in IR

• Issue: Who is the user we are trying to make happy?

• Web engine:

• The user finds what they want.

• Measure whether or not they come back.

