
1

elinstea@ics.uci.edu

Sourcerer: Searching Internet-Scale
Software Repositories

Erik Linstead
Department of Computer Science

University of California, Irvine

COMPSCI 221, November 24, 2008

2

Overview
Introduction
Sourcerer Architecture
Internet-Scale Software Repositories

Populating a code database
The shape of software
Observations/Lessons Learned

Searching Software
Keyword based
Structure Based
Hybrid
Ranking

Future Directions
Topic-based search

Conclusions

3

Acknowledgements

Baldi Group - Institute for Genomics and
Bioinformatics

Professor Pierre Baldi
Paul Rigor

Mondego Group – Institute for Software
Research

Professor Crista Lopes
Sushil Bajracharya

4

Introduction

Millions of lines of source code available
Don’t always know how good it is
Don’t always know what it does
Even if it’s in-house!

Open source projects provide repositories of
commonly used code

Increasing popularity in industry
Projects are interdependent
Desire to maximize code reuse

Time is money
Explore code entity relationships
Understand shape and function of software

Large scale
“in the wild”

5

Introduction
Code reuse has evolved

Reuse an entire system
Reuse a portion of a system
Reuse a class/interface
Reuse a function/algorithm
Reuse fields (eg. static definitions)

Any system that facilitates reuse must deal with code at multiple
granularities
Any system that facilitates program understanding should be
unsupervised and intuitive
Searching/Mining for practical application

Functional analysis
Staffing – assignment, skill assessment
Refactoring
Reuse

6

Sourcerer
UCI ICS project designed to:

Index publicly available source and provide fast search and mining
Emphasis on ranking, relevancy, functional analysis
Structure-based search, software shape

Statically analyze relationships among code entities
Leverage data to better understand code, facilitate reuse, provide
tools for real-world software development
Do this all on an Internet scale across multiple programming
languages
Explore new avenues for mining software

Current Version
~12k open source projects (4,600 with 38 million SLOC)
9,250 contributors, 48k packages, 560k classes, 3.2M methods
Focused on java language as proof of concept

Publicly Available
http://sourcerer.ics.uci.edu

7

Sourcerer Architecture

8

Database

Parse Code and Store:
Entities (Classes, Methods, etc)
Relations
Documents (source files)
Repository Info (CVS, SVN, etc)

Combination of
Relational Database (postgresql)
Text Indexing (Lucene)
Text Mining (source-tuned topic models)
Middleware for distributed parsing (our own)

9

Static Analysis of Code Relations
Uses

generic
Inside

Lexical containment
Calls
Throws
Returns
Overrides
Overloads
Instantiates
Reads
Writes

10

Simple Statistics

11

Simple Statistics

12

Keyword Occurrence

13

Power Law Distributions

14

Searching Code
Once you know what code does, how can you find code for a
given programming task?
Specialized keyword extraction

Comments
Code

calculateFastFourierTransform(Signal s)
calculate_Fast_Fourier_Transform(Signal s)

What if you want to search based on structure
“Find thread-safe methods with 2 conditional statements”

Commercial search engines gaining popularity
Google CodeSearch, Koders, Krugle
“glorified grep” over code
Lightweight analysis

15

Keyword-Based Search

Known techniques for doing this well
Abundant IR literature
Open Source Search Engines

Lucene – incredibly fast, light-weight, and FREE!

Tricky parts:
Associating comments with correct entity
Accounting for all naming conventions that are
likely to appear in code.

Good luck!

16

Example – Quick Sort (classes)

17

Example – Quick Sort (functions)

18

Example – Browse Code

19

Example – Code Structure
Fingerprint

20

Fingerprint Types

Structural Fingerprints
Control
Iteration
Synchronization

Java Type Fingerprints
Fields
Methods
Constructors
etc

MicroPattern Fingerprints
Occurrence of common design patterns
Gil & Maman, OOPSLA ‘05

21

Structural Fingerprints

Types and counts of concurrency constructs
(sync,wait,notify)
Types and counts of branching constructs (if,switch)
Number of loop structures
Number of paths through code
Number of dynamic memory allocations
Average loop length
Maximum nesting of loops

<sync,wait,notify,if,switch,loops,paths,allocs,avg_loop,max_nesting>

22

Similarity measure

Many methods exist
Popular IR technique is cosine distance

Calculate angle between query fingerprint, q,
and code fingerprint, f

sim(q,f) = (q ٠ f) / (|q| x |f|)

23

Example

24

Hybrid Search

The best of both worlds
Combine keywords with fingerprints
“I think it should look something like…”
Query is a code snippet

Parse for keywords and structure

25

Industry Applications

General code reuse
Or at least a convenient way to find references

Licensing issues
Worried that open source may have slipped
in?
Find it with structure-based search

Code analysis
Leverage relational databases
Examine statistics for best practices, etc.

26

Improving Results - Ranking
Java-based heuristics

Boost hits to right of fully-qualified name
(net.linstead.neuralNet)
Discount comment hits
Discount test code
Discount trivial implementations

In addition, would like to give preference to code that is:
Heavily referenced
“popular”
Likely to be robust

Need a systematic way to access code for these
properties
This is Google’s bread and butter

27

Link Analysis

Start by building a directed graph of entities
and relations

We have these in the database at parse time

 Class A Class B Method X

Exception EMethod YClass C

extends

inside calls

throws
instantiates

contains

28

PageRank (CodeRank)

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

PR(X) – PageRank of Node X
T1…TN – Nodes pointing to X
C(Y) – number of outgoing edges of node Y
d – a damping factor

29

Example

 Class A Class B Method X

Exception EMethod YClass C

extends

inside calls

throws
instantiates

contains
1.0 1.66 1.56

0.78 1.48 0.78

30

Leveraging PR

Used in combination with term frequency, similarity
Currently Sourcerer uses PageRank almost verbatim

Local vs. Global rank
Can modify algorithm to give different weight to
different relationships

Is “calls” more or less important than “overloads”?
Ultimately user will have to specify as a search
parameter

31

Ranking Results
30% AUC (area under curve) improvement over competing engines

Google - 33% AUC
Google CodeSearch – 66% AUC
Sourcerer (code keywords only) – 73.6% AUC
Sourcerer (comment keywords only) – 44.7% AUC

48.5% recall
Sourcerer (code + comments + heuristics + CodeRank) – 84% AUC

100% recall
Sourcerer (code + heuristics) – 90.9% AUC

74% recall
Sourcerer (code + heuristics + CodeRank) – 92% AUC

74% recall
Lessons Learned

Combination of keyword and structure-based heuristics yields greatest
improvement
From a community standpoint need standardized benchmark

32

Conclusion
Software repositories contain a wealth of information

Code metadata and implementations
Statistics for shape and function

Recent statistical machine learning techniques make
intuitive, scalable program understanding more feasible
Effective IR techniques promise to aide in code reuse
assuming

Give the searcher relevant results
Make it fast and easy

Fingerprinting code provides an intuitive means for structure-
based search
New ranking techniques means the user finds what they
want without wading through useless code

Leverage keywords and structure
Go beyond “glorified grep”

	Slide Number 1
	Overview
	Acknowledgements
	Introduction
	Introduction
	Sourcerer
	Sourcerer Architecture
	Database
	Static Analysis of Code Relations
	Simple Statistics
	Simple Statistics
	Keyword Occurrence
	Power Law Distributions
	Searching Code
	Keyword-Based Search
	Example – Quick Sort (classes)
	Example – Quick Sort (functions)
	Example – Browse Code
	Example – Code Structure Fingerprint
	Fingerprint Types
	Structural Fingerprints
	Similarity measure
	Example
	Hybrid Search
	Industry Applications
	Improving Results - Ranking
	Link Analysis
	PageRank (CodeRank)
	Example
	Leveraging PR
	Ranking Results
	Conclusion

