bre n . SChOOI ?: INSTITUTE FOR GENOMICS AND BIOINFORMATICS
u %) University of California, Irvine

information and computer sciences

Sourcerer: Searching Internet-Scale
Software Repositories

Erik Linstead
Department of Computer Science
- University of California, Irvine

elinstea@ics.uci.edu

COMPSCI 221, November 24, 2008 1

Overview

Introduction
Sourcerer Architecture
Internet-Scale Software Repositories
Populating a code database
The shape of software
Observations/Lessons Learned
Searching Software
Keyword based
Structure Based
Hybrid
Ranking
Future Directions
Topic-based search
Conclusions

Acknowledgements

Baldi Group - Institute for Genomics and
Bioinformatics

Professor Pierre Baldi

Paul Rigor
Mondego Group — Institute for Software
Research

Professor Crista Lopes

Sushil Bajracharya

Introduction

Millions of lines of source code available
Don’t always know how good it is
Don’t always know what it does
Even if it's in-house!

Open source projects provide repositories of
commonly used code

Increasing popularity in industry
Projects are interdependent
Desire to maximize code reuse
Time IS money
Explore code entity relationships
Understand shape and function of software
Large scale
“In the wild”

Introduction

Code reuse has evolved
Reuse an entire system
Reuse a portion of a system
Reuse a class/interface
Reuse a function/algorithm
Reuse fields (eg. static definitions)

Any system that facilitates reuse must deal with code at multiple
granularities

Any system that facilitates program understanding should be
unsupervised and intuitive

Searching/Mining for practical application
Functional analysis
Staffing — assignment, skill assessment
Refactoring
Reuse

Sourcerer

UCI ICS project designed to:

Index publicly available source and provide fast search and mining
Emphasis on ranking, relevancy, functional analysis
Structure-based search, software shape

Statically analyze relationships among code entities

Leverage data to better understand code, facilitate reuse, provide
tools for real-world software development

Do this all on an Internet scale across multiple programming
languages

Explore new avenues for mining software
Current Version
~12k open source projects (4,600 with 38 million SLOC)
9,250 contributors, 48k packages, 560k classes, 3.2M methods

Focused on java language as proof of concept
Publicly Available

http://sourcerer.ics.uci.edu

Sourcerer Architecture

r———--—-——-—-———————————————
Managed Repository Parser / Lucene + Ranker Key Index, Ranked Entities
local copy of each significant release of the text miner
External Code projects and project meta-data KEYS | Ranked Entities
Repositories . . . jl — key z | entity_n, antity_x antity_m. ...
{on the web) Libraries key_x | entity_x, entity I, ..

{Extemnal Dependencles) - | -Enkity_m, .
J/, *Qf .
: -'CEﬂUt_'p'l'I"l rank = 0.6, ¢ = wri + pos, .
Code Crawler +
Managed Downloader

J, Source Files

aigagetbe catalive realmd BECRcs|m o] € mpe U)

il bed suldl iNase |Cwvenil Las IREesseilien) |

rothiig LT U ditilase copmction] L3 alrasdy close
ol JillCanmlien == aall)
RS

Project Build Configuration

Code Database

relational database that A amathe oo polo .h’.{.“
rapar el imbavliale dlased] -

stores the link graph 3 carch |Theoeshls)

. code entities . i
Frwy —/ amang o
\—h-___. }i}: R e —— 1 o Search Result

1"5-
IC!.,!_

SOURCERER Web Interface

Local Downloads - e
Repository Manager

o Repository Infrastructure | Code Search Application ..

Database

Parse Code and Store:
Entities (Classes, Methods, etc)
Relations
Documents (source files)
Repository Info (CVS, SVN, etc)

Combination of
Relational Database (postgresql)
Text Indexing (Lucene)
Text Mining (source-tuned topic models)
Middleware for distributed parsing (our own)

Static Analysis of Code Relations

Uses
generic
Inside
Lexical containment

Calls
Throws
Returns
Overrides
Overloads
Instantiates
Reads
Writes

Simple Statistics

Selected Summary Statistics (per Project).

Max Median | Mean | Standard Deviation
Files 6,415 10 55.28 182.98
Lines of Code | 857,308 | 2,529.50 | 8,368.92 24,687
Packages 570 5 10.98 23.49
Classes 6,599 47 126.10 290.68
Methods 04,654 216 695.35 2,353
Fields 21,867 117 339.02 820.80

10

Simple Statistics

Package Distribution By Project

and T T T T

Project Count

3 4
g urnber of Packa

Method Distribution By Project

5
3
Z
2
1]
12

Class Distribution by Project

g umber of G

Atribute Distribution by Project
700 v v ; T T T T T T

600 -

&
a

g

Project Count

5 [7 10
logMumber of Attributes)

Keyword Occurrence

Keyword | Percentage Keyword | Percentage
public 12.53 this 0.89
if 8.44 break 0.85
new 8.39 while 0.63
return 7.69 super 0.57
import 6.89 instanceof 0.56
int 6.54 double 0.55
null 2.92 long 0.54
void 4.94 implements 043
private 3.66 char 0.30
static 316 float 0.28
final 3.01 absiract 0.25
else 2.33 synchronized 0.25
throws 216 short 0.20
boolean 2.12 switch 0.19
false 1.69 mterface 0.17
case 1.60 continue 0.15
true 1.60 finally 0.14
class 1.36 default 0.13
protected 1.33 native 0.08
caich 1.33 transient 0.06
for 1.22 do 0.05
ry 1.22 assert 0.03
throw 1.16 enum 0.02
package 0.96 volatile (L004
byte 0.93 strictfp 2.49E-06
extends 0.39

12

Power Law Distributions

Distribution of Inside Relations Over Projects

10 T T T T T

Number of Inside Relations

O 1 L 1 1 1
10 0 1 2 3 4 5 6
10 10 10 10 10 10 10
Rank
; Distribution of Packages over Projects
107 ¢ ——rry — ———rry
“ r]
<] 3 4
Q.2
2107 E
o E]
o E 3
S i]
o r]
o L]
= 1
310 ¢ 3
1= F]
3 r]
2 L 4
0
10 L L PR T T T | T T R
Q 1 2

13

Searching Code

Once you know what code does, how can you find code for a
given programming task?

Specialized keyword extraction
Comments
Code
calculateFastFourierTransform(Signal s)
calculate_Fast_Fourier_Transform(Signal s)
What if you want to search based on structure
“Find thread-safe methods with 2 conditional statements”
Commercial search engines gaining popularity
Google CodeSearch, Koders, Krugle
“glorified grep” over code
Lightweight analysis

14

Keyword-Based Search

Known techniques for doing this well
Abundant IR literature

Open Source Search Engines
Lucene — incredibly fast, light-weight, and FREE!

Tricky parts:
Associating comments with correct entity

Accounting for all naming conventions that are
likely to appear in code.

Good luck!

15

Example — Quick Sort (classes)
SOURCERER __________ becluase]

all Components | Functions Fingerprints

quick AND sart

I:l Search in comments ?

cmp.QuickSort

? wversion unknown
PACEAGE
Find usesz
Show Details

Inline | Expanded | Browse in Project | Download

QuickSort

? wersion unknown
PACEAGE
Find usesz
Show Details

Inline | Expanded | Browse in Project | Download

com.hardcode.gdbms.engine.data.indexes.QuickSort

? wersion unknown
PACEAGE
Find usesz
Show Details

Inline | Expanded | Browze in Project | Download

16

Example — Quick Sort (functions)
 SOURCERER

quick AND son

I:l Search in comments 7

123458675910 |==

org.apache.forrest.forrestdoc.java.src.util. QuickSort.quickSort{ Object,int,int, Comparator)
0,7

METHOD
Find uses
Show Details

Inline | Expanded | Browze in Project | Download

org.escplan.audioradmin.gui.LibraryBrowser.quickSort{ String[],int,int)

audioradmin-0,20
METHZD
Find usesz
Show Details

Inline | Expanded | Browse in Project | Download

apollo.util. QuickSort.doubleSort{ double,int,int,Object[])

Dagora Battle Systern [Initial release w01
METHZC
Find uzes
Show Details

Inline | Expanded | Browse in Project | Download

17

Example — Browse Code

.

|qui|:k AMND sort

|:| Search in comments 7

12345678910 |==

org.apache.forrest.forrestdoc.java.src.util. QuickSort.quickSort{ Object,int,int,Comparator)

0.7

METHOD
Find uses
Show Details

Inling | Expanded | Browse in Project | Download

-~
public static woid guickSort (0Object s[], int lo, int hi, Comparator cmp) !
if [lo »= hi) |
return;
'
_I,-'ﬂ'
¥ Uze median-of-three({lo, mid, hi) to pick a partition. A&lso 1
¥ swap them into relative order while we are at it.
i
int mid = {(lo + ki) / 2:
if (cmp.compare(s[lo], =s[wmid]) > 0) {
S Swap.
Object tmp = =[la]:
ot

|

Example — Code Structure
Fingerprint

all Components | Functions | Fingerprints
guick AND son

I:l Search in comments 7

123458675910 |==

org.apache.forrest.forrestdoc.java.src.util. QuickSort.quickSort{ Object,int,int, Comparator)

0.7
METHZ L
Find uses
Shew. Details
[zearch similar)
Swnchronized u] W aits 0 Motifys 0 Starts]
Jains u} Loops 2 IF & S ITCH u}
Lines Of Code 12 Instantiations 0O Path 216 Awverage Loop Length =

A Loop Mesting 2

19

Fingerprint Types

Structural Fingerprints
Control
Iteration
Synchronization
Java Type Fingerprints
Fields
Methods
Constructors
etc
MicroPattern Fingerprints
Occurrence of common design patterns
Gil & Maman, OOPSLA ‘05

Structural Fingerprints

Types and counts of concurrency constructs
(sync,wait,notify)

Types and counts of branching constructs (if,switch)
Number of loop structures

Number of paths through code

Number of dynamic memory allocations

Average loop length

Maximum nesting of loops

<sync,wait,notify,if,switch,loops,paths,allocs,avg_loop,max_nesting>

21

Similarity measure

Many methods exist

Popular IR technique Is cosine distance

Calculate angle between query fingerprint, g,
and code fingerprint, f

sim(q.,) = (g « 1)/ (|q] x |t])

22

Example
SOURCERER |

—_— all Components Functions | Fingerprints

Control Structure || Java attributes | Micropatterns

Synchronized =0 W aits »=0 Maotifys =1
Starts »=0 Joins »=0 Loops »=0
IF =1 SWITCH |==0 Lines of Code =0
Instantiations =1 Path »=10 Awverage Loop Length »=10
Max Loop Mesting =]

[Match Contral Structure | | Clear |

I:l Searchin comments 7

12345

INA_DwgMngrView
janat-0,9.1-src
CLASSE
Find uzes
Show Details

Inline | Expanded | Browse in Project | Download

org.apache.cocoon.xml.dom.DOMBuilder.notifyListener()
2,19

METHGD
Find uzes
Show Details

Inline | Expanded | Browse in Project | Download

Hybrid Search

The best of both worlds
Combine keywords with fingerprints
“I think it should look something like...”

Query is a code snippet
Parse for keywords and structure

24

Industry Applications

General code reuse
Or at least a convenient way to find references
Licensing issues
Worried that open source may have slipped
IN?
Find it with structure-based search
Code analysis
Leverage relational databases
Examine statistics for best practices, etc.

25

Improving Results - Ranking

Java-based heuristics

Boost hits to right of fully-qualified name
(net.linstead.neuralNet)

Discount comment hits
Discount test code
Discount trivial implementations
In addition, would like to give preference to code that is:
Heavily referenced
“popular”
Likely to be robust

Need a systematic way to access code for these
properties

This is Google’s bread and butter

26

Link Analysis

Start by building a directed graph of entities
and relations

We have these In the database at parse time

e \ 7 o ~ contains a ~
N N .
Class A Class B Method X
inside/l\ calls
</ \><777777‘//’77 N throws
— instantiates A _ 7/,// RN \,,7/,//
Class C Method Y Exception E

27

PageRank (CodeRank)

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

PR(X) — PageRank of Node X

T1...TN — Nodes pointing to X

C(Y) — number of outgoing edges of node Y
d — a damping factor

28

Example

/170”\\ extends

N

Class A

636 ~ contains
7

Class B
inside

<77
instantiates

(o8)
N

Class C

(156)
N

Method X
calls

N o)

Method Y Exception E

- mg\\ throws N

29

everaging PR

Used in combination with term frequency, similarity
Currently Sourcerer uses PageRank almost verbatim
Local vs. Global rank

Can modify algorithm to give different weight to
different relationships

Is “calls” more or less important than “overloads”?

Ultimately user will have to specify as a search
parameter

30

Ranking Results

30% AUC (area under curve) improvement over competing engines
Google - 33% AUC
Google CodeSearch — 66% AUC
Sourcerer (code keywords only) — 73.6% AUC
Sourcerer (comment keywords only) — 44.7% AUC
48.5% recall
Sourcerer (code + comments + heuristics + CodeRank) — 84% AUC
100% recall
Sourcerer (code + heuristics) — 90.9% AUC
74% recall
Sourcerer (code + heuristics + CodeRank) — 92% AUC
74% recall
Lessons Learned

Combination of keyword and structure-based heuristics yields greatest
improvement

From a community standpoint need standardized benchmark .

Conclusion

Software repositories contain a wealth of information
Code metadata and implementations
Statistics for shape and function

Recent statistical machine learning techniques make
Intuitive, scalable program understanding more feasible

Effective IR technigues promise to aide in code reuse
assuming

Give the searcher relevant results
Make it fast and easy

Fingerprinting code provides an intuitive means for structure-
based search

New ranking technigues means the user finds what they
want without wading through useless code

Leverage keywords and structure 32
Go beyond “glorified grep”

	Slide Number 1
	Overview
	Acknowledgements
	Introduction
	Introduction
	Sourcerer
	Sourcerer Architecture
	Database
	Static Analysis of Code Relations
	Simple Statistics
	Simple Statistics
	Keyword Occurrence
	Power Law Distributions
	Searching Code
	Keyword-Based Search
	Example – Quick Sort (classes)
	Example – Quick Sort (functions)
	Example – Browse Code
	Example – Code Structure Fingerprint
	Fingerprint Types
	Structural Fingerprints
	Similarity measure
	Example
	Hybrid Search
	Industry Applications
	Improving Results - Ranking
	Link Analysis
	PageRank (CodeRank)
	Example
	Leveraging PR
	Ranking Results
	Conclusion

