User Interaction: Ubiquitous and Cloud Computing

Assoc. Professor Donald J. Patterson INF 133 Fall 2012

Wednesday, November 21, 12

: What is Ubiquitous Computing?

Wednesday, November 21, 12

: What is Ubiquitous Computing?

The Computer for the 21st Century

Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence

by Mark Weiser

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.

Consider writing, perhaps the first information technology. The ability to represent spoken language symbolically for long-term storage freed information from the limits of individual memory. Today this technology is ubiquitous in industrialized countries. Not only do books, magazines and newspapers convey written information, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "literacy technology" does not require active attention, but the information to be transmitted is ready for use at a glance. It is difficult to imagine modern life otherwise

Silicon-based information technology, in contrast, is far from having become part of the environment. More than 50 million personal computers have been sold, and the computer nonetheless remains largely in a world of its own. It

MARK WEISER is head of the Computer Science Laboratory at the Xerox Palo Alto Research Center. He is working on the next revolution of computing after workstations, variously known as ubiquitous computing or embodied virtuality. Before working at PARC, he was a professor of computer science at the University of Maryland; he received his Ph.D. from the University of Michigan in 1979. Weiser also helped found an electronic publishing company and a video arts company and claims to enjoy computer programming "for the fun of it." His most recent technical work involved the implementation of new theories of automatic computer memory reclamation, known in the field as garbage collection.

78 THE COMPUTER IN THE 21ST CENTURY

is approachable only through complex jargon that has nothing to do with the tasks for which people use computers. The state of the art is perhaps analogous to the period when scribes had to know as much about making ink or baking clay as they did about writing.

The arcane aura that surrounds personal computers is not just a "user interface" problem. My colleagues and I at the Xerox Palo Alto Research Center think that the idea of a "personal" computer itself is misplaced and that the vision of laptop machines, dynabooks and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of people's lives. We are therefore trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background.

uch a disappearance is a fundamental consequence not of tech-O nology but of human psychology. Whenever people learn something sufficiently well, they cease to be aware of it. When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientist, economist and Nobelist Herbert A. Simon calls this phenomenon "compiling*; philosopher Michael Polanyi calls it the "tacit dimension"; psychologist J. J. Gibson calls it "visual invariants"; philosophers Hans Georg Gadamer and Martin Heidegger call it the "horizon" and the "ready-to-hand"; John Seely Brown of PARC calls it the "periphery." All say, in essence, that only when things disappear in this way are we freed to use them without thinking and so to focus beyond them on new goals.

The idea of integrating computers seamlessly into the world at large runs counter to a number of present-day trends. "Ubiquitous computing" in this context does not mean just computers that can be carried to the beach, jungle or airport. Even the most powerful notebook computer, with access to a worldwide information network, still focuses attention on a single box. By analogy with writing, carrying a superlaptop is like owning just one very important book. Customizing this book, even writing millions of other books, does not begin to capture the real power of literacy.

Furthermore, although ubiquitous computers may use sound and video in addition to text and graphics, that does not make them "multimedia computers." Today's multimedia machine makes the computer screen into a demanding focus of attention rather than allowing it to fade into the background. Perhaps most diametrically opposed

to our vision is the notion of virtual reality, which attempts to make a world inside the computer. Users don special goggles that project an artificial scene onto their eyes; they wear gloves or even bodysuits that sense their motions and gestures so that they can move about and manipulate virtual objects. Although it may have its purpose in allowing people to explore realms otherwise inaccessible-the insides of cells, the surfaces of distant planets, the information web of data bases-virtual reality is only a map, not a territory. It excludes desks, offices, other people not wearing goggles and bodysuits, weather, trees, walks, chance encounters and, in general, the infinite richness of the universe. Virtual reality focuses an enormous apparatus on simulating the world rather than on invisibly enhancing the world that already exists. Indeed, the opposition between the

Reprinted from the September 1991 issue

UBIQUITOUS COMPUTING begins to emerge in the form of live boards that replace challdboards as well as in other devices at the Xerox Palo Alto Research Center. Computer scientists gather around a live board for discussion. Building boards

and integrating them with other tools has helped researchers understand better the eventual shape of ubiquitous computing. In conjunction with active badges, live boards can customize the information they display.

THE COMPUTER IN THE 21ST CENTURY 79

The Computer

by Mark Weiser

ory. Today this technology is usin tous in industrialized countries. Not only do books, magazines and newspapers convey written information, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "literacy technology" does not require active attention, but the information to be transmitted is ready for use at a glance. It is difficult to imagine modern life otherwise

Silicon-based information technology, in contrast, is far from having become part of the environment. More than 50 million personal computers have been sold, and the computer nonetheless remains largely in a world of its own. It

MARK WEISER is head of the Computer Science Laboratory at the Xerox Palo Alto Research Center. He is working on the next revolution of computing after workstations, variously known as ubiquitous computing or embodied virtuality. Before working at PARC, he was a professor of computer science at the University of Maryland; he received his Ph.D. from the University of Michigan in 1979. Weiser also helped found an electronic publishing company and a video arts company and claims to enjoy computer programming "for the fun of it." His most recent technical work involved the implementation of new theories of automatic computer memory reclamation, known in the field as garbage collection.

78 THE COMPUTER IN THE 21ST CENTURY

think that the idea of a "personal" computer itself is misplaced and that the vision of laptop machines, dynabooks and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of people's lives. We are therefore trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background.

C uch a disappearance is a fundamental consequence not of tech-O nology but of human psychology. Whenever people learn something sufficiently well, they cease to be aware of it. When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientist, economist and Nobelist Herbert A. Simon calls this phenomenon "compiling*; philosopher Michael Polanyi calls it the "tacit dimension"; psychologist J. J. Gibson calls it "visual invariants"; philosophers Hans Georg Gadamer and Martin Heidegger call it the "horizon" and the "ready-to-hand"; John Seely Brown of PARC calls it the "periphery." All say, in essence, that only when things disappear in this way are we freed to use them without thinking and so to focus beyond them on new goals.

laptop is like owning just one very important book. Customizing this book, even writing millions of other books, does not begin to capture the real power of literacy.

Furthermore, although ubiquitous computers may use sound and video in addition to text and graphics, that does not make them "multimedia computers." Today's multimedia machine makes the computer screen into a demanding focus of attention rather than allowing it to fade into the background. Perhaps most diametrically opposed

to our vision is the notion of virtual reality, which attempts to make a world inside the computer. Users don special goggles that project an artificial scene onto their eyes; they wear gloves or even bodysuits that sense their motions and gestures so that they can move about and manipulate virtual objects. Although it may have its purpose in allowing people to explore realms otherwise inaccessible-the insides of cells, the surfaces of distant planets, the information web of data bases-virtual reality is only a map, not a territory. It excludes desks, offices, other people not wearing goggles and bodysuits, weather, trees, walks, chance encounters and, in general, the infinite richness of the universe. Virtual reality focuses an enormous apparatus on simulating the world rather than on invisibly enhancing the world that already exists. Indeed, the opposition between the

Reprinted from the September 1991 issue

UBIQUITOUS COMPUTING begins to emerge in the form of live boards that replace challdboards as well as in other devices at the Xerox Palo Alto Research Center. Computer scientists gather around a live board for discussion. Building boards

and integrating them with other tools has helped researchers understand better the eventual shape of ubiquitous computing. In conjunction with active badges, live boards can customize the information they display.

THE COMPUTER IN THE 21ST CENTURY 79

The Computer for the 21st Century

Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence

by Mark Weiser

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.

Consider writing, perhaps the first information technology. The ability to represent spoken language symbolically for long-term storage freed information from the limits of individual memory. Today this technology is ubiquitous in industrialized countries. Not only do books, magazines and newspapers convey written information, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "literacy technology" does not require active attention, but the information to be transmitted is ready for use at a glance. It is difficult to imagine modern life otherwise

Silicon-based information technology, in contrast, is far from having become part of the environment. More than 50 million personal computers have been sold, and the computer nonetheless remains largely in a world of its own. It

MARK WEISER is head of the Computer Science Laboratory at the Xerox Palo Alto Research Center. He is working on the next revolution of computing after workstations, variously known as ubiquitous computing or embodied virtuality. Before working at PARC, he was a professor of computer science at the University of Maryland; he received his Ph.D. from the University of Michigan in 1979. Weiser also helped found an electronic publishing company and a video arts company and claims to enjoy computer programming "for the fun of it." His most recent technical work involved the implementation of new theories of automatic computer memory reclamation, known in the field as garbage collection.

78 THE COMPUTER IN THE 21ST CENTURY

is approachable only through complex jargon that has nothing to do with the tasks for which people use computers. The state of the art is perhaps analogous to the period when scribes had to know as much about making ink or baking clay as they did about writing.

The arcane aura that surrounds personal computers is not just a "user interface" problem. My colleagues and I at the Xerox Palo Alto Research Center think that the idea of a "personal" computer itself is misplaced and that the vision of laptop machines, dynabooks and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of people's lives. We are therefore trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background.

uch a disappearance is a fundamental consequence not of tech-O nology but of human psychology. Whenever people learn something sufficiently well, they cease to be aware of it. When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientist, economist and Nobelist Herbert A. Simon calls this phenomenon "compiling*; philosopher Michael Polanyi calls it the "tacit dimension"; psychologist J. J. Gibson calls it "visual invariants"; philosophers Hans Georg Gadamer and Martin Heidegger call it the "horizon" and the "ready-to-hand"; John Seely Brown of PARC calls it the "periphery." All say, in essence, that only when things disappear in this way are we freed to use them without thinking and so to focus beyond them on new goals.

The idea of integrating computers seamlessly into the world at large runs counter to a number of present-day trends. "Ubiquitous computing" in this context does not mean just computers that can be carried to the beach, jungle or airport. Even the most powerful notebook computer, with access to a worldwide information network, still focuses attention on a single box. By analogy with writing, carrying a superlaptop is like owning just one very important book. Customizing this book, even writing millions of other books, does not begin to capture the real power of literacy.

Furthermore, although ubiquitous computers may use sound and video in addition to text and graphics, that does not make them "multimedia computers." Today's multimedia machine makes the computer screen into a demanding focus of attention rather than allowing it to fade into the background. Perhaps most diametrically opposed

to our vision is the notion of virtual reality, which attempts to make a world inside the computer. Users don special goggles that project an artificial scene onto their eyes; they wear gloves or even bodysuits that sense their motions and gestures so that they can move about and manipulate virtual objects. Although it may have its purpose in allowing people to explore realms otherwise inaccessible-the insides of cells, the surfaces of distant planets, the information web of data bases-virtual reality is only a map, not a territory. It excludes desks, offices, other people not wearing goggles and bodysuits, weather, trees, walks, chance encounters and, in general, the infinite richness of the universe. Virtual reality focuses an enormous apparatus on simulating the world rather than on invisibly enhancing the world that already exists. Indeed, the opposition between the

Reprinted from the September 1991 issue

UBIQUITOUS COMPUTING begins to emerge in the form of live boards that replace challdboards as well as in other devices at the Xerox Palo Alto Research Center. Computer scientists gather around a live board for discussion. Building boards

and integrating them with other tools has helped researchers understand better the eventual shape of ubiquitous computing. In conjunction with active badges, live boards can customize the information they display.

THE COMPUTER IN THE 21ST CENTURY 79

Zero Wave

- Computerless Computing
 - 1930-1940
 - Computers are theoretical technology
 - Church and Turing establish fundamental limits on computability

First Wave

- Main Frame Computing
 - 1960-1970
 - Massive computers to do simple data processing
 - Few computers in the world

Second Wave

- Desktop Computing
 - 1980-1990
 - Business applications drive usage
 - One computer per desk
 - Computers connected in intranets to a massive global network

All wired

Wednesday, November 21, 12

Third Wave

- Ubiquitous Computing
 - 2000 present

- Information creation, access, communication drive usage
- Multiple computers per environment/person
- WANs, LANs, PANs, ad-hoc networking, wireless
- Computers disappearing

First Wave

ar photo, vr photo, green photo

- virtual reality
 - humans enter the computers world

ubiquitous computing

computers enter the human's world

Challenges to HCI Assumptions

- What do we imagine when we think of a computer?
 - "The most profound technologies are those that disappear." Weiser
- 1990's: this was not our imagined computer!
- Single User -> groups -> organizations
- Desktop -> mobile phone -> sensors
- Computing in place -> mobile computing
 Wired -> wireless -> cloud

Synonyms

- Ubiquitous Computing
- Pervasive Computing
- Mobile Computing
- Sensor Networks
- (sort of) Human-Computer Interaction

Variations in Ubicomp

- Embedded Systems
 - Cars
 - Airplanes
 - Smart Control
 - Specialized
 - ASICs
 - Real-time
 - High reliability

15

Variations in Ubicomp

- New devices
 - Hi-tech
 - Silicone-based
 - gadgets
 - PDAs
 - Cellphones (keitai)

16

- mp3 players
- active displays

Variations in Ubicomp

New Infrastructure

- Connecting the existing physical world to a computational scaffold
- ordinary objects re-envisioned
- adding computation to the physical
- adding people to computation
 - Mechanical Turk

Ubiquitous Computing

- Any computing technology that permits human interaction away from a single workstation
- Implications for
 - Technology defining the interactive experience
 - Applications or uses
 - Underlying theories of interaction

Technology: Scales of devices

- Weiser proposed
 - Inch
 - Foot
 - Yard
- Implications for device size as well as relationship to people

Technology: Scales of devices

- Inch
 - smart phones
 - PARCTAB
 - Voice Recorders
- Individuals own many
 of them and they can a

of them and they can all communicate with each other and environment.

Technology: Scales of devices

- Foot
 - notebooks
 - tablets
 - digital paper

 Individual owns several but not assumed to be always with them.

Scales of devices

- Yard
 - electronic whiteboards
 - plasma displays
 - smart bulletin boards
- Buildings or institutions own them and lots of people share them.

Technology: Redefining the Interaction Experience

- Implicit input
 - Sensor-based input
 - Extends traditional explicit input (e.g., keyboard and mouse)
 - Towards "awareness"
 - Use of recognition technologies
 - Introduces ambiguity because recognizers are not perfect
 - Probabilistic interaction is a new paradigm

Technology: Different inputs

- Large-Screen Touch
 - MS Surface
 - <u>http://www.metacafe.com/watch/618189/</u> <u>microsoft surface_computing_the_power/</u>
 - <u>http://www.youtube.com/watch?v=CZrr7AZ9nCY</u>

Overview Images

I

UBICOMP <u>http://www.gsmarena.com/apple_iphone_5-4910.php</u>

GENERAL	2G Network	GSM 850 / 900 / 1800 / 1900 - GSM A1428
		CDMA 800 / 1900 / 2100 - CDMA A1429
	3G Network	HSDPA 850 / 900 / 1900 / 2100 - GSM A1428
		CDMA2000 1xEV-DO - CDMA A1429
	4G Network	LTE 700 MHz Class 17 / 1700 / 2100 - GSM A1428 or LTE 850 / 1800 / 2100 - GSM A1429
		LTE 700 / 850 / 1800 / 1900 / 2100 - CDMA A1429
	SIM	Nano-SIM
	Announced	2012, September
	Status	Available. Released 2012, September
BODY	Dimensions	123.8 x 58.6 x 7.6 mm (4.87 x 2.31 x 0.30 in)
	Weight	112 g (3.95 oz)
DISPLAY	Туре	LED-backlit IPS TFT, capacitive touchscreen, 16M colo
	Size	640 x 1136 pixels, 4.0 inches (~326 ppi pixel density)
	Multitouch	Yes
	Protection	Corning Gorilla Glass, oleophobic coating
SOUND	Alert types	Vibration, proprietary ringtones
	Loudspeaker	Yes
	3.5mm jack	Yes
MEMORY	Card slot	No
	Internal	16/32/64 GB storage, 1 GB RAM
DATA	GPRS	Yes
	EDGE	Yes
	Speed	DC-HSDPA, 42 Mbps; HSDPA, 21 Mbps; HSUPA, 5. Mbps, LTE, 100 Mbps; Rev. A, up to 3.1 Mbps
	WLAN	Wi-Fi 802.11 a/b/g/n, dual-band, Wi-Fi hotspot
	Bluetooth	Yes, v4.0 with A2DP
	USB	Yes, v2.0
CAMERA	Primary	8 MP, 3264x2448 pixels, autofocus, LED flash, <u>check</u> <u>quality</u>
	Features	Simultaneous HD video and image recording, touch focus, geo-tagging, face detection, panorama, HDR
	Video	Yes, 1080p@30fps, LED video light, video stabilization, geo-tagging, check quality
	Secondary	Yes, 1.2 MP, 720p@30fps, face detection, FaceTime over Wi-Fi or Cellular

FEATURES	OS	iOS 6
	Chipset	Apple A6
	CPU	Dual-core 1.2 GHz
	GPU	PowerVR SGX 543MP3 (triple-core graphics)
	Sensors	Accelerometer, gyro, proximity, compass
	Messaging	iMessage, SMS (threaded view), MMS, Email, Push Email
	Browser	HTML (Safari)
	Radio	No
	GPS	Yes, with A-GPS support and GLONASS
	Java	No
	Colors	Black/Slate, White/Silver
ta Pyramid () ()		 Active noise cancellation with dedicated mic Siri natural language commands and dictation iCloud cloud service Twitter and Facebook integration TV-out Maps iBooks PDF reader Audio/video player/editor Organizer Document viewer Image viewer/editor Voice memo/dial/command Predictive text input
Villa 1		Standard battery, Li-Po 1440 mAh (5.45 Wh)
	Stand-by	Up to 225 h (2G) / Up to 225 h (3G)
	Talk time	Up to 8 h (2G) / Up to 8 h (3G)
	Music play	Up to 40 h
MISC	SAR US	1.18 W/kg (head) 1.18 W/kg (body)
	SAR EU	0.95 W/kg (head) 0.90 W/kg (body)
	Price group	めゆめゆゆゆゆゆつ
TESTS	Display	Contrast ratio: 1320:1 (nominal) / 3.997:1 (sunlight)
	Loudspeaker	Voice 66dB / Noise 66dB / Ring 67dB
	Audio quality	Noise -91.3dB / Crosstalk -76.5dB
	Camera	Photo / Video
	Battery life	Endurance rating 51h

http://www.google.com/nexus/4/specs/

Screen

- 4.7" diagonal
- 1280 x 768 pixel resolution (320 ppi)
- WXGA IPS
- Corning® Gorilla® Glass 2

Dimensions

- 133.9 x 68.7 x 9.1 mm
- 139g

http://www.google.com/nexus/4/specs/

Cameras

- 8 MP (main)
- 1.3 MP (front)

http://www.google.com/nexus/4/specs/

- WiFi 802.11 a/b/g/n
- Bluetooth
- NFC (Android Beam)
- Unlocked GSM/UMTS/HSPA+
- GSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)
- 3G (850, 900, 1700, 1900, 2100 MHz)
- HSPA+ 42
- Wireless charging
- SlimPort HDMI

http://www.google.com/nexus/4/specs/

Processor and memory

- 8GB or 16GB (actual formatted capacity will be less)
- 2 GB RAM
- Qualcomm Snapdragon™ S4 Pro CPU

http://www.google.com/nexus/4/specs/

Features

- Android 4.2 (Jelly Bean)
- Accelerometer
- GPS
- Gyroscope
- Barometer
- Microphone
- Ambient light
- Compass

Technology: Different inputs

- Textile Interface Swatchbook
 - <u>http://www.youtube.com/watch?v=NKWWa6BvUts</u>
 - <u>http://www.youtube.com/watch?v=Valtk6pXiHY</u>

Technology: Different outputs

- More than eye-grabbing raster displays
 - Ambient: use features of the physical environment to signal information
 - Peripheral: designed to be in the background
- Examples:
 - Dangling String
 - Osaka Ferris Wheel
 - image

Technology: Merging Physical and Digital Worlds

- How can we remove the barrier?
 - Actions on physical objects have meaning electronically, and vice versa
 - Output from electronic world superimposed on physical world

Microbiology Tray and Pipette Tracking as a Proactive Tangible User Interface, Hile et.al.

Application Themes

- Context-aware computing
 - Sensed phenomena facilitate easier interaction
- Automated capture and access
 - Live experiences stored for future access
- Toward continuous interaction
 - Everyday activities have no clear begin-end conditions

New Opportunities for Theory

- Knowledge in the world
 - Ubicomp places more emphasis on the physical world
- Activity theory
 - Goals and actions fluidly adjust to physical state of world
- Situated action and distributed cognition
 - Emphasizes improvisational/opportunistic behavior versus planned actions
- Ethnography
 - Deep descriptive understanding of activities in context

Simultaneous Multi-Scale Input and Output

- Screens
 - Of many sizes
- Distributed in space, but coordinated

- Nokia Morph Concept
 - <u>http://www.youtube.com/watch?v=IX-gTobCJHs</u>

RFID (now "NFC")

Radio Frequency IDentification tags

- are small, durable, cheap
- have no batteries
- are designed to replace barcodes

• GUID

RFID (now "NFC")

- Radio Frequency IDentification tags
 - are small, durable, cheap
 - have no batteries
 - are designed to replace barcodes

• GUID

RFID

- The biggest challenges for technology engineering in UBICOMP:
 - Creating reusable libraries
 - Creating reusable patterns
 - Creating reusable infrastructure
- That work in more than one deployment

How are we going to manage all of these devices?

Who is going to manage all of these devices?

Who is going to manage the infrastructure when the computers enter the human's world?

Who is going to manage all of these devices?

Who is going to manage the infrastructure when the computers enter the human's world?

The professionals!

Who is going to manage all of these devices?

Who is going to manage the infrastructure when the computers enter the human's world?

The professionals!

Enter cloud computing....

Cloud computing

is several

{visions, architectures, infrastructures}
 that transform computing from a
 {capital investment, product}
 .
.

into a
{utility, service}

Cloud computing

is several

{visions, architectures, infrastructures}

that transform computing from a

{capital investment, product}

into a

{utility, service}

Why now? What has changed?

- Connectivity
- Smart phones
- System Virtualization
- Security Threats
- Sentient browser applications

- Smart phones
- System Virtualization
- Security Threats
- Sentient browser applications

Greece (5.3 mbps average)

Greece

(5.3 mbps average)

Austria

(23.4 mbps highest average peak connection speed)

Greece

(5.3 mbps average)

Austria

(23.4 mbps highest average peak connection speed)

"average connection speeds increased by more than 100% year-over-year at 22 mobile providers" -akamai

Why now? What has changed?

- Connectivity
- Smart phones
- System Virtualization
- Security Threats
- Sentient browser applications

Why now? What has changed?

- Connectivity
- Smart phones
 - System Virtualization
- Security Threats
- Sentient browser applications

Smart Phones

Smart Phones

Wednesday, November 21, 12