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Abstract. Measuring the locations of people in a building is an important part 
of ubiquitous computing. We present new hardware and software for this pur-
pose. The hardware, called SmartMoveX, is an active badge system in which a 
small radio transmitter is attached to the person being tracked. Receivers placed 
in the building’s existing offices, connected to existing PCs, transmit signal 
strength readings to a central PC using the building’s existing computer net-
work. Combined with the low cost of the hardware, using the existing network 
makes this active badge system much less expensive than many others. To com-
pute locations based on signal strength, we gathered signal strength readings 
from predefined location nodes in the building. We defined a graph on these 
nodes, which allowed us to enforce constraints on computed movements be-
tween nodes (e.g. cannot pass through walls) and to probabilistically enforce 
our expectations on transitions between connected nodes. Modeling the data 
with a hidden Markov model, we used the Viterbi algorithm to compute optimal 
paths based on signal strengths over the node graph. The average location error 
was 3.05 meters, which compared favorably to a simple nearest neighbor algo-
rithm’s average location error of 4.57 meters. 

1   Introduction 
Knowing the indoor location of people is widely considered to be a key enabler of 
ubiquitous computing applications. This paper presents a new active badge system for 
this purpose. The two hardware components of our system are shown in Figure 1(a). 
The badge is worn by a person, and it transmits radio frequency (RF) signals to sev-
eral receivers placed around the building. The receivers measure the RF signal 
strength from the badge transmissions. The signal strengths of the receptions are com-
bined to compute the location of the badge in a tracking algorithm based on a hidden 
Markov model (HMM) defined on a graph of discrete locations in the building. 

One of the system’s features is its low cost, partly due to its low parts cost. The 
parts for a badge transmitter cost about US$ 6, for a receiver about US$ 16. The ma-
jor cost saving, however, comes from reusing the building’s existing computer net-
work instead of requiring a custom network as many active badge systems do. Each of 
the receivers is connected to a normal PC via an RS-232 serial cable. When a receiver 
receives a badge transmission, it sends data to its host PC, which in turn forwards the 
data over the building’s existing network to a central PC for storage and analysis. In a 
real implementation, the receivers would be placed in occupied offices and connected 
to existing PCs. These PCs would each run our very light-weight data-forwarding 



 

program in the background, shown in Figure 1(b). In our implementation, we used 
four receivers to cover 350 square meters. Not counting the cost of the badges nor any 
PCs, and considering the existing network infrastructure as free, this works out to a 
cost of about US$ 0.18/square meter. 

The location of the badge is measured based on the signal strengths of the RF re-
ceptions at all the receivers. We match the live signal strengths with a set of calibra-
tion signal strengths taken from a set of known, discrete positions (“nodes”) in the 
building, shown in Figure 2. We implemented a simple nearest-neighbor algorithm 
that matched the live measurements with the closest set of training measurements. This 
gave a mean location error of 4.57 meters. We implemented another algorithm that 
confined the badge’s path to physically possible paths between the nodes as shown in 
Figure 2. Based on an HMM, this algorithm reduced the average error of our location 
measurements to 3.05 meters. While we show this algorithm working on signal 
strengths from our own badge hardware, it would apply to many other forms of sen-
sor-based tracking in a building, including other active badge systems and signal 
strengths from a wireless network. 

2   SmartMoveX Active Badge and Network Data Logger 

The hardware for our active badge system is called SmartMoveX and was invented at 
Microsoft Research in Cambridge, UK. SmartMoveX consists of a small radio trans-
mitter that transmits 433 MHz FM to multiple receivers as shown in Figure 1(a). Each 
transmission packet contains an ID number of the transmitter, a measured physical 
activity level, and an incrementing transmission counter to help detect missed trans-
missions. The transmitter uses a PIC microcontroller to read and control the functions 

  

(a) (b) 

Fig. 1. (a) The badge transmitter is on the left, with buttons for on, off, one-time transmit 
and periodic transmit. The receiver, on the right, is powered externally and connects to a PC 
via RS-232. The receiver measures the signal strength of transmissions from the badge. The 
pen is just a pen. (b) This is a screen shot of our data logging program. Each receiver is 
connected to a host PC running an instance of this program, which retransmits data records 
to a central SQL Server database. 



 

of a tilt switch, tilt angle sensor, the transmitter itself, and four outside buttons. The tilt 
switch is used to shut off the transmitter after a minute of inactivity and to turn it on 
again when it moves, thus saving battery power. The physical activity of the transmit-
ter is measured by how many times the tilt angle sensor measures an angle beyond a 
preset threshold. Although we don’t use this information in our tracking application, it 
could be used to infer users’ activities like running, walking, and sitting. In our ex-
periments, we used the transmitter’s periodic transmit mode which gave a new trans-
mission every one second. The cost estimate of US$ 6 per transmitter is based on a 
transmitter without the tilt switch and tilt sensor, as they are not integral to the loca-
tion-tracking problem we address in this paper. 

The SmartMoveX receiver is a small box with connections for DC power and RS-
232. It has a 15cm antenna with which to receive transmissions. Each transmission is 
demodulated by a receiver chip which also generates a digital radio signal strength 
indicator (RSSI). The transmission data (ID, physical activity level, transmission 
counter) and RSSI are sent to a serial communications chip which forwards the data 
out the RS-232 port to the host PC. 

On each host PC we have a logging program listening to the receiver, as shown in 
Figure 1(b). Upon receipt of a transmission record from the receiver, this program 
forwards the data to a SQL Server database on a single central PC. Gathering all the 
records in a database allows us to run queries and computations on the transmission 
data and allows us to run offline experiments for tracking such as was done for this 
paper. 

3   Spatial Representation and Calibration 
Each RF transmission from a mobile transmitter is heard by all the receivers in the 
area, resulting in a column vector of signal strength readings, s . In our case we used 
four receivers, so each signal strength vector had four scalar elements. In open space 
we might expect the signal strength to fall off with the square of the distance between 
the transmitter and receiver. Unfortunately, this simple relationship does not necessar-
ily hold, as shown by an experiment in [1] using hardware similar to ours. In a con-
tinuation of this work, [2] went on to use the more sophisticated path loss model of 
Seidel and Rapport[3], which was found to fit the data better. This model was also 
used by [4] to account for attenuation due to walls. However, it is still difficult to 
predict the effect of furniture, devices, and people on signal strength, particularly if 
the locations of these things are unknown. In fact [4] found that their analytical model 
of signal strengths worked significantly worse than their pure empirical model for 
measuring locations within a multi-room building. 

Based on the difficulty of analytically modeling signal strengths, we adopted an 
empirical approach to predicting signal strengths similar to the RADAR system of [4]. 
For this approach we took a series of calibration signal strength readings at predefined 
node locations in our building, shown in Figure 2. We manually picked the node posi-
tions, generally one for each office, one for each office-size rectangle in larger rooms, 
and one outside each door in the hallways. For each of the 42=N  nodes, we call the 
calibration signal strength readings ( )j

is , where  i  indexes the node ( 10 −= Ni K ), 

and j  indexes the iN  calibration samples at that node. Each ( )j
is  is a vector of four 



 

signal strengths, one from each receiver. We took a total of 1256 calibration signal 
strength vectors. The number of calibration vectors taken for each node varied from 
12 to 50, with an average of 30. 

We took the calibration readings in about 30 minutes by walking around with a lap-
top PC wirelessly connected to our building’s network running the calibration pro-
gram shown in Figure 2. At each node the walker rotated and moved in an effort to 
sample the likely positions and orientations of a person wearing a transmitter near that 
node. We note that our sampling of signal strengths at the nodes was not meant to 
measure the frequency of occurrence of signal strengths. Instead, we just tried to sam-
ple all the signal strength vectors that we would likely measure at each node. For this 
reason, it did not make sense to try to summarize the training data with a histogram or 
probability distribution function. 

We gathered test data by walking on two prescribed paths through the nodes with a 
transmitter pinned to the front of the walker’s shirt. The transmitter was set to periodi-
cally transmit at a one second interval, which resulted in a sequence of time-stamped 
signal strength vectors ( )is . We computed the walker’s speed by summing the dis-

tances between the visited nodes and dividing by the elapsed time of the walk. Using 
this speed and the distances between the nodes, we could estimate the walker’s nearest 
node for each of the time-stamped test transmissions. In total, our ground truth data 
consisted of 140 transmissions, each characterized by the closest node and a vector of 
four signal strengths. 

4 Nearest Neighbor Location Measurement 

The general procedure for measuring the location of a transmitter is to compare its 
latest signal strength vector s  against the calibration signal strength vectors described 
above. We implemented a simple nearest-neighbor location algorithm, similar to 
RADAR[4], as a baseline against which to test our more sophisticated graph-based 

 

Fig. 2. This is a screen shot of our manual calibration program. It shows the layout of the 
rooms, the nodes, and connections between the nodes. The locations of the four receivers are 

shown with a . 



 

algorithm described in the next section. The nearest neighbor algorithm simply finds 
the ( )j

is  with the minimum Euclidian distance to s  and declares the transmitter to be at 

the node from which this ( )j
is  came. This computation is relatively fast with only 1256 

calibration vectors to compare to, certainly fast enough to keep up with the 1 Hz 
transmission rate of the transmitter. 

We quantified the results by computing the Euclidian distances between the com-
puted and actual nodes. The average error for our 140 test nodes was 4.57 meters. The 
distribution of error distances is shown in Figure 3. 

5   Tracking on a Graph 
The nearest neighbor algorithm ignores any adjacency relationships between the 
nodes, so it allows instantaneous transitions between nodes that are separated by a 
wall and/or an arbitrarily large distance. We found we could improve the performance 
of the system significantly by adding path constraints that only allow physically real-
izable paths through the nodes. In fact, using this constraint reduced the mean error 
from 4.57 meters in the nearest neighbor case to 3.05 meters, using the same calibra-
tion data. 

5.1   Graph and Transition Probabilities 

We instantiated the constraints with the manually constructed graph of nodes 
shown in Figure 2. The connections between the nodes show which paths we allow. 
This is an easy way of preventing paths from going through walls and of preventing 
superhuman transitions between distant nodes. We also attached transition probabili-
ties between connected nodes as a soft constraint on the likelihood of moving between 
nodes or remaining at the current node. We assigned the transition probabilities manu-
ally based on our assumptions about people’s behavior. For instance, we assumed that 
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Fig. 3. These histograms show the distribution of errors measured in meters between the 
actual nodes and computed nodes for 140 test nodes. The Graph Method, using the Viterbi 
algorithm, makes fewer overall errors in picking the right node (0 column), and has a lower 
mean error of 3.05 meters compared to 4.57 meters for the Nearest Neighbor method. 



 

the probability of moving from a node in an office to the node outside the office’s 
door was 0.05 in the one-second interval between transmissions, with the remaining 
0.95 being the probability of remaining at the office node. We define jia →  as the 

probability of transitioning from node i to node j, and we pick the transition probabili-

ties such that 0≥→ jia  and 1
1

0
=∑ −

= →
N

j jia , where N  is the number of nodes. We note 

that iia →  indicates the probability of staying at node i, and it is never zero for our 

model. To eliminate the possibility of transitioning between node i and j, we simply 
set 0=→ jia . 

Another a priori set of probabilities that we need is the probability of starting a 
path at node i  as which we denote as iπ . Since we have no prior knowledge of where 

a path starts, we set Ni 1=π , where N  is the number of nodes. 

5.2   Hidden Markov Model 

The graph, initial state probabilities, and transition probabilities represent our a priori 
knowledge of people’s behavior. The remaining element in tracking location is the 
signal strength data. The standard way to combine uncertain measurement data, dis-
crete states, and transition probabilities between the states is a hidden Markov model 
(HMM)[5]. 

The “Markov” part of the HMM is manifested in our transition probabilities. We 
will say the sequence of nodes in a person’s path up to time 1−i is { }1210 ,,,, −innnn K . 

The first-order Markov assumption says that the probability of transitioning to some 
node in  at time i is a function only of node 1−in  and not any of the other previous 

nodes. Stated as an equation: 
 

( ) ( )
ii nniiiii annPnnnnP →−−− −

==
11021 ,,, K  (1) 

 
The “hidden” part of the HMM has to do with the signal strength vectors which are 

probabilistically related to the node in  via the probability distribution func-

tion ( )inP s . Our approach to computing this was to use the training data we originally 

gathered for our nearest neighbor algorithm described in Section 4. We gathered this 
data by stopping at every node, turning and slightly moving, while recording signal 
strengths. This was intended to capture a series of plausible signal strength vectors, 
but not intended to capture their frequency of occurrence. To compute ( )inP s  from 

this data, we first find the nearest neighbor calibration vector at the node in : 
( )j
nn i

in
i

sss −=
−=

∗

1N0j
min
K

 (2) 

Where, as a reminder, 
inN  is the number of calibration vectors at node in , and ( )j

ni
s  

are the calibration vectors at node in . The assumption here is that the calibration 

vector from node in  that most closely matches s  corresponds to the physical pose of 

the walker at that node that produced s . The probabilistic part of the observation 



 

probability function comes from the signal noise inherent in a series of signal strength 
readings from a stationary transmitter, which we model as Gaussian. An experiment 
with our hardware suggests that the noise standard deviation of signal strength is ap-
proximately one unit. Taking ∗

ins  as the mean and assuming statistical independence 

among the four receivers, the observation probability function is 
 

( ) ( )
( ) ( )∗−∗ −Σ−−

Σ
= in

T

in

enP i

ssss
s

1

2
1

5.04
2

1

π
 (3) 

where the covariance matrix Σ  is the 4x4 identity matrix scaled by the standard devia-
tion of the signal strength readings, which we measured to be approximately one. 

With the initial state probabilities, transition probabilities, and observation prob-
abilities, we can compute the probability of a given path through the nodes given the 
signal strength readings. The relevant parts are: 

 
Transmission times { }1210 ,,,, −Ttttt K  

Nodes along path { }1210 ,,,, −= Tnnnn KN  

Measured signal strengths ( ) ( ) ( ) ( ){ }1210 ,,,, −= Ttttt ssssS K  

Data likelihood ( ) ( )( )∏
−

=
→→→ −−

=
1

0
1221100

T

i
iinnnnnnn ntPaaaP

TT
sNS Kπ  

 
Given a set of signal strengths S , we would like to find the path ∗N  that maximizes 

the data probability ( )NSP . The Viterbi algorithm, described nicely in [5], gives an 

efficient way of finding ∗N  by considering all the data up to and including the current 
time. 

Using the Viterbi algorithm along with the transition probabilities and observation 
probability function, we achieved an average location error of 3.05 meters compared 
to an average error of 4.57 meters for the nearest neighbor algorithm described previ-
ously. The distribution of errors is shown in Figure 3. We attribute this improvement 
to three factors: 

1. The graph limits paths to only those that are physically possible. 
2. The transition probabilities encourage paths that conform to our a priori 

expectations of people’s behavior. 
3. The Viterbi algorithm uses all the data up to and including the current 

time to compute the most likely current node. The nearest neighbor algo-
rithm using only the current signal strength vector. 

6   Comparisons to Similar Systems 

Active badge location systems date back to the work of Olivetti Research Laboratory 
in 1989[6], which used diffuse infrared to measure proximity. Other location meas-
urement systems since then have used ultrasound, RF signal strength, and RF time of 
flight. An excellent taxonomy and survey of these systems can be found in [7]. 



 

We will compare our system against technologies with similar hardware or soft-
ware. The most similar existing hardware is from the company RFIDeas Inc. Their 
“AirID” product allows users approaching a PC to be automatically logged on by 
virtue of their wearing a badge transmitting RF[8]. Although this system was not de-
signed to measure location in a building, Hightower et al.[1] investigated its use for 
location measuring in a room. They measured 3D location based on multiple receivers 
and an empirically derived function giving signal strength as a function of distance to 
the receiver. The hardware limited signal strength measurements to two bits, which in 
turn limited the system’s resolution to a cube of three meters on a side. 

One of our system’s advantages is its low infrastructure cost. There are systems 
with theoretically even less expensive infrastructure costs, such as the SpotOn hard-
ware by Hightower et al. [1] and the “Positioning by Diffusion” idea from Spratt[9]. 
Both these systems can theoretically operate with no fixed base stations, although real 
world test results have not been published yet. MIT’s Cricket[10] location-support 
system uses non-networked, ceiling-mounted ultrasonic transmitters whose cost per 
unit is about the same as our RF receivers, making its infrastructure cost similar to 
ours. Randell and Muller[11] describe a similar system with much higher spatial reso-
lution and low cost. Both the infrared Active Badge and ultrasonic Active BAT[12] 
from AT&T Cambridge require their own dedicated network to connect statically 
mounted base stations, which is expensive. 

Another closely related system, both in terms of hardware and software, is 
RADAR[4], which comes from our colleagues at Microsoft Research. The Nibble[13] 
system also uses 802.11 signals to compute locations in a building. Interestingly, it 
uses the measured signal-to-noise ratio instead of absolute signal strength. Nibble is 
based on a Bayesian network to compute the probability of being at any of a set of 
discrete locations in the building, much like our system. Nibble’s Bayesian network 
also supports the inclusion of transition probabilities between nodes. 
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