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A Robust Crawl Architecture
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Duplicate Elimination 

• For a one-time crawl 

• Test to see if an extracted,parsed, filtered URL 

• has already been sent to the frontier. 

• has already been indexed. 

• For a continuous crawl 

• See full frontier implementation: 

• Update the URL’s priority 

• Based on staleness 

• Based on quality 

• Based on politeness



Distributing the crawl

• The key goal for the architecture of a distributed crawl is 

cache locality 

• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness 

• Geographically distributed for speed 

• Partition the hosts being crawled across nodes 

• Hash typically used for partition 

• How do the nodes communicate?
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URL Frontier

• Freshness 

• Crawl some pages more often than others 

• Keep track of change rate of sites 

• Incorporate sitemap info 

• Quality 

• High quality pages should be prioritized 

• Based on link-analysis, popularity, heuristics on content 

• Politeness 

• When was the last time you hit a server?



URL Frontier

• Freshness, Quality and Politeness 

• These goals will conflict with each other 

• A simple priority queue will fail because links are bursty 

• Many sites have lots of links pointing to themselves 

creating bursty references 

• Time influences the priority 

• Politeness Challenges 

• Even if only one thread is assigned to hit a particular host it 

can hit it repeatedly 

• Heuristic : insert a time gap between successive requests



Magnitude of the crawl

• To fetch 1,000,000,000 pages in one month... 

• a small fraction of the web 

• we need to fetch 400 pages per second ! 

• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough



• Introduction 

• URL Frontier 

• Robust Crawling 

• DNS 

• Various parts of architecture 

• URL Frontier 

• Index 

• Distributed Indices 

• Connectivity Servers

Overview

Web Crawling Outline
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URL Frontier Implementation - Mercator 

• URLs flow from top to bottom 

• Front queues manage priority 

• Back queue manage politeness 

• Each queue is FIFO

Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf


URL Frontier Implementation - Mercator

• Prioritizer takes URLS and assigns a 

priority 

• Integer between 1 and F 

• Appends URL to appropriate queue 

• Priority 

• Based on rate of change 

• Based on quality (spam) 

• Based on application

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



URL Frontier Implementation - Mercator

• Selection from front queues is 

initiated from back queues 

• Pick a front queue, how? 

• Round robin 

• Randomly 

• Monte Carlo 

• Biased toward high priority

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Each back queue is non-empty 

while crawling 

• Each back queue has URLs from 

one host only 

• Maintain a table of URL to back 

queues (mapping) to help

Back queues
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URL Frontier Implementation - Mercator

• Timing Heap 

• One entry per queue 

• Has earliest time that a host can 

be hit again 

• Earliest time based on 

• Last access to that host 

• Plus any appropriate heuristic 

• robots.txt “crawl-delay” 

• sitemaps instruction

Back queues
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URL Frontier Implementation - Mercator

• A crawler thread needs a URL 

• It gets the timing heap root 

• It gets the next eligible queue 

based on time, b. 

• It gets a URL from b 

• If b is empty 

• Pull a URL v from front queue 

• If back queue for v exists place 

it in that queue, repeat. 

• Else add v to b - update heap.

Back queues
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URL Frontier Implementation - Mercator

• How many queues? 

• Keep all threads busy 

• ~3 times as many back queues 

as crawler threads 

• Web-scale issues 

• This won’t fit in memory 

• Solution 

• Keep queues on disk and 

keep a portion in memory.
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URL Frontier Implementation - Mercator - walk through the process 
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Indices

• Why does the crawling architecture exists? 

• To gather information from web pages (aka documents). 

• What information are we collecting? 

• Keywords 

• Mapping documents to a “bags of words” (aka vector 

space model) 

• Links 

• Where does a document link to? 

• Who links to a document?

The index



Indices

The index has a list of vector space models
   1 2500
   1 I
   1 a
   1 after
   1 and
   1 arrest
   1 at
   1 beach
   1 beer
   6 bieber
   1 bond
   1 breaking
   1 celeb
   1 charges
   1 cnn
   1 did
   1 do
   1 drag
   1 dui
   1 f
   1 face
   1 facing
   1 full
   1 having
   1 in
   1 judge
  

   2 justin
   1 lamborghini
   1 miami
   1 mugshots
   1 news
   1 other
   2 photos
   1 pills
   1 police
   1 pot
   1 racing
   1 report
   1 say.
   1 see
   1 set
   1 singer
   1 story
   1 the
   1 tv
   1 was
   1 watch
   1 what
   1 yellow

1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Indices

Our index is a 2-D array or Matrix
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Indices

“Term-Document Matrix” Capture Keywords
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Indices

• Is really big at a web scale 

• It must be split up into pieces 

• An effect way to split it up is to split up the same way as the 

crawling 

• Equivalent to taking vertical slices of the T-D Matrix 

• Helps with cache hits during crawl 

• Later we will see that it needs to be rejoined for calculations 

across all documents

The Term-Document Matrix




