Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org

Robust Crawling

A Robust Crawl Architecture

DNS

Fetch

Parse

__ —

Finger-
prints

Seen? +——»

P
Robots.txt

URL
Filter

A
URL
Index

Duplicate
Elimination

URL Frontier Queue

Duplicate Elimination

® For a one-time crawl

e Testto see if an extracted,parsed, filtered URL

® has already been sent to the frontier.

® has already been indexed.
® For a continuous crawl
e See full frontier implementation:
e Update the URL's priority
¢ Based on staleness
e Based on quality

e, Based gn politepess

Distributing the crawl

e The key goal for the architecture of a distributed crawl is
cache locality

e We want multiple crawl threads in multiple processes at
multiple nodes for robustness
e Geographically distributed for speed

e Partition the hosts being crawled across nodes

e Hash typically used for partition

e How do the nodes communicate?

Robust Crawling

The output of the URL Filter at each node is sent to the Duplicate

Eliminator at all other nodes
S A
Robots.txt URL
Index

To Other Nodes

I

URL Host Duplicate
Filter Splitter Elimination

DNS

Parse

Fetch

From Other
Nodes

URL Frontier Queue

® Freshness

e Crawl some pages more often than others
e Keep track of change rate of sites
® |ncorporate sitemap info
e Quality
e High quality pages should be prioritized
e Based on link-analysis, popularity, heuristics on content

® Politeness

e \When was the last time you hit a server?

® Freshness, Quality and Politeness

® These goals will conflict with each other
e A simple priority queue will fail because links are bursty
e Many sites have lots of links pointing to themselves
creating bursty references
¢ Time influences the priority

e Politeness Challenges

e Even if only one thread is assigned to hit a particular host it
can hit it repeatedly

e Heuristic : insert a time gap hetween successive requests

l'"\\\
1

Magnitude of the crawl

e To fetch 1,000,000,000 pages in one month...
® 3 small fraction of the web
e we need to fetch 400 pages per second |

e Since many fetches will be duplicates, unfetchable, filtered,

etc. 400 pages per second isn’t fast enough

Web Crawling Ouitline

Overview
® |ntroduction

e URL Frontier
e Robust Crawling
e DNS
e Various parts of architecture
e URL Frontier
® |ndex
e Distributed Indices

Connectivity Servers

Robust Crawling

The output of the URL Filter at each node is sent to the Duplicate

Eliminator at all other nodes
S A
Robots.txt URL
Index

To Other Nodes

I

URL Host Duplicate
Filter Splitter Elimination

DNS

Parse

Fetch

From Other
Nodes

URL Frontier Queue

URL Frontier Implementation - Mercator

e URLs flow from top to bottom

Prioritizer
;41 g . ¢ Front queues manage priority

X
F "Front"
Queues

l Front Queue Selector

e Back queue manage politeness

e Each queue is FIFO

l Back Queue Router
B

B "Back"
Queues

Host to Back Queue
Mapping Table

Back Queue Selector ' Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

URL Frontier Implementation - Mercator

® Prioritizer takes URLS and assigns a
Front queues

priority
- l ® |nteger between1andF
rioritizer
; e Appends URL to appropriate queue
® Priority
F "Front"
Queues e Based on rate of change

¢ Based on quality (spam)

Front Queue Selector . .
e Based on application

URL Frontier Implementation - Mercator

Back queues ® Selection from front queues is
v
Back Queue Router Host to Back Queue initiated from back gqueues
Mapping Table
e ° ® Pick a front queue, how?
B "Back"” ¢ Round robin
Queues

e Randomly

\

' Back Queue Selector |<—>l Timing Heap I @ Mon‘[e Cal’lO

® Biased toward high priority

URL Frontier Implementation - Mercator

Back queues e Each back queue is non-empty
Y
Back Queue Router Host to Back Queue while Craning
Mapping Table
i ° ® Each back queue has URLs from
3 Back one host only

¢ Maintain a table of URL to back

\ .
' Back Queue Selector |<—>l Timing Heap I queues (mapplng) tO help

URL Frontier Implementation - Mercator

Back queues * Timing Heap
Back Qu:ue Router Hostto Back Queue | One entry per queue
Mapping Table
17 2 : ® Has earliest time that a host can
| | & "Bk be hit again
Queues
& e FEarliest time based on
\

%—M ® Last access to that host
e Plus any appropriate heuristic

¢ robots.txt “crawl-delay”

® sitemaps instruction

URL Frontier Implementation - Mercator

e A crawler thread needs a URL
Back queues
v

Back Queue Router Host to Back Queue
Mapping Table

— - ® |t gets the next eligible queue

|,——‘/|?—£ based on time, b.

B "Back"
& &\ Hueues e |tgetsa URL from b
\ O

If b is empty

® |t gets the timing heap root

e Pulla URL v from front queue

If back queue for v exists place

it in that queue, repeat.

lse.add v to b |- update heap.

/’J.\(\
1

URL Frontier Implementation - Mercator

Back queues ¢ How many queues?
. Qu:ue -, rsoecaes |l ® Keep all threads busy
Mapping Table
1 2 5 e -3times as many back queues

Queues

E I as crawler threads
ack

® \Web-scale issues

\

iz e] This woritfitin memory
e Solution

e Keep gqueues on disk and

keep a portion in memory.

URL Frontier Implementation - Mercator - walk through the process

l Prioritizer I
1 2 F

e V4

F "Front"
Queues

l Front Queue Selector

Back Queue Router Host to Back Queue
Mapping Table
1 2 B

B "Back"
Queues

Back Queue Selector [+ Timing Heap

V9 T B
000 '

http://research.microsoft.com/~najork/mercator.pdf

Web Crawling Ouitline

Overview

¢ |ntroduction

e URL Frontier

e Robust Crawling
e DNS
e Various parts of architecture
e URL Frontier

® |ndex

e Distributed Indices

onNe Gl Sc S
!

The index
e Why does the crawling architecture exists?

e To gather information from web pages (aka documents).
¢ \What information are we collecting?
e Keywords
¢ Mapping documents to a “bags of words” (aka vector
space model)
® links

® \Where does a document link to?

o ho links to a document

The index has a list of vector space models

Bieber bond set at $2,500

Singer facing DUI,
other charges

Justin Bieber was drag racing in a
yellow Lamborghini after having beer,
pot and pills, Miami Beach police say.
FULL STORY

Clicktoplay [»

* Bieber: What the f*** did | do? "=1

+ See Justin Bieber face judge "-1

« Watch CNN TV "=l | Arrest report

* Photos: Bieber =/ | Celeb mugshots

HMIAMIZDADE{CORRECTIONSJAND|REHAEILITATION|DEEARTHMEN

1 2500
11

1a

1 after
1 and

1 arrest
1 at

1 beach
1 beer
6 bieber
1 bond

1 breakincg

celeb

1 charges

1 cnn

1 did

1 do

1 drag
1 dui
1f

1 face
1 facing
1 full

1 having
1in

1 judge

2 justin
1 lamborghini
1 miami
1 mugshots
1 news
1 other
2 photos
1 pills

1 police
1 pot

1 racing
1 report
1 say.

1 see

1 set

1 singer
1 story

1 the
1tv

1 was

1 watch
1 what

1 yellow

| x
1111111116111 111111111111121111121111111111111111

| N1

Our index is a 2-D array or Matrix

A Column for Each Web Page (or “Document”)

A Row For Each Word (or “Term”)

O R S 20 "N " ' A T iy M A A Ao S T N N S <2 M A A Ay
o S T N O O N " " S i M O T M M 20 0 J "y A Sy A Ay Ay Ay
FOOLEFLLOOLLEEFLELELEEOLELELLOOOLELLEYPELOOO

“Term-Document Matrix” Capture Keywords

A Column for Each Web Page (or “Document”)

A Row For Each Word (or “Term”)

O R S 20 "N " ' A T iy M A A Ao S T N N S <2 M A A Ay
o S T N O O N " " S i M O T M M 20 0 J "y A Sy A Ay Ay Ay
FOOLEFLLOOLLEEFLELELEEOLELELLOOOLELLEYPELOOO

The Term-Document Matrix
e |sreally big at a web scale

® |t must be split up into pieces

e An effect way to split it up is to split up the same way as the
crawling
e Equivalent to taking vertical slices of the T-D Matrix
e Helps with cache hits during crawl

e |ater we will see that it needs to be rejoined for calculations

across all documents

