
Web Crawling
Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

• Links

• Where does a document link to?

• Who links to a document?

The index

Indices

The index has a list of vector space models
 1 2500
 1 I
 1 a
 1 after
 1 and
 1 arrest
 1 at
 1 beach
 1 beer
 6 bieber
 1 bond
 1 breaking
 1 celeb
 1 charges
 1 cnn
 1 did
 1 do
 1 drag
 1 dui
 1 f
 1 face
 1 facing
 1 full
 1 having
 1 in
 1 judge

 2 justin
 1 lamborghini
 1 miami
 1 mugshots
 1 news
 1 other
 2 photos
 1 pills
 1 police
 1 pot
 1 racing
 1 report
 1 say.
 1 see
 1 set
 1 singer
 1 story
 1 the
 1 tv
 1 was
 1 watch
 1 what
 1 yellow

1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Indices

Our index is a 2-D array or Matrix

1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 3

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 1

A Column for Each Web Page (or “Document”)
A

 R
o

w
 F

o
r

E
a

c
h

 W
o

rd
 (

o
r

“
Te

rm
”
)

...........

1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 3
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 2

0
 0

 0
 1

 1
 4

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 2

Indices

“Term-Document Matrix” Capture Keywords

1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 3

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 1

A Column for Each Web Page (or “Document”)
A

 R
o

w
 F

o
r

E
a

c
h

 W
o

rd
 (

o
r

“
Te

rm
”
)

...........

1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 3
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 2

0
 0

 0
 1

 1
 4

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 2

Indices

• Is really big at a web scale

• It must be split up into pieces

• An effect way to split it up is to split up the same way as the

crawling

• Equivalent to taking vertical slices of the T-D Matrix

• Helps with cache hits during crawl

• Later we will see that it needs to be rejoined for calculations

across all documents

The Term-Document Matrix

Indices - Connectivity Server

• Other part of reason for crawling

• Supports fast queries on the web graph

• Which URLS point to a given URL (in-links)?

• Which URLS does a given URL point to (out-links)?

• Applications

• Crawl control

• Web Graph Analysis

• Link Analysis (aka PageRank)

• Provides input to “quality” for URL frontier

Connectivity Server

Indices - Connectivity Server

Adjacency Matrix - Conceptual Idea
A B

C

A

B

C

A B C

0 1 1

0 0 0

0 0 1

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Set of neighbors of a node

• Assume each URL represented by an integer

• i.e. 4 billion web pages need 32 bits per URL

• Naive implementation requires 64 bits per link

• 32 bits to 32 bits

Connectivity Server in practice

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Non-naive approach is to exploit compression

• Similarity between lists of links

• Locality (many links go to “nearby” links)

• Use gap encodings in sorted lists

• Leverage the distribution of gap values

Connectivity Server in practice

Indices - Connectivity Server

• Current state of the art is Boldi and Vigna

• http://www2004.org/proceedings/docs/1p595.pdf

• They are able to reduce a URL to URL edge

• From 64 bits to an average of 3 bits

• For a 118 million node web graph

• How?

Connectivity Server in practice

http://www2004.org/proceedings/docs/1p595.pdf

Indices - Connectivity Server

• Consider a lexicographically ordered list of all URLS, e.g:

• http://www.ics.uci.edu/computerscience/index.php

• http://www.ics.uci.edu/dept/index.php

• http://www.ics.uci.edu/index.php

• http://www.ics.uci.edu/informatics/index.php

• http://www.ics.uci.edu/statistics/index.php

Connectivity Server in practice

http://www.ics.uci.edu/computerscience/index.php
http://www.ics.uci.edu/dept/index.php
http://www.ics.uci.edu/index.php
http://www.ics.uci.edu/informatics/index.php
http://www.ics.uci.edu/statistics/index.php

Indices - Connectivity Server

• Each of these URLs has an adjacency list

• Main idea: because of templates, the adjacency list of a node

is similar to one of the 7 preceding URLs in the lexicographic

ordering.

• So, express adjacency list in terms of a template

Connectivity Server in practice

Indices - Connectivity Server

• Consider these adjacency lists

• 1, 2, 4, 8, 16, 32, 64

• 1, 4, 9, 16, 25, 36, 49, 64

• 1, 2, 3, 5, 6, 13, 21, 34, 55, 89, 144

• 1, 4, 8, 16, 25, 36, 49, 64

• Encode this as row(-2), -URL(9), +URL(8)

• Very similar to tricks done in assembly code

Connectivity Server in practice

Indices - Connectivity Server

• The web is enormous

• A naive adjacency matrix would be several billion URLS on a

side

• Overall goal is to keep the adjacency matrix in memory

• Webgraph is a set of algorithms and a java implementation

for examining the web graph

• It exploits the power law distribution to compress the

adjacency matrix very tightly

• http://webgraph.dsi.unimi.it/

Connectivity Server in practice summary

http://webgraph.dsi.unimi.it

