Introduction to Information Retrieval INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Term Frequency Matrix

- Bag of words
- Document is vector with integer elements

	Antony and	Julius	$The\ Tempest$	Hamlet	Othello	Macbeth
	Cleopatra	Caesar				
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term Frequency - tf

- Long documents are favored because they are more likely to contain query terms
- Reduce the impact by normalizing by document length
- Is raw term frequency the right number?

Weighting Term Frequency - WTF

- What is the relative importance of
 - 0 vs. 1 occurrence of a word in a document?
 - 1 vs. 2 occurrences of a word in a document?
 - 2 vs. 100 occurrences of a word in a document?
- Answer is unclear:
 - More is better, but not proportionally
 - An alternative to raw tf:
- WTF(t,d)
- 1 **if** $tf_{t,d} = 0$
- 2 then return(0)
- 3 else $return(1 + log(tf_{t,d}))$

Weighting Term Frequency - WTF

- The score for query, q, is
 - Sum over terms, t

$$WTF(t,d)$$

$$1 if tf_{t,d} = 0$$

- 2 then return(0)
- 3 else $return(1 + log(tf_{t,d}))$

$$Score_{WTF}(q, d) = \sum_{t \in q} (WTF(t, d))$$

What is the score of "bill rights" in the declaration of independence?

Weighting Term Frequency - WTF

- The score for query, q, is
 - Sum over terms, t

```
WTF(t,d)
```

- 1 **if** $tf_{t,d} = 0$
- 2 then return(0)
- 3 else $return(1 + log(tf_{t,d}))$

$$Score_{WTF}(q, d) = \sum_{t \in q} (WTF(t, d))$$

 $Score_{WTF}("bill\ rights", declarationOfIndependence) =$

WTF("bill", declarationOfIndependence) +

WTF("rights", declarationOfIndependence) =

$$0 + 1 + log(3) = 1.48$$

Weighting Term Frequency - WTF

$$Score_{WTF}(q,d) = \sum_{t \in q} (WTF(t,d))$$

$$Score_{WTF}("bill\ rights", declarationOfIndependence) = \\ WTF("bill", declarationOfIndependence) + \\ WTF("rights", declarationOfIndependence) = \\ 0 + 1 + log(3) = 1.48$$

$$Score_{WTF}("bill\ rights", constitution) = \\ WTF("bill", constitution) + \\ WTF("rights", constitution) = \\ 1 + log(10) + 1 + log(1) = 3$$

Weighting Term Frequency - WTF

Can be zone combined:

```
Score = 0.6(Score_{WTF}("instant oatmeal health", d.title) + 0.3(Score_{WTF}("instant oatmeal health", d.body) + 0.1(Score_{WTF}("instant oatmeal health", d.abstract)
```

- Note that you get 0 if there are no query terms in the document.
 - Is that really what you want?
 - We will eventually address this

Unsatisfied with term weighting

- Which of these tells you more about a document?
 - 10 occurrences of "mole"
 - 10 occurrences of "man"
 - 10 occurrences of "the"
- It would be nice if common words had less impact
 - How do we decide what is common?
- Let's use corpus-wide statistics

Corpus-wide statistics

- Collection Frequency, cf
 - Define: The total number of occurrences of the term in the entire corpus
- Document Frequency, df
 - Define: The total number of documents which contain the term in the corpus

Corpus-wide statistics

Word	Collection Frequency	Document Frequency
in surance	10440	3997
try	10422	8760

- This suggests that df is better at discriminating between documents
- How do we use df?

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
 - "tf-idf"
 - tf = term frequency
 - some measure of term density in a document
 - idf = inverse document frequency
 - a measure of the informativeness of a term
 - it's rarity across the corpus
 - could be just a count of documents with the term
 - more commonly it is: $idf_t = log\left(\frac{|corpus|}{df_t}\right)$

TF-IDF Examples

$$idf_t = log\left(\frac{|corpus|}{df_t}\right)$$
 $idf_t = log_{10}\left(\frac{1,000,000}{df_t}\right)$
 $term$ df_t idf_t

 calpurnia
 1
 6

 animal
 10
 4

 sunday
 1000
 3

 fly
 10,000
 2

 under
 100,000
 I

the 1,000,000

TF-IDF Summary

Assign tf-idf weight for each term t in a document d:

$$tfidf(t,d) = WTF(t,d) * log \left(\frac{|corpus|}{df_{t,d}}\right)$$

$$(1 + log(tf_{t,d}))$$

- Increases with number of occurrences of term in a doc.
- Increases with rarity of term across entire corpus
- Three different metrics
 - term frequency
 - document frequency

Now, real-valued term-document matrices

- Bag of words model
- Each element of matrix is tf-idf value

	Antony and	Julius	$The\ Tempest$	Hamlet	Othello	Macbeth
	Cleopatra	Caesar				
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

The numbers are just examples, they are not correct with respect to tf-idf and the previous slide

Vector Space Scoring

- That is a nice matrix, but
 - How does it relate to scoring?
 - Next, vector space scoring

