Vector Space Scoring

Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org
Spamming indices

- This was invented before spam

Consider:

- Indexing a sensible passive document collection
- vs.
- Indexing an active document collection, where people, companies, bots are shaping documents to maximize scores

- Vector space scoring may not be as useful in this context.
Interaction: vectors and phrases

- Scoring phrases doesn’t naturally fit into the vector space world:
 - How do we get beyond the “bag of words”?
 - “dark roast” and “pot roast”
 - There is no information on “dark roast” as a phrase in our indices.

- Biword index can treat some phrases as terms
 - postings for phrases
 - document wide statistics for phrases
Interaction: vectors and phrases

- Theoretical problem:
 - Axes of our term space are now correlated
 - There is a lot of shared information in “light roast” and “dark roast” rows of our index

- End-user problem:
 - A user doesn’t know which phrases are indexed and can’t effectively discriminate results.
Multiple queries for phrases and vectors

• Query: “rising interest rates”

• Iterative refinement:
 • Run the phrase query vector with 3 words as a term.
 • If not enough results, run 2-phrase queries and fold into results: “rising interest” “interest rates”
 • If still not enough results run query with three words as separate terms.
Vector Space Scoring

Vectors and Boolean queries

- Ranked queries and Boolean queries don’t work very well together
 - In term space
 - ranked queries select based on sector containment - cosine similarity
 - boolean queries select based on rectangle unions and intersections
Vectors and wild cards

- How could we work with the query, "quick* print*"?
- Can we view this as a bag of words?
- What about expanding each wild-card into the matching set of dictionary terms?
- Danger: Unlike the boolean case, we now have tfs and idfs to deal with.
- Overall, not a great idea
Vector Space Scoring

Vectors and other operators

- Vector space queries are good for no-syntax, bag-of-words queries
- Nice mathematical formalism
- Clear metaphor for similar document queries
- Doesn’t work well with Boolean, wild-card or positional query operators
- But ...
Query language vs. Scoring

- Interfaces to the rescue
- Free text queries are often separated from operator query language
- Default is free text query
- Advanced query operators are available in “advanced query” section of interface
- Or embedded in free text query with special syntax
 - aka -term -“terma termb”
Alternatives to tf-idf

• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times the relevance

• This motivated the WTF score.

\[
\text{WTF}(t, d) = \begin{cases}
1 & \text{if } tf_{t,d} = 0 \\
2 & \text{then } \text{return}(0) \\
3 & \text{else } \text{return}(1 + \log(tf_{t,d}))
\end{cases}
\]

• There are other variants for reducing the impact of repeated terms
TF Normalization

- Normalize tf weights by maximum tf in that document

\[nt \cdot tf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)} \]

- \(\alpha \) is a smoothing term from \((0 - 1.0)\) \(\sim 0.4\) in practice

- This addresses a length bias.

- Take one document, repeat it, WTF goes up

- this score reduces that impact
TF Normalization

- Normalize tf weights by maximum tf in that document

\[ntf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)} \]

- a change in the stop word list can change weights drastically - hard to tune
- still based on bag of words model
- one outlier word, repeated many times might throw off the algorithmic understanding of the content
Laundry List

<table>
<thead>
<tr>
<th>Term Frequency</th>
<th>Document Frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)atural</td>
<td>(n)o</td>
<td>(n)one</td>
</tr>
<tr>
<td>(l)ogarithm</td>
<td>(t)idf</td>
<td>(c)osine</td>
</tr>
<tr>
<td>(a)ugmented</td>
<td>(p)robidf</td>
<td>(w)pivoted</td>
</tr>
<tr>
<td>(b)oolean</td>
<td></td>
<td>(b)yte</td>
</tr>
<tr>
<td>(L)ogaverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$tf_{t,d}$</td>
<td>$1 + \log(tf_{t,d})$</td>
<td>1</td>
</tr>
<tr>
<td>$1 + \log(tf_{t,d})$</td>
<td>$\log\frac{</td>
<td>corpus</td>
</tr>
<tr>
<td>$\alpha + (1 - \alpha)\frac{tf_{t,d}}{df_{max}(d)}$</td>
<td>$\max{0, \log(\frac{</td>
<td>corpus</td>
</tr>
<tr>
<td>$tf_{t,d} > 0 ? 1 : 0$</td>
<td>$\frac{1}{1+\log(\text{ave}{t\in d}(tf{t,d}))}$</td>
<td>$1/\text{CharLength}^{\alpha}$, $\alpha < 1$</td>
</tr>
</tbody>
</table>

- SMART system of describing your IR vector algorithm
- ddd.qqq ($\text{ddd} = \text{document weighting}$) ($\text{qqq} = \text{query weighting}$)
- first is term weighting, second is document, then normalization
- lnc.ltc is what?
Vector Space Scoring

Efficient Cosine Ranking

- Find the k docs in the corpus “nearest” to the query
 - the k largest query-doc cosines

- Efficient ranking means:
 - Computing a single cosine efficiently
 - Computing the k largest cosine values efficiently
 - Can we do this without computing all n cosines?
 - $n = \text{number of documents in corpus}$
Efficient Cosine Ranking

- Computing a single cosine
- Use inverted index
- At query time use an array of accumulators A_j to accumulate component-wise sum (incremental dot-product)
- Accumulate scores as postings lists are being processed (numerator of similarity score)

\[A_j = \sum_t (w_{q,t}w_{d,t}) \]
Efficient Cosine Ranking

• For the web
 • an array of accumulators in memory is infeasible
 • so only create accumulators for docs that occur in postings list
 • dynamically create accumulators
 • put the tf_d scores in the postings lists themselves
 • limit docs to non-zero cosines on rare words
 • or non-zero cosines on all words
 • reduces number of accumulators
Efficient Cosine Ranking

\textsc{CosineScore}(q)
1. \textsc{Initialize} (Scores$[d \in D]$)
2. \textsc{Initialize} (Magnitude$[d \in D]$)
3. \textbf{for each term}(t \in q)
 \hspace{1em} \textbf{do} $p \leftarrow \text{FetchPostingsList}(t)$
 \hspace{1em} $df_t \leftarrow \text{GetCorpusWideStats}(p)$
 \hspace{1em} $\alpha_{t,q} \leftarrow \text{WeightInQuery}(t, q, df_t)$
4. \textbf{for each} $\{d, tf_{t,d}\} \in p$
 \hspace{1em} \textbf{do} Scores$[d] + = \alpha_{t,q} \cdot \text{WeightInDocument}(t, q, df_t)$
5. \textbf{for} $d \in \text{Scores}$
6. \hspace{1em} \textbf{do} \text{Normalize}(\text{Scores}[d], \text{Magnitude}[d])$
7. \textbf{return} top K \in \text{Scores}
Use heap for selecting the top K Scores

- Binary tree in which each node’s value > the values of children
- Takes 2N operations to construct
 - then each of k “winners” read off in 2logn steps
- For n =1M, k=100 this is about 10% of the cost of sorting
- Java “TreeMap” for example