Matrix Decomposition and Latent Semantic Indexing (LSI)

Introduction to Information Retrieval INF 141/ CS 121
Donald J. Patterson

Latent Semantic Indexing

Outline

- Introduction
- Linear Algebra Refresher

Star Cluster NGC 290 - ESA & NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
 - projecting can be defined mathematically
- When we see two stars that are close..
 - They may not be close in space
- When we see two stars that appear far...
 - They may not be far in 3-D space

Star Cluster NGC 290 - ESA & NASA

- When we see two stars that are close in a photo
 - They really are close for some applications
 - For example pointing a big telescope at them
 - Large shared telescopes order their views according to how "close" they are.

Overhead projector example

Overhead projector example

- Depending on where we put the light (and the wall) we can make things in three dimensions appear close or far away in two dimensions.
- Even though the "real" position of the 3-d objects never moved.

Mathematically speaking

This is taking a 3-D point and projecting it into 2-D

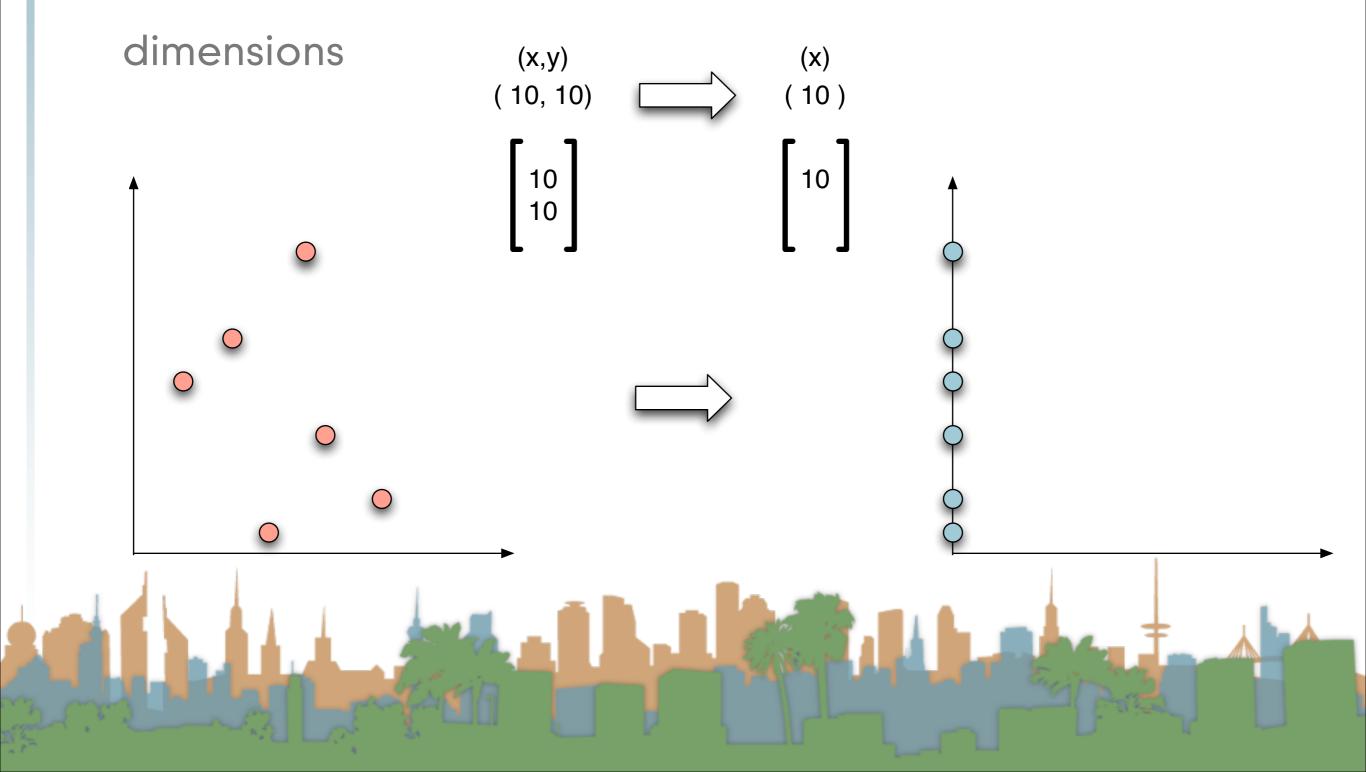
The arrow in this picture acts like the overhead projector

Mathematically speaking

- We can project from any number of dimensions into any other number of dimensions.
- Increasing dimensions adds redundant information
 - But sometimes useful
 - Support Vector Machines (kernel methods) do this effectively
- Latent Semantic Indexing always reduces the number of dimensions

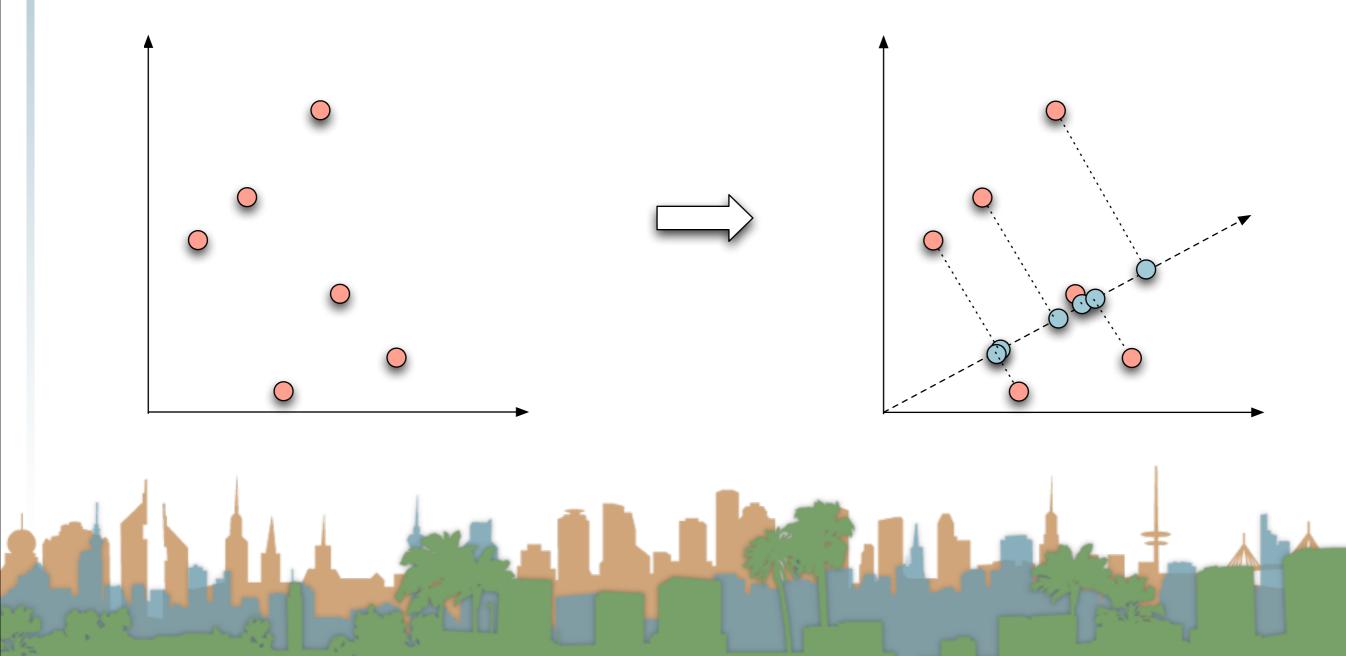
Mathematically speaking

Latent Semantic Indexing always reduces the number of



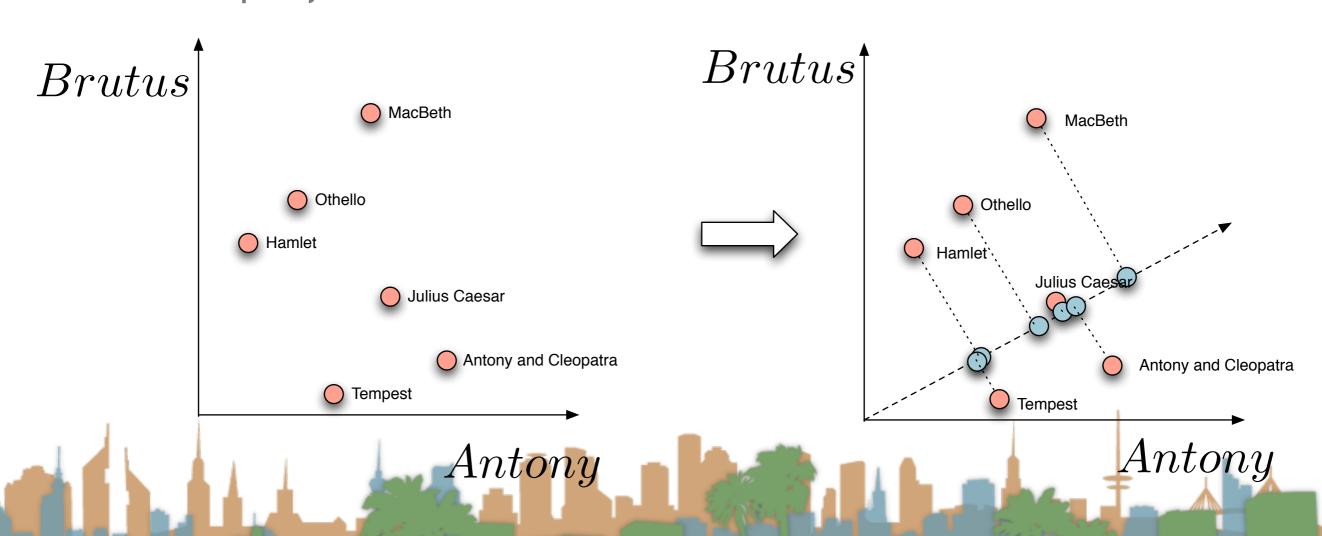
Mathematically speaking

 Latent Semantic Indexing can project on an arbitrary axis, not just a principal axis



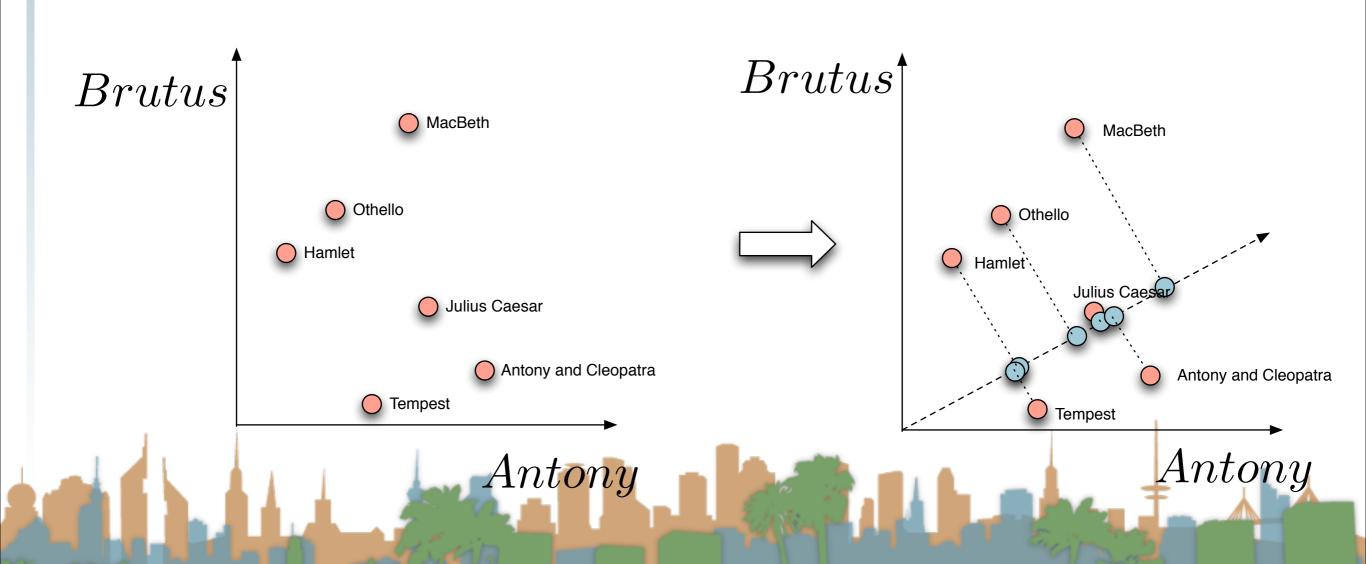
Mathematically speaking

- Our documents were just points in an N-dimensional term space
- We can project them also



Mathematically speaking

 Latent Semantic Indexing makes the claim that these new axes represent semantics - deeper meaning than just a term



Mathematically speaking

- A term vector that is projected on new vectors may uncover deeper meanings
 - For example
 - Transforming the 3 axes of a term matrix from "ball"
 "bat" and "cave" to
 - An axis that merges "ball" and "bat"
 - An axis that merges "bat" and "cave"
 - Should be able to separate differences in meaning of the term "bat"
 - Bonus: less dimensions is faster

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix

The identity matrix is a diagonal matrix with ones
 on the main diagonal

M=3

N=5

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

- |f
- then
- and
- and

$$U$$
 Σ V^T

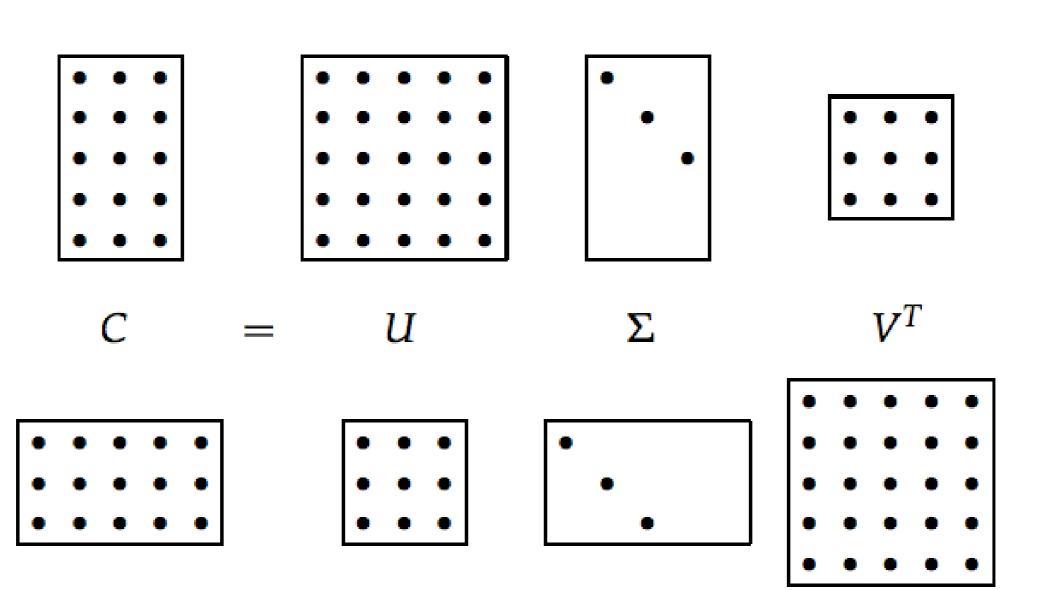
$$C = U\Sigma V^T$$

$$U$$
 is $(M$ by $M)$

$$\Sigma$$
 is $(M \ by \ N)$

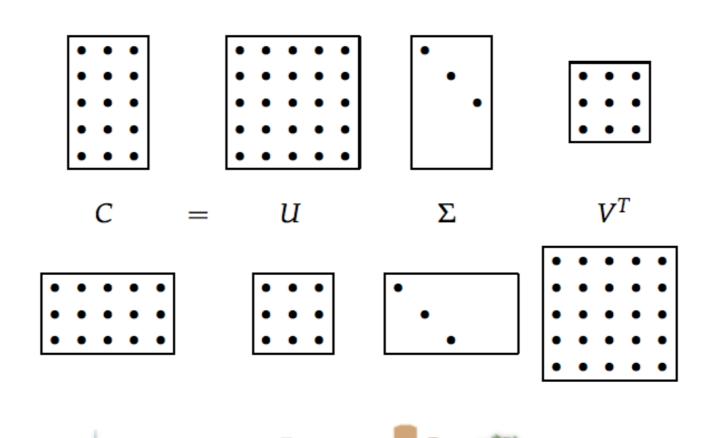
$$V^T$$
 is $(N \ by \ N)$

also Sigma is almost a diagonal matrix

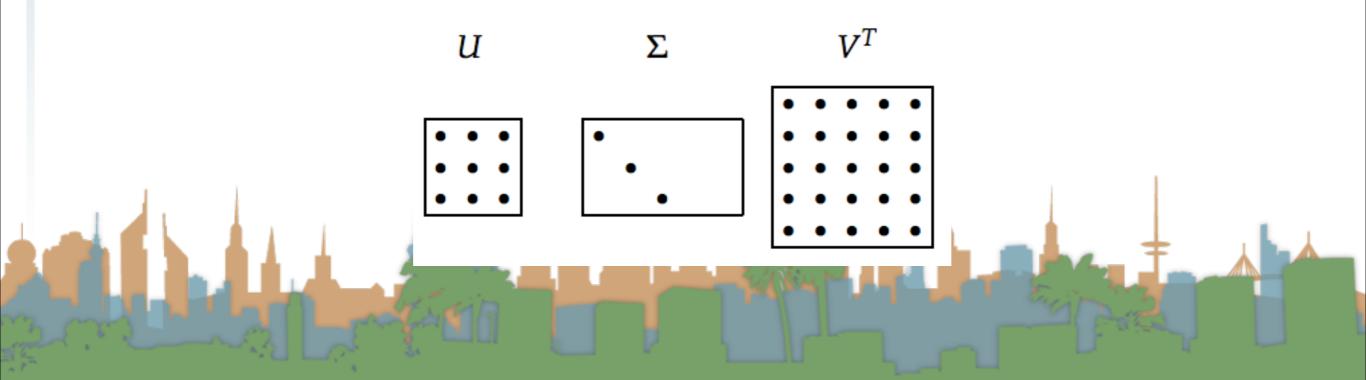


- Singular Value Decomposition
 - Is a technique that splits a matrix into three components with these properties.
 - They also have some other properties which are relevant to latent semantic indexing

- Singular Value Decomposition
 - Is a technique that splits a matrix into three components with these properties.



- Singular Value Decomposition
 - SVD enables lossy compression of your term-document matrix
 - reduces the dimensionality or the rank
 - you can arbitrarily reduce the dimensionality by putting zeros in the bottom right of sigma
 - this is a mathematically optimal way of reducing dimensions



- Singular Value Decomposition
 - If the old dimensions were based on terms
 - after reducing the rank of the matrix the dimensionality is based on concepts or semantics
 - a concept is a linear combination of terms

$$SVD_{dimension_{1}} = a * td_{dim_{1}} + b * td_{dim_{2}} + c * td_{dim_{3}} + d * td_{dim_{4}}$$

$$SVD_{dimension_{2}} = a' * td_{dim_{1}} + b' * td_{dim_{2}} + c' * td_{dim_{3}} + d' * td_{dim_{4}}$$

$$SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$$

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_{1}} = a * td_{dim_{1}} + b * td_{dim_{2}} + c * td_{dim_{3}} + d * td_{dim_{4}}$$

$$SVD_{dimension_{2}} = a' * td_{dim_{1}} + b' * td_{dim_{2}} + c' * td_{dim_{3}} + d' * td_{dim_{4}}$$

$$SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$$

4 dimensions to 3 dimensions

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_{1}} = a * td_{dim_{1}} + b * td_{dim_{2}} + c * td_{dim_{3}} + d * td_{dim_{4}}$$

$$SVD_{dimension_{2}} = a' * td_{dim_{1}} + b' * td_{dim_{2}} + c' * td_{dim_{3}} + d' * td_{dim_{4}}$$

$$SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$$

4 dimensions to 3 dimensions

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_{1}} = a * td_{dim_{1}} + b * td_{dim_{2}} + c * td_{dim_{3}} + d * td_{dim_{4}}$$

$$SVD_{dimension_{2}} = a' * td_{dim_{1}} + b' * td_{dim_{2}} + c' * td_{dim_{3}} + d' * td_{dim_{4}}$$

$$SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$$

$$\begin{vmatrix} SVD_{dim_1} \\ SVD_{dim_2} \\ SVD_{dim_3} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_{1}} = a * td_{dim_{1}} + b * td_{dim_{2}} + c * td_{dim_{3}} + d * td_{dim_{4}}$$

$$SVD_{dimension_{2}} = a' * td_{dim_{1}} + b' * td_{dim_{2}} + c' * td_{dim_{3}} + d' * td_{dim_{4}}$$

$$SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$$

$$\begin{vmatrix} SVD_{dim_1} \\ SVD_{dim_2} \\ SVD_{dim_3} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

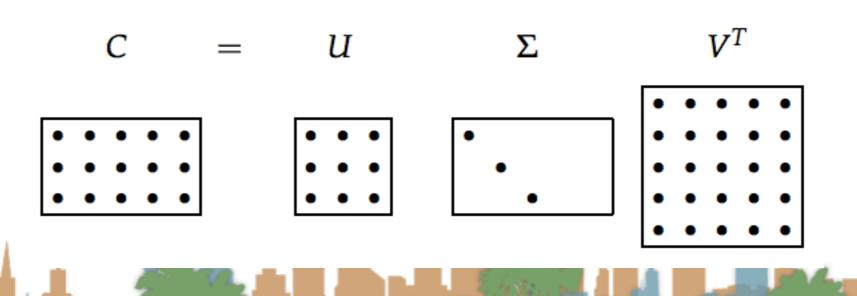
 $SVD_{ConceptSpace} = M * query_{TermSpace}$

Matrix Decomposition

Singular Value Decomposition

$$\begin{vmatrix} SVD_{dim_1} \\ SVD_{dim_2} \\ SVD_{dim_3} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

$$SVD_{ConceptSpace} = M * query_{TermSpace}$$



Matrix Decomposition

Singular Value Decomposition

$$\begin{vmatrix} SVD_{dim_{1}} \\ SVD_{dim_{2}} \\ SVD_{dim_{3}} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_{1}} \\ td_{dim_{2}} \\ td_{dim_{3}} \\ td_{dim_{4}} \end{vmatrix}$$

$$SVD_{ConceptSpace} = M * query_{TermSpace}$$

$$M = \Sigma_k^{-1} U_k^T$$

 V^{T}

$$C = U \Sigma$$

Matrix Decomposition

Singular Value Decomposition

$$\begin{vmatrix} SVD_{dim_1} \\ SVD_{dim_2} \\ SVD_{dim_3} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

$$SVD_{ConceptSpace} = M * query_{TermSpace}$$

$$M = \Sigma_k^{-1} U_k^T$$

$$query_{ConceptSpace} = \Sigma_k^{-1} U_k^T query_{TermSpace}$$

- Singular Value Decomposition
 - SVD is an algorithm that gives us

$$\Sigma U V^T$$

- With these quantities we can reduce dimensionality
- With reduced dimensionality
 - synonyms are mapped onto the same location
 - "bat" "chiroptera"
 - polysemies are mapped onto different locations
 - "bat" (baseball) vs. "bat" (small furry mammal)

- Computing SVD takes a significant amount of CPU
- It is possible to add documents to a corpus without recalculating SVD
 - The result becomes an approximation
 - To get mathematical guarantees the whole SVD needs to be computed from scratch
- LSI doesn't support negation queries
- LSI doesn't support boolean queries

Matrix Decomposition

"I am not crazy"

Netflix

Matrix Decomposition

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

The math is hard but it's beautiful and powerful

La matemáticas es dura pero es hermosa y de gran alcance

> Jene mathematisch ist hart, aber ist und an langer Reichweite schön

> > That one mathematically is hard, but is beautiful and at long range

next...